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Abstract

This thesis is concerned with the development of new formulae for higher

order derivatives, and the algorithmic, numerical, and analytical development

of the G
(1)
n transformation, a method for computing infinite-range integrals.

We introduce the Slevinsky-Safouhi formulae I and II with applications, we

develop an algorithm for the G
(1)
n transformation, we derive explicit approxi-

mations to incomplete Bessel functions and tail probabilities of five probability

distributions from the recursive algorithm for the G
(1)
n (x) transformation, and

we present all extant work on the analysis of the convergence properties of the

G
(1)
n transformation.
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Chapter 1

Introduction

In numerical analysis, in applied mathematics and in physics, infinite series and

infinite range integrals represent solutions of many problems. In practice, these

series and integrals have a very poor convergence, presenting severe numeri-

cal and computational difficulties. As a result, convergence accelerators and

nonlinear transformation methods for accelerating the convergence of infinite

series and integrals have been studied for many years and have been applied

in various situations. They are based on the idea of extrapolation. Via se-

quence transformations, slowly convergent and divergent sequences and series

can be transformed into sequences and series with better numerical properties.

Thus, they are useful for accelerating convergence. In the case of nonlinear

transformations the improvement of convergence can be remarkable [1–6].

There are numerous applications in science and engineering for special func-

tions and their higher order derivatives. As an example, accurate and fast cal-

culation of highly oscillatory integrals requires reliable extrapolation methods.

Examples of such integrals are the Twisted Tail proposed as a computational

problem in the SIAM 100-Digit Challenge [7] and the challenging spherical
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Bessel integrals involved in the so-called molecular integrals over exponential

type functions [8–10] and in integrals of magnetic properties of molecules [11].

The nonlinear D and G transformations [12, 13] have proven to be very pow-

erful tools in the computation of molecular integrals [14–19] and the Twisted

Tail [20]. Moreover, the algorithms of these transformations require successive

derivatives of the integrands, which can be a severe computational impedi-

ment. In highly oscillatory integrands, special functions, like spherical and

reduced Bessel functions are prevalent.

In chapter 2, we present new analytic formulae that allow for the calculation

of higher order derivatives. These formulae are applicable to functions G(x)

for which the terms

(
d

xmdx

)k

(x−nG(x)) for some m,n ∈ C are well-defined

and easy to compute. The formulae represent the kth derivative as discrete

sums of k + 1 of the aforementioned terms. The terms in the summation

have coefficients that can be computed recursively and are not subject to any

computational instability.

Numerically speaking, the analytical development of new formulae is criti-

cal. As an example, the straightforward calculation of
d14

dx14
jn(vx)

∣∣∣∣
(n,v,x)=(1,1,1)

using Maple 11’s evalf command to 15 correct digits yields -0.052008. There

are two problems with this output: firstly, there are only five significant digits,

when 15 are demanded; secondly, the number is only accurate to one digit, the

true value being -0.050439 90765 19013. In this case, an accuracy of 28 digits

in Maple 11’s evalf command is required in order to obtain the exact value to

15 correct digits.

The evaluation of tail integrals of probability distributions is a problem that

arises in several fields such as statistics, chemistry and physics. For example,

in certain types of clustering and reliability problems, it is required to compute
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extreme tail probabilities to a high accuracy [21]. Standard quadrature rules

had failed to provide extremely accurate computation of tail probabilities lead-

ing to the need for approximation functions that yield adequate accuracy for

probabilities in the range of interest. Unfortunately, as explained by Gray and

Wang [22] there are few general methodologies for producing such functions.

Work in [19, 20] has shown that the G
(m)
n transformation [13] can be ex-

ceptionally accurate in the computation of highly oscillatory integrals. The

G transformation was introduced in [23] and is extended to Gn in [24] and

to G
(m)
n in [13]. The positive integer m denotes the order of the linear ho-

mogeneous differential equation satisfied by the integrand and the positive

integer n stands for the truncation order of the asymptotic expansion used

in the transformation. The G
(m)
n transformation produces approximations to

infinite range integrals by expanding the integral tails in asymptotic expan-

sions. One of the main challenges facing the G
(m)
n transformation is the lack

of efficient algorithms for its implementation. Brute force methods rely on the

solution of large systems of linear equations involving successive derivation of

the integrands, and are therefore algorithmically undesirable.

