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Abstract. During ice storms, ice forms on high voltage electrical lines. This ice formation often
results in downed lines and has been responsible for considerable damage to life and property as was
evidenced in the catastrophic ice storm of Quebec recently. There are two main aspects, viz., the
formation of ice and its timely mitigation. In this paper, we mathematically model the melting of ice
due to a higher current applied to the transmission wire. The two dimensional cross section contains
four layers consisting of the transmission wire, water due to melting of ice, ice, and the atmosphere.
The model includes heat equations for the various regions with suitable boundary conditions. Heat
propagation and ice melting are expressed as a Stefan-like problem for the moving boundary between
the layers of ice and water. The model takes into account gravity which leads to downward motion
of ice and to forced convection of heat in the water layer. In this paper, the results are applied to
the case when the cross sections are concentric circles to yield melting times for ice dependent on
the increase in intensity of the electrical flow in the line.

1. Introduction. Ice formation on electrical transmission line is a major prob-
lem leading to high casualties in terms of people and property. The ice storm of 1998
in Montreal, Canada left four million people without heat and electricity because of
a destroyed electrical network. Other losses include millions of trees, 120,000 km of
power lines, 130 major transmission towers each worth about $100,000 and 30,000
electrial poles each worth $3000. To avoid such catastrophy, the ice formed on the
transmission lines should be melted as soon as it forms, by conduction of heat from a
temporary increase in electrical power.

In spite of the seriousness of the problem, there appears to be no satisfactory
solutions discussed in the literature, mathematical or otherwise. Some crude practices
like using long poles to break the ice are used. We hope the present model can serve
as a first step toward the solution of the problem by controlling the intensity of
electricity in the lines. Modeling is needed as insufficient electricity does not solve the
problem while even a little excess will expand the wire, making it sag and break, and
possibly overload transformers. Hence the selection of optimum levels of electricity
accompanied by (ususally) short periods of increased electricity play a pivotal role,
thus avoiding guesswork. We expect the model to be tested by Manitoba Hydro under
field conditions.

The object of this paper is to develop a mathematical model of ice melting and
to solve a simplified case numerically. The design of the mathematical model includes
various factors relating to ice melting by analyzing the boundaries between the dif-
ferent material regions and also the heat transfer equations that govern the melting
process. The problem draws upon principles from fluid mechanics, heat transfer, and
gravitational effects. In this paper we consider the models under simple conditions
without taking into account the effects of humidity and wind. We develop the model-
ing aspect of the problem incrementally and systematically so as to keep it tractable.

Since the full model consists of complex coupled equations which cannot be solved
in closed form, numerical solutions are sought. A finite difference scheme is used to
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F1G. 2.1. Different regions in the ice melting problem.

discretize the governing equations. The present numerical simulation considers the
simplest case of axially symmetric solution without gravity.

2. Formulation of the Full Model. We consider the transmission wire to be
a homogeneous horizontal cylinder of constant cross-section.

The ice-covered wire is also assumed to have a constant cross-section. Thus we
can describe the ice-melting process in two dimensions.

We distinguish four material regions in the cross-section (Figure 2.1):

(i) Q1 metal (electric wire),

(ii) Q2 water melted off from ice,
(iii) Qs ice,

(iv) Q4 atmosphere.

Boundaries between adjacent regions are denoted I'15, I's3 and I's4. In this model
it is assumed that boundary between ice and water is sharply defined.

The coordinate system is attached to the wire with its origin at the centre of €
so the boundary I'15 does not change its position in time.

At the initial moment, I'15|,_, = T'23|,_, and the region Q> (water) is empty. The
following process termination criterion is adopted: I'ag touches I'sy at some point,
i.e., the water region reaches the external boundary at some point. In particular, not
all ice needs to be completely melted.

The given information for this problem includes the two-dimensional cross-section
with two initial regions: wire and ice, with regions and boundaries as designated above.
The wire region has a heat source of constant intensity ¢. It is assumed values are
available for the material parameters (specific heat ¢;, constant density of the media
pi, thermal conductivity of the media k;, latent heat of melting ice A, wire resistivity
p and current density in wire j), the initial and external temperatures and electric
current.