In chapter 3, we introduce the G
(m)
n transformation, and after outlining its

main computational drawbacks, we introduce the recent progress in [25], where

a highly efficient algorithm for the implementation of the G
(1)
n transformation,

for integrals whose integrands satisfy first order linear homogeneous differential

equations is introduced. The algorithm requires computation of derivatives of

the form
(
x2 d

dx

)n
(x−νf(x)), where ν is some numerical parameter and where

f(x) is either the integrand or its multiplicative inverse.

In chapter 4, we use the algorithm for the G
(1)
n transformation introduced

in [25] to compute incomplete Bessel functions and the tail probabilities of
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five probability distributions, namely the normal distribution, the gamma dis-

tribution, the student’s t-distribution, the inverse Gaussian distribution and

Fisher’s F distribution. Tail probabilities of the aforementioned five proba-

bility distributions are computed and the numerical tables illustrate the high

efficiency of the algorithm, which does not resort to any classical numerical

integration, such as a quadrature routine. The numerical tables we produce

replicate the values treated in [26] with an accuracy reaching as high as 15 cor-

rect digits in double precision arithmetic. In addition, some tables show new

computations resulting from different values of the parameters in question.

In chapter 5, we study the convergence properties of the G
(1)
n transforma-

tion. For special yet general forms of integrands, asymptotic error estimates

are given, and the rational forms of the approximants are studied. Thus a

connection is drawn between the G
(1)
n transformation and rational and Padé

approximants with an accuracy-through-order condition as well. With this

connection established, we identify a correspondence with continued fractions,

and it is in the framework of continued fractions that the convergence of the

G
(1)
n transformation is most easily proved.
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Chapter 2

New Formulae For Higher Order

Derivatives And Applications

We present new formulae for the analytical development of higher order deriva-

tives. These formulae, which are analytic and exact, represent the kth deriva-

tive as a discrete sum of only k+1 terms. Involved in the expression for the kth

derivative are coefficients of the terms in the summation. These coefficients

can be computed recursively and they are not subject to any computational

instability. As examples of applications, we develop higher order derivatives

of Legendre functions, Chebyshev polynomials of the first kind, Hermite func-

tions and Bessel functions. We also show the general classes of functions to

which our new formula is applicable and show how our formula can be applied

to certain classes of differential equations.
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2.A Existing higher order differentiation formu-

lae

For completeness, we compile a few of the most important higher order differ-

entiation formulae and we refer the interested reader to [27] for other differen-

tiation formulae.

Formula 2.0.1 (The Leibniz Formula): For a function f(x) = g(x)h(x), the

derivatives of f(x) can be represented as a sum of derivatives of g(x) and

h(x) as:

f (k)(x) =

k∑

n=0

(
k

n

)
g(n)(x)h(k−n)(x), (2.1)

where

(
k

n

)
are the binomial coefficients.

Next, we have a variant of the Leibniz formula for a quotient of two func-

tions. This is not the usual method for defining this higher order derivative;

however, this form is computationally efficient.

Formula 2.0.2 (The Quotient Formula): For a function f(x) =
g(x)

h(x)
, the

derivatives of f(x) can be represented as a sum of derivatives of g(x) and

h(x) and lower order derivatives of f(x) as:

f (k)(x) =

g(k)(x) −
k−1∑

n=0

(
k

n

)
f (n)(x)h(k−n)(x)

h(x)
. (2.2)

Often in the study of nonlinear transformations, linear homogeneous dif-

ferential equations satisfied by the integrands are generated and studied. The

next formula, also a variant of the Leibniz formula, solves for the higher order
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derivatives of a function satisfying a linear homogeneous differential equation.

Formula 2.0.3 (The Differential Equation Formula): Let f(x) be a function

satisfying a differential equation of the form:

f (m)(x) =
m−1∑

k=0

pk(x)f
(k)(x).

The derivatives of f(x) can be represented as:

f (m+n)(x) =
m−1∑

k=0

n∑

i=0

(
n

i

)
p

(i)
k (x)f (k+n−i)(x), (2.3)

where the derivatives f (k)(x) for k = 1, . . . , m are assumed to be already

known.