The unknowns for this problem are



1. boundary between water and ice '3 (),

. relative position of I'1s and I'34 in terms of the velocity of the ice vjce(t),
which is assumed to be a vector in the vertical direction only,

. temperature fields in 4, 5, and Qg,

. velocity field v(z,y,t) in the water region {2,

. pressure field P(x,y,t) in Qo,

. tend, the instant the process termination criterion described above occurs in
the case where sufficient heat is available.

The mathematical model is described by heat transfer equations within the regions
Q1, Qs, and Q3 and across the boundaries I'15, a3 and T's4 of the regions. Let
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T, for points in
T = T, for points in Q9
T3 for points in Q3.

Within the regions, the heat transfer equations are given by

oT; .
picia—tz = k;AT; + qi, 1=1,3 (2.1)

oT:
P2C2 (8—; +v- VT2> =k AT + ¢o.

Notice that ¢ = ¢ = j2p # 0 whereas ¢ = g3 = 0 since there are no internal
heat sources in water and ice. In i, it is assumed the solution must be a form in
which the temperature is finite everywhere - this assumption is essential in solving
the boundary value problem.

The water region is modeled by the incompressible viscous Navier-Stokes in the
Boussinesq approximation:

ov +@w-V)u= _vP +vAv—g(1 — uT?)g.

ot P2
Here P is the pressure, u is the coefficient of thermal expansion of water, v is the
kinematic viscosity of water, g is the gravitational acceleration and § is the unit
vector in the vertical direction. The last term in the above equation is the buoyancy
term which pushes hot water (relative to the reference temperature 0 degree Celsius)
upward. The fluid is assumed to be incompressible:

V-v=0.
Finally, Newton’s second law applied to the ice bulk is

dv; .1
€23 Cice _ —g%l§ + — P(z,y)nds, (2.2)
dt P2 JTog

where |Q3] is the volume (i.e., two-dimensional area) of the ice region, and n is the
unit outward normal vector along I's3. This equation holds whenever ice does not
touch the wire (otherwise, we stop by the process termination criterion).

The boundary conditions for the water region are:

Vlry, =0, and  v|ry = Vice.
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To describe the boundary conditions at I';5, we assume the temperature must be
continuous across the boundary and that

oTy oT,
ki — — ko— =0. 2.3
[ "on >on ]Fu (2:3)

To describe the boundary conditions at I';3, we assume
Taly,, = T3lp,, =0 (2.4)
(temperature is measured in degrees Celsius) and that the Stefan condition
0T, 0T3

ko—— — ks— = —p3A 2.5
By k| = ere)m (2.5)

holds where vr () is the velocity of ice melting in the normal direction to the phase
boundary and (vr () ,n) denotes the inner product of the velocity and normal vectors.
This velocity is defined by

9v(B)
on
where v (B) is the position of a point on Iss.

The boundary condition at I's4 is assumed to be described by Newton’s law of
cooling

n — Vjce (26)

vr (z) = ‘

s

3 on =h (Tem) - T3|1“34) (27)

34

where T¢,, is the external temperature.

To obtain rough estimations of the melting time, simple methods based on energy
considerations are available. Besides their usefulness as benchmarks, these estimations
show a crucial role of the heat transfer parameter h in Equation (2.7). Unfortunately,
this parameter is not apriori known or directly measurable.

It would be a formidable task to prove existence and uniqueness results. We are
content with supplying a few remarks.

In the Navier-Stokes equations, pressure is only determined up to a constant. In
(2.2), the pressure term appears. It is easy to check that the integral in this equation
does not change when a constant is added to P.

Let us discuss the solvability of the Navier-Stokes equations assuming that the
fluid is irrotational. Introduce the hydrodynamical potential ¢(x,y) so that

=[]

This potential satisfies A¢ = 0 in Qs with Neumann boundary conditions. It can be
checked that the circulation of v along both boundaries is zero, hence ¢ is well defined
up to an additive constant. Since the first derivatives of ¢ vanish on I'15, we may take

¢|F12 =0.

It is possible to reduce the boundary value problem for ¢ in a doubly connected
region to a Dirichlet problem in a simply connected domain. For simplicity, assume
the problem is symmetric about the line z = 0. Along this line ¢, = 0. Thus ¢ =0
at points with £ = 0 on I';3. From the boundary condition at I's3, one sees that
@|ras = —|Vice|z+ constant. We can now conclude the constant must be zero and so
¢ is known on the entire boundary of each of two symmetric halves of Q.
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3. Setup For a Model with No Gravity. We now simplify these systems of
differential equations and their boundary conditions to correspond to the simple (and
admittedly unrealistic) geometry we are interested in.