We also give Faà di Bruno’s formula for the higher order derivatives of the

chain rule.

Formula 2.0.4 (Faà di Bruno’s Formula [28–30]): For a function f(g(x)):

dn

dxn
f(g(x)) =

∑
n!f (k)(g(x))

n∏

i=1

1

ki!

(
g(i)(x)

i!

)ki

, (2.4)

where the summation is over all non-negative integer solutions of the Dio-

phantine equation (2.5) and where k is the count of all non-zero ki’s involved

in:
n∑

i=1

i ki = n. (2.5)
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2.B New formula for higher order derivatives

In the following theorem, we introduce the Slevinsky-Safouhi Formula I (SSF

I) for higher order derivatives.

Theorem 2.1: Let G(x) ∈ Ck with the term

(
d

xmdx

)k

(x−nG(x)) well-defined

and easy to compute for m,n ∈ C. For µ, ν ∈ C, the term

(
d

xµdx

)k

(x−νG(x))

is given by:

(
d

xµdx

)k

(x−νG(x)) =

k∑

i=0

Ai
k x

n−ν+i(m+1)−k(µ+1)

(
d

xmdx

)i

(x−nG(x)),

(2.6)

with coefficients:

Ai
k =





1 for i = k,

(n− ν − (k − 1)(µ+ 1))A0
k−1 for i = 0, k > 0,

(n− ν + i(m+ 1) − (k − 1)(µ+ 1))Ai
k−1 + Ai−1

k−1 for 0 < i < k.

(2.7)

Moreover, for m 6= −1, these coefficients have the explicit expression:

Ai
k =

i∑

j=0

(−1)i−j (n− ν + j(m+ 1) − (k − 1)(µ+ 1))k,µ+1

(m+ 1)i j! (i− j)!
, (2.8)

where (x)n,k is the Pochhammer k-symbol [31] and can be computed as
n−1∏

l=0

(x+ kl).

Proof. It is easy to show that equation (2.6) holds for k = 0, since:

x−ν G(x) = xn−ν(x−nG(x)). (2.9)
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For k = 1, we show that equations (2.6) and (2.7) hold by applying

(
d

xµdx

)

to both sides of (2.9):

(
d

xµdx

)
(x−νG(x)) = (n−ν) xn−ν−µ−1(x−nG(x))+xn−ν+m−µ

(
d

xmdx

)
(x−nG(x)).

(2.10)

As (2.6) and (2.7) are true for k = 0, 1, we now assume they hold for k − 1:

(
d

xµdx

)k−1

(x−νG(x)) =
k−1∑

i=0

Ai
k−1 x

n−ν+i(m+1)−(k−1)(µ+1)

(
d

xmdx

)i

(x−nG(x)).

(2.11)

Applying the correct operator to both sides of the equation yields:

(
d

xµdx

)k

(x−νG(x)) =
d

xµdx

k−1∑

i=0

Ai
k−1 xn−ν+i(m+1)−(k−1)(µ+1)

(
d

xmdx

)i

(x−nG(x))

=

k−1∑

i=0

Ai
k−1

[
(n − ν + i(m + 1) − (k − 1)(µ + 1))xn−ν+i(m+1)−k(µ+1)

(
d

xmdx

)i

(x−nG(x))

+ xn−ν+(i+1)(m+1)−k(µ+1)

(
d

xmdx

)i+1

(x−nG(x))

]
. (2.12)

Explicitly grouping equal powers of terms xn−ν+i(m+1)−k(µ+1)

(
d

xmdx

)i

(x−nG(x))

in the series gives:

(
d

xµdx

)k

(x−νG(x)) = (n − ν − (k − 1)(µ + 1))A0
k−1 xn−ν−k(µ+1)(x−nG(x)) (2.13)

+

k−1∑

i=1

[
(n − ν + i(m + 1) − (k − 1)(µ + 1))Ai

k−1 + Ai−1
k−1

]
xn−ν+i(m+1)−k(µ+1)

(
d

xmdx

)i

(x−nG(x))

+ Ak−1
k−1 xn−ν+k(m−µ)

(
d

xmdx

)k

(x−nG(x)), (2.14)

which recovers the recurrence relations for the coefficients in (2.7).

To prove the explicit expression (2.8), consider the main recurrence rela-
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tion:

Ai
k = (n− ν + i(m+ 1) − (k − 1)(µ+ 1))Ai

k−1 + Ai−1
k−1, (2.15)

and consider the triangular nature of the coefficients Ai
k, with values 0 ≤ i ≤ k,

k ≥ 0.

We begin by defining the auxiliary coefficients:

Di
k = (n− ν + i(m+ 1) − (k − 1)(µ+ 1))Di

k−1 and Di
0 = 1, (2.16)

that have the simple explicit solution:

Di
k = (n− ν + i(m+ 1) − (k − 1)(µ+ 1))k,µ+1. (2.17)

Naturally, D0
k = A0

k. In addition:





D1
k = (m+ 1)A1

k + A0
k = (m+ 1)A1

k +D0
k

D2
k = 2(m+ 1)2A2

k + 2(m+ 1)A1
k + A0

k = 2 (m+ 1)2A2
k + 2D1

k −D0
k,

(2.18)

and in general:

Di
k = i! (m+ 1)iAi

k +

i−1∑

j=0

(
i

j

)
(−1)i−1−j Dj

k, (2.19)

which ultimately leads to:

Ai
k =

i∑

j=0

(−1)i−j Dj
k

(m+ 1)i j! (i− j)!
, (2.20)

whereupon the explicit expression for the coefficients is easily deduced. For

10



m = −1, we note that D0
k = D1

k = · · · = Dk
k . Therefore, we do not have i

independent auxiliary coefficients Di
k from which to form a linear combination

representation for Ai
k.

The case (µ, ν,m, n) = (0, 0, 1, 0) appears so often that we have the follow-

ing Corollary:

Corollary 2.1.1 (The SSF II): Let G(x) ∈ Ck with the term

(
d

xdx

)k

G(x)

well-defined and easy to compute. The term
dkG

dxk
is given by:

dkG

dxk
=

k∑

i=⌊k+1
2

⌋

Âi
k x

2i−k

(
d

xdx

)i

G(x), (2.21)

with coefficients:

Âi
k =






1 for i = k

2 Âi
k−1 + Âi−1

k−1 for i = ⌊k+1
2
⌋, k odd

Âi
k−1 for i = ⌊k+1

2
⌋, k even

(2i− k + 1)Âi
k−1 + Âi−1

k−1 for ⌊k+1
2
⌋ < i < k, k > 3,

(2.22)

where ⌊α⌋ is the integer floor function of argument α.

Moreover, these coefficients have the explicit expression:

Âi
k =

i∑

j=0

(−1)i−j(2j − k + 1)k

2i j! (i− j)!
, (2.23)

where (x)n is the Pochhammer symbol.

Although analytical formulae for the coefficients Ai
k and Âi

k are of impor-

tance, the recurrence relations also have their own advantages. The analytical
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formulae are very useful when only a single derivative of high order is required,

whereas from a numerical and/or computational perspective, recurrence rela-

tions are more efficient when evaluating a sequence of derivatives.

2.B.1 The generality

With no loss of generality, Theorem 2.1 with (µ, ν,m, n) = (0, 0, m, n) can

formulate the kth derivative of any function G(x) = xn f(xm+1), since:

(
d

xmdx

)i

(x−nG(x)) =

(
d

xmdx

)i

f(xm+1) = (m+ 1)i f (i)(xm+1), (2.24)

where f (i)(xm+1) stands for the derivative of f with respect to its argument.

It follows that:

dk

dxk
(xnf(xm+1)) =

k∑

i=0

Ai
k x

n+i(m+1)−k(m+ 1)i f (i)(xm+1), (2.25)

with coefficients Ai
k given by (2.7). Higher order derivatives of f(xm+1) are

developed in [27], and we present the formula here for comparison with (2.25):

dk

dxk
f(xm+1) =

k∑

i=0

i∑

j=0

(−1)j((m+ 1)(i− j) − k + 1)k f
(i)(xm+1)

j! (i− j)! xk−i(m+1)
. (2.26)

Equations (2.25) and (2.26) are very similar in form and it is easy to show

that (2.26) is a specific case of Theorem 2.1. Note that the case m = −1 in

(2.25) realizes a power function G(x) = xnf(1).