The model to be considered neglects the effect of gravity. The absence of gravity
means the external boundary I's4 does not move, so there is only one moving boundary
in the problem which is the phase interface I's3 between ice and water. This is an
example of the classical Stefan model. The assumption of no gravity means I'1a, T'ag
and I'34 are all circles at all times (the effect of gravity is to cause the ice to “sag” so
the boundary I's34 is changing with time, a somewhat more difficult problem).

Let the boundaries I'12, a3 (¢) and I'34 be concentric circles of radii Ry, Ra (¢)
and Rj3 respectively so that Ry (0) = Ry and Rs (teng) = Rs (in the case of sufficiently
large ¢). In polar coordinates (r, ¢), it is assumed the temperature is a function of r
only (angular symmetry). The problem reduces to a one-dimensional form. The heat
transfer described in Equation (2.1) takes the form

orT kl@(@T

- e

picia = 1;5 ) + ¢; where i =1,2,3. (31)

The function T (r,t) is continuous and its derivative with respect to r, denoted by T,
is piecewise continuous and subject to boundary conditions

leI (R1 — 0) = k‘QTI (Rl + 0) R (32)

ko T' (Bs (1) — 0) = ksT" (Ra (t) + 0) — pgx‘%, (3.3)
T (R (t)) =0, (34)

ksT' (R3) = h (Tenw — T (R3)) - (3.5)

Note the dependence on t has been suppressed in the notation of Equations (3.2)
through (3.5).

3.1. Solutions for Incomplete Melting. If the generated heat is insufficient
for complete melting of the ice shell, then there exists a stationary state. Equating
time derivatives from Equations (3.1) and (3.3) to zero, it is possible to solve this
problem as closed form solutions. There are two possible cases.

3.1.1. Case 1: No Water Layer. If there is no water layer, i.e. the Joulean
heat is insufficient to start the melting process, then in this case, Ry = Ry (t) for all
t so the boundaries I'15 and I's3 coincide. For clarity, let I'13 denote this coincident
boundary. The boundary condition at I'13 is analogous to that of Equation (3.2) with
the index 2 replaced by index 3:

on| _, 9T
6TF13_38r

T1|F13 = T3|F13 :

k1 , (3.6)

Taking into account the external boundary condition given by Equation (3.5), we find
the solution

(R2—r%)q Riq( 1 1. R
Ty (r) =Teno + —— + 2 (— + —In—" :
1 (r) = T2 \BrTEMR (3.7)



in Q; and

R2q 1 1 R3
Ts(r)=Topy + —— [ — + —In—2 )
5 (7) + (R3h+k3nr) (3.8)

in Q3. Case 1 occurs if the temperature at I'13 is below the melting temperature
which is assumed to be zero degrees Celsius. Note that

Rq(/ 1 1. R
T =T Y L Ly L I R
1 (Ba) =Ty () T <R3h+k3 nR1>

from which it follows that

R2q 1 1 R3
Tono + — [ — 4+ —In=2 0. 3.9
T (R3h+k3 nR1>< (3:9)

3.1.2. Case 2: Stationary Water Layer. The water layer 2» exists in a sta-
tionary state; thus

R; < Ry < R3 and R (t) is a constant. (3.10)

Using all the boundary conditions except Equation (3.5), we find the solution

Riq, Ry ¢
T ="Um_—=4+ = (R?-12 11
1(r) 2y nR1+4k1 (Rt —r*) (3.11)
in Ql;
_ Riq, Ry
in Q9 and
Riqg. r
T. =——"In— .1
(1) = gt g (313)

in Q3. The stationary position of I'y3 where 7 = Ry is not apriori known. Substituting
the solution in Equation (3.13) into the boundary condition described by Equation
(3.5) gives the equation

qu 1 1 R3
Ty + 04 (1 158 g, 3.14
T (R3h+k3 nRz) (3:14)

Since Rz < Rj3, this implies

Riq

Ten'v
* 9Rah

<0, (3.15)

a condition which is useful in considering the case where complete melting occurs.