However, the casem = −1 extends naturally to functionsG(x) = xnf(ln(x)),

since: (
x

d

dx

)i

(x−nG(x)) =

(
x

d

dx

)i

f(ln(x)) = f (i)(ln(x)), (2.27)

12



where f (i)(ln(x)) stands for the derivative of f with respect to its argument.

It follows that:

dk

dxk
(xnf(ln(x))) =

k∑

i=0

Ai
k x

n−kf (i)(ln(x)), (2.28)

with coefficients Ai
k given by (2.7).

It is worth noting that higher order derivatives of f(ln(x)) are given in the

book [32] as:

dk

dxk
f(ln(x)) =

1

xk

k∑

i=1

(−1)k−i

[
k

i

]
f (i)(ln(x)), (2.29)

where

[
k

i

]
are the Stirling numbers of the first kind. Thus formula (2.28)

follows at once from (2.29) and the Leibniz formula.

Lastly, by performing the substitution x ↔ ex in (2.6) with (µ, ν,m, n) =

(−1, 0, 0, n), we obtain for the functions G(x) = en xf(ex):

dk

dxk
(en xf(ex)) =

k∑

i=0

Ai
k e

(n+i)xf (i)(ex), (2.30)

with coefficients Ai
k given by (2.7), which again follows at once from:

dk

dxk
f(ex) =

k∑

i=1

{
k

i

}
ei xf (i)(ex), (2.31)

found in the book [32] and the Leibniz formula. Here,

{
k

i

}
are the Stirling

numbers of the second kind.

Interestingly, these two developments show how Stirling numbers of both

the first and the second kinds are specific cases of the coefficients Ai
k. Ex-

13



plicitly, Stirling numbers of the first kind are given by coefficients Ai
k with

(µ, ν,m, n) = (0, 0,−1, 0), and Stirling numbers of the second kind are given

by coefficients Ai
k with (µ, ν,m, n) = (−1, 0, 0, 0).

Remark: This section illustrates the connection between Theorem 2.1 and

Faà di Bruno’s formula (Formula 2.0.4) for
dk

dxk
f(g(x)), which has been

recently applied in the numerical evaluation of a challenging integral [20]. In

approaching the general composition f(g(x)), we would naturally represent

its derivatives as a linear combination of operators

(
d

g′(x)dx

)k

f(g(x)) =

f (k)(g(x)). Indeed, the aforementioned representation forms the heart of

Hoppe’s Formula [30, 33–35]:

Formula 2.1.1 (Hoppe’s Formula): For functions f and g sufficiently differ-

entiable:

dk

dxk
f(g(x)) =

k∑

i=0

Ãi
k(x) f

(i)(g(x)), (2.32)

where:

Ãi
k(x) =

i∑

j=0

(−1)i−j

j! (i− j)!
(g(x))i−j dk

dxk
(g(x))j. (2.33)

It is mentioned in [30] that the functions Ãi
k(x) satisfy:

Ãi
k(x) =

d

dx
Ãi

k−1(x) + g′(x) Ãi−1
k−1(x), (2.34)

a result that can easily prove the formula by induction.

Hoppe’s formula is generally regarded as an unsatisfactory solution to the

chain rule problem, as it simply reduces the exterior function f to a power

function in (2.33). With today’s symbolic programming languages, equa-

tion (2.34) could easily be used to create a significantly faster code for the

14



higher order derivatives of the chain rule than can be created by Faà di

Bruno’s formula (Formula 2.0.4).

2.B.2 Properties of the coefficients

In this section, we provide a number of properties satisfied by the coefficients

Ai
k of the SSF I. The fundamental aspect of these coefficients is that they

satisfy the recurrence relation (2.7):

Ai
k = (n− ν + i(m+ 1) − (k − 1)(µ+ 1))Ai

k−1 + Ai−1
k−1, A0

0 = 1.

Matrix properties

Proposition 2.1: Let Ai
k represent the coefficients in (2.7) for µ, ν,m, n ∈ C

and where necessary, let Ai
k(µ, ν,m, n) represent those same coefficients. Let

A denote the k + 1 × k + 1 lower triangular matrix:

A =




A0
0 0

A0
1 A1

1

A0
2 A1

2
. . .

...
...

. . .
. . .

A0
k A1

k · · · Ak−1
k Ak

k




, (2.35)

of coefficients Ai
k and where necessary, let A

mn
µν denote the matrix of Ai

k(µ, ν,m, n).

The following properties hold:

1. detA = 1;

2.
(
A

mn
µν

)−1
= A

µν
mn and consequently, A

mn
µν A

µν
mn = A

µν
mnA

mn
µν = I;
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3.

max{i,j}∑

k=0

Ai
k(µ, ν,m, n)Ak

j (m,n, µ, ν) = δij; and,

4.

max{i,j}∑

k=0

Ai
k(m,n, µ, ν)A

k
j (µ, ν,m, n) = δij.

Proof. From the recurrence relation for the coefficients Ai
k, the diagonal ele-

ments of A are all 1, and since the determinant of the triangular matrix (2.35)

is

k∏

i=0

Ai
i, we retrieve property 1. To prove property 2, let the k+1×1 column

vectors Γ and G denote:

Γ =




G

xν+(µ+1)
(

d
xµdx

)
(x−νG)

...

xν+k(µ+1)
(

d
xµdx

)k
(x−νG)




and G =




G

xn+(m+1)
(

d
xmdx

)
(x−nG)

...

xn+k(m+1)
(

d
xmdx

)k
(x−nG)




.

(2.36)

Then, the SSF I in matrix notation is Γ = A
mn
µν G. Inverting this system

and solving for G, we obtain G =
(
A

mn
µν

)−1
Γ. However, we also obtain

G = A
µν
mnΓ by the SSF I and equality between both relations proves property

2. Properties 3 and 4 are the explicit 2(k+1)2 equations of the multiplication

of A
mn
µν A

µν
mn = A

µν
mnA

mn
µν = I.

Zero array

Proposition 2.2: Let Ai
k represent the coefficients in (2.7) for µ, ν,m, n ∈ C.

Let k0 = n−ν
µ+1

+ 1. If n−ν
µ+1

∈ N0, then k0 ∈ N and therefore:

A0
k = 0, ∀k ≥ k0. (2.37)
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Furthermore, let ki = ki−1 + m+1
µ+1

for i ∈ N. If m+1
µ+1

∈ N, then ki ∈ N ∀i ∈ N

and therefore given i:

Ai
k = 0, ∀k ≥ ki. (2.38)

Proof. From the recurrence relation (2.7) for A0
k0

:

A0
k0

= (n− ν − (k0 − 1)(µ+ 1))A0
k0−1, (2.39)

= (n− ν −
(
n− ν

µ+ 1

)
(µ+ 1))A0

k0−1, (2.40)

= (n− ν − (n− ν))A0
k0−1, (2.41)

= 0. (2.42)

We consider the recurrence relation (2.7) for Ai
ki

:

Ai
ki

= (n− ν + i(m+ 1) − (ki − 1)(µ+ 1))Ai
ki−1 + Ai−1

ki−1. (2.43)

But the sequence {ki}i∈N0 is monotonically increasing, so ki > ki−1 implies

Ai−1
ki−1 = 0 and so:

Ai
ki

= (n− ν + i(m+ 1) −
(
n− ν + i(m+ 1)

µ+ 1

)
(µ+ 1))Ai

ki−1 + 0, (2.44)

= (n− ν + i(m+ 1) − (n− ν + i(m+ 1)))Ai
ki−1, (2.45)

= 0. (2.46)

This induction on i proves the result.

Considering the preceding results, the array Ai
k may contain a zero array

as depicted in Figure 2.1.

Remark: The potential occurrence of a zero array in the Ai
k explains why the
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A0
0

A0
1 A1

1

A0
2 A1

2 A2
2

A0
3 A1

3 A2
3 A3

3
...

...
...

...
. . .

0 A1
k0

A2
k0

A3
k0

· · ·
...

...
...

...
. . .

0 0 A2
k1

A3
k1

· · ·
...

...
...

...
. . .

0 0 0 A3
k2

· · ·
...

...
...

...
. . .