3.2. Complete Melting. Suppose that initially the water layer does not exist,
and then such current is applied so the negation of Inequality (3.15) is true. The ice
shell will finally melt. It is desirable to calculate the melting time t,q.
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3.2.1. Time dependence. First estimations. The simplest lower bound for
teng may be derived from the energy needed to melt the bulk of the ice layer. The
mass of ice per unit length of wire is

Mice = P3T (Ré — R%) .
The melting energy per unit length is
Epeit = Mjce = )\[)37‘[’ (R§ - R%) (316)

and the heat power per unit length equals grR?. The ratio of the melting energy per
unit length to the heat power per unit length provides a lower bound to the melting
time. Hence
A\ps R2 — R?

teng > — ———. 3.17

end Z q R% ( )
This estimation doesn’t take into account the energy dissipation for heating metal,
ice and water.

A slightly more advanced estimation is based on the full enthalpy increment,

which includes an increment of the internal energy not only due to phase change, but
also due to temperature increase. The initial enthalpy of the region 4 is given by

Ry
H, (0) = prcy / T, (r,0) - 277 dr.
0

Substituting the stationary solution from Equation (3.7) with heat flow ¢ and inte-
grating, we obtain

R2q [ 1 1 1 R
H = P | Teno S\ matewrw )
1(0) = prexmRy [ T (4k1 T Reh Tk " Rl)]

Similarly, to find the initial enthalpy of the region 23 we substitute the solution from
Equation (3.8) as the integrand and perform integration from R; to Rj:

R? 1 1 R R
Hj (0) = paeam |:(R§ - R%) (Tenv + qu (% + m)) - ﬂlj In R_j:| .

Let us evaluate the enthalpy of the final state, when I's3 and I'sy coincide. To
obtain a lower bound, we take the minimal heat power ¢ that guarantees the complete
melting, i.e. ¢ that turns Inequality (3.15) into equality, which is

g 2R3Tepnvh
It =————=5 -
me R%

Integrating Equation (3.11) from 0 to Ry and using ¢ = ¢meit and Rs (teng) = R3, we
get

2
H1 (tend) Z _plclﬂ'RlR3Tenvh (1 R3 1) )

ks "R "1

Note that Tep, < 0 (otherwise, the ice layer would be melting from the outside) so
qmelt > 0 and Hl (tend) 2 0.



The enthalpy of Q3 is obtained by integration of the solution given by Equation
(3.12) from R; to R3 and adding the melting energy described by Equation (3.16):

R3 Tenv h R3

Hj (tena) > pacam ok (QR% In ==+ R} — R%) + Enett-

R,

Once again, we have used ¢ = et and Ry (teng) = R3 . We obtain the following
estimate of the melting time:

Hl (tend) + H2 (tend) - Hl (0) - H3 (0) .
q

tend Z

The main error in the enthalpy estimation is caused by the ignored heat transfer
through the external boundary I'ss. This error increases as h becomes larger.

3.3. Quasi-stationary Approximation. The quasi-stationary approximation
(QSA) [1,Ch.3] gives the most precise lower bound for melting time based on the avail-
able analytical solution of the stationary problem in case when the latent heat is much
greater than specific heats. Like the enthalpy approach, the QSA is more precise than
the simplest estimation in Inequality (3.17) since it takes into account additional heat
drainages. But unlike the enthalpy approach, the QSA accounts for heat exchange
via the external boundary, while ignoring heat consumed for temperature increase.
So the two approaches are complementary in a sense and both underestimate teyq.

In the QSA we equate specific heats to zero and at each moment of time we
consider the stationary problem. Dynamics enters via the Stefan boundary condition,
which is not considered when solving the stationary problems; when the solution is
known it defines the interface velocity.