Figure 2.1: The occurrence of a zero array in the coefficients Ai
k.

coefficients Âi
k of the SSF II are only defined for i = ⌊k+1

2
⌋, . . . , k and not

for i = 0, . . . , k: the coefficients Âi
k correspond to the coefficients Ai

k with

(µ, ν,m, n) = (0, 0, 1, 0). This correspondence implies that the sequence

{ki} is given by ki = 2 i + 1. This sequence provides for a zero array, and

therefore summation may invariably begin at the first nonzero element in

Âi
k.

The generating function

Proposition 2.3: Let Ai
k represent the coefficients in (2.7) for µ, ν,m, n ∈ C.

The bivariate generating function for the coefficients Ai
k is given by:

A(x, y) =
∞∑

k=0

k∑

i=0

Ai
k

xi yk

k! (µ+ 1)k
= (y + 1)

n−ν
µ+1 exp





(
(y + 1)

m+1
µ+1 − 1

)
x

m+ 1



 .

(2.47)
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Consequently:

Ai
k =

∂i+k

∂xi∂yk

A(x, y)(µ+ 1)k

i!

∣∣∣∣
(x,y)=(0,0)

. (2.48)

Proof. Multiplying the recurrence relation (2.7) by
xi yk

k! (µ+ 1)k
and summing

over i and k, we obtain the partial differential equation:

(m+ 1) x
∂A

∂x
− (µ+ 1)(y + 1)

∂A

∂y
= (ν − n− x)A. (2.49)

Employing the method of characteristics, we obtain the general solution:

A(x, y) = F ((y + 1)x
µ+1
m+1 )x

ν−n
m+1 e−x/(m+1). (2.50)

Considering the initial value A(x, 0) = 1 due to A0
0 = 1, we find that F (x) =

x
n−ν
µ+1 exp

(
x

m+1
µ+1 /(m+ 1)

)
. Inserting this function into (2.50), we obtain the

closed form expression for the generating function (2.47). It is then trivial to

obtain the symbolic expression for the coefficients (2.48).

Asymptotic forms

Proposition 2.4: Let Ai
k represent the coefficients in (2.7) for µ, ν,m, n ∈ C.

For m 6= µ, the asymptotic form holds:

Ak−i
k ∼ ζ(i) k2i, as k → ∞, i fixed, (2.51)

where ζ(i) =
(m− µ)i

2i i!
, while for m = µ, the asymptotic form holds:

Ak−i
k ∼ ξ(i) ki, as k → ∞, i fixed, (2.52)
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where ξ(i) = (m+ 1)i

(
n−ν
m+1

i

)
.

Proof. Substituting i→ k − i in (2.7), we obtain:

Ak−i
k = (n− ν + (k − i)(m+ 1) − (k − 1)(µ+ 1))Ak−i

k−1 + Ak−i−1
k−1 , A0

0 = 1,

(2.53)

= (n− ν − (i− 1)(m+ 1) + (k − 1)(m− µ))Ak−i
k−1 + Ak−i−1

k−1 . (2.54)

Then, since:

Ak−i
k − Ak−i−1

k−1 = (n− ν − (i− 1)(m+ 1) + (k − 1)(m− µ))Ak−i
k−1, (2.55)

the telescoping summation over k gives:

k∑

j=i

(Aj−i
j − Aj−i−1

j−1 ) = Ak−i
k −A−1

i−1, (2.56)

= Ak−i
k =

k∑

j=i

(n− ν − (i− 1)(m+ 1) + (j − 1)(m− µ))Aj−i
j−1. (2.57)

Consider now the case i = 1, such that:

Ak−1
k =

k∑

j=1

(n− ν + (j − 1)(m− µ))Ak−1
k−1. (2.58)

But Ak−1
k−1 = 1, so:

Ak−1
k = (n− ν)

k∑

j=1

1 + (m− µ)

k∑

j=1

(j − 1), (2.59)

= (n− ν)k + (m− µ)

(
k2 − k

2

)
. (2.60)
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By induction over i in equation (2.57), the coefficients may be written as:

Ak−i
k =

i∏

j=1

[(n− ν − (j − 1)(m+ 1))fi,j(k) + (m− µ)gi,j(k)] , (2.61)

for some polynomials fi,j(k) and gi,j(k) in k. For the case where m 6= µ, we rely

on deg(gi,j(k)) > deg(fi,j(k)) to produce the leading asymptotic term of Ak−i
k ,

which is given by (m − µ)i
∏i

j=1 gi,j(k). On comparison of (2.57) and (2.61),

the product of the polynomials gi,j(k) is produced from the recurrence:

i∏

j=1

gi,j(k) =

k∑

j=i

(j − 1)

i−1∏

l=1

gi−1,l(j), (2.62)

whereby the dominant term in this product is
k2i

2i i!
as k → ∞.