Equating left hand sides of Equation (3.1) to zero and solving the stationary
equations with boundary conditions described by Equations (3.2) to (3.5) excluding
Equation (3.3), we find that in Q; and Q- the solution is given by Equations (3.11)
and (3.12) respectively and in Qg3 it has the form

k Rs\ ' r
Ts (r) = hTons (n% +hin R—z) In - (3.18)

Substituting Equations (3.12) and (3.18) in the boundary condition of Equation (3.3),
we find

dR» 1

dry_ 1 b g o) Bl
dt _p3)\R2

Tem} o In ==
ksh <R3+hnR2 o

4. Numerical Results. We have performed a numerical simulation of a simpli-
fied model of the axially symmetric case without gravity, neglecting the variation of
temperature inside the wire. More precisely, the problem is:

Kj )
T; = TJ(TTT)’M i=2,3

k.
where x; = —-. The boundary conditions are
PjCj

T(Rl) = Twz’re; T(R2(t)) = 0; kSTr(RB) = h(Tenv - T(R3))
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supplemented by the Stefan condition

dR (t
koTr(Ro(t)—) — ksTr(Ra(t)+) + p3A dzt( ) _ 0.
First, we cast the problem in non-dimensional form. Let
~ tK'/g ~ r ~ T ~ R2 ~ R3
t=—, f=—, T=———, Ryo=—, R3=—.
R% Rl Twire > Rl s Rl
The PDE in the water region becomes (dropping the tilde)
K
Ty = —(rT,),
K3T
with boundary conditions
T(1) =1, T(R:(t) =0.
The PDE in the ice region is
Tt = —(’I‘Tr)r
with boundary conditions
k3 Tenv
T(R2(t)) =0, =—T.(R3)= —-T(R
(Ro(8) = 0. 5T (Re) = 72 ~T(y)
and the Stefan condition
Twi Twi dR>(t
0= k2,0202 wire TT(RQ(t)_) _ C3 w"eTr(RQ(t)-i-) + 2( )
kgpg)\ A dt

The values of the parameters in metric units (kg, m, s, etc.) are

p2 = 1000, ks = .60, cs = 4190,

p3 = 1000, k3 = 2.034, c3 = 2054, A =3.34 x 10°, h =1,

and R1 = .01, R2 = .02, Twz're = 30, Tem) = —5.

A second-order finite difference scheme for the spatial variable and backward
Euler scheme for the temporal variable were used. The spatial domain was divided
into 100 intervals while the time step was .01. The evolution of Ry(¢) is shown in
Figure 4.1. Tt follows the classical t'/2 growth rate. More precisely,

Rsy(t) = Ry + BVt

for some positive 8. For the current simulation, 8 = 3.79 x 10~* and the time of
melting is 697 seconds. The temperature distributions at ¢ = 20 seconds and at the
time of melting are shown in Figures 4.2 and 4.3. Note the discontinuity in the slope
of the temperature at the interface in Figure 4.2. Taking h = .1, the solution is almost
identical with time of melting also equal to 697 seconds.

There is a critical h approximately equal to 5 such that for all values of h larger
than the critical value, the solution reaches a steady state with not all ice melted.
In this steady case, the PDEs can be solved analytically and we have the following
relationship between the steady interface Ry and h:

ks -1

T Ry R k3p3c3Tens Rs3
1443 kap2coTwire In Ry +1n Ro

h

with R; in non-dimensional form, i = 1,2,3. In figure 4.4, we plot Ry versus h. For
large h, the steady interface Ry approaches approximately 1.73.
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F1G. 4.2. Temperature distribution at t = 20s.

5. Discussion. A two-dimensional cross-sectional model of melting ice on an
electrical transmission line due to an applied current has been presented. The model
includes both conduction and convection heat transfer mechanisms.

Of course, the real phenomenon of ice melting is more complex. Some factors
that are not taken into consideration in our simplistic model are:

(i) effects of gravity;
(ii) formation of cracks in ice due to structure of ice, difference of densities of water
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and ice and the longitudinal bent or twist of the cable;
(iii) other thermal phenomena such as solar radiation, sublimation;
(iv) atmosphere factors such as wind and precipitation.

A serious obstacle in practical application of the proposed model is an inherent
uncertainty of the parameter h in the external boundary condition. An extensive
experimental study is needed in order to establish a relationship of the coefficient in
Newton’s law of cooling (or the Biot number) to observable or measurable data.
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A more realistic model accounts for gravity. In this case, additional equations are
introduced to describe the evolution of the boundary I's3. This additional complexity
in the model requires numerical methods to obtain solutions. The model is quite
complex and difficult for numerical investigation. Especially difficult is a question of
the thickness of the water layer near the wire’s top, where the most intensive melting
occurs.
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