For the case where m = µ, the telescoping sum (2.57) reduces to:

Ak−i
k =

k∑

j=i

(n− ν − (i− 1)(m+ 1))Aj−i
j−1, (2.63)

and the product (2.61) reduces to:

Ak−i
k =

i∏

j=1

(n− ν − (j − 1)(m+ 1))fi,j(k). (2.64)

On comparison of (2.63) and (2.64), the product of the polynomials fi,j(k) is

produced from the recurrence:

i∏

j=1

fi,j(k) =

k∑

j=i

i−1∏

l=1

fi−1,l(j), (2.65)

whereby the dominant term in this product is
ki

i!
as k → ∞. Finally, the
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product:

i∏

j=1

(n−ν− (j−1)(m+1)) = (n−ν− (i−1)(m+1))i,m+1 = i!(m+1)i

(
n−ν
m+1

i

)
,

(2.66)

and by combination, the result is obtained.

Tables 2.1 and 2.2 illustrate the asymptotic nature of the equations (2.51)

and (2.52) to the coefficients Ak−i
k for some values of k, i, and µ, ν,m and n.

k\i 1 5 8
1 0.33333
3 0.77778
10 0.93333 0.04283 0.00004
30 0.97778 0.40463 0.08262
100 0.99333 0.77103 0.49904
300 0.99778 0.91789 0.79669
1000 0.99933 0.97473 0.93450

Table 2.1: Ratio of the coefficients Ak−i
k to ζ(i)k2i, the asymptotic term given

by (2.51) for (µ, ν,m, n) = (−2,−1/2, 1, 0).

k\i 1 5 8
1 1.00000
3 1.00000
10 1.00000 0.30240 0.01814
30 1.00000 0.70373 0.35969
100 1.00000 0.90345 0.75031
300 1.00000 0.96705 0.91017
1000 1.00000 0.99003 0.97232

Table 2.2: Ratio of the coefficients Ak−i
k to ξ(i)ki, the asymptotic term given

by (2.52) for (µ, ν,m, n) = (3, 0, 3, 2).
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2.C Applications

2.C.1 Legendre functions

The importance of higher order derivatives of Legendre functions is discussed

in [36]. These aforementioned functions are defined through the Rodrigues

formula [37]:

Pm
ℓ (x) =

(−1)m

2ℓℓ!

(
1 − x2

)m
2

dℓ+m

dxℓ+m

(
x2 − 1

)ℓ
. (2.67)

Therefore, it is natural with the help of the Leibniz Formula (Formula 2.0.1)

to define the higher order derivatives of these functions as:

dk

dxk
Pm

ℓ (x) =
(−1)m

2ℓ ℓ!

k∑

n=0

(
k

n

)
dn

dxn

(
1 − x2

)m
2

dℓ+m+k−n

dxℓ+m+k−n

(
x2 − 1

)ℓ
. (2.68)

The problem areas in this formula are the terms
dn

dxn

(
1 − x2

)m
2 and

dℓ+m+k−n

dxℓ+m+k−n

(
x2 − 1

)ℓ
.

Considering that the identities:





(
d

xdx

)i (
1 − x2

)m
2 = (−2)i (1 − x2)

m
2
−i

i−1∏

j=0

(m
2
− j
)

(
d

xdx

)i (
x2 − 1

)ℓ
= 2i (x2 − 1)ℓ−i

i−1∏

j=0

(ℓ− j),

(2.69)

are computed with exceptional simplicity, we apply the result of Corollary
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2.1.1 and develop:





dn

dxn

(
1 − x2

)m
2 =

n∑

i=⌊n+1
2

⌋

Âi
n x

2i−n (−2)i (1 − x2)
m
2
−i

i−1∏

j=0

(m
2
− j
)

dℓ+m+k−n

dxℓ+m+k−n

(
x2 − 1

)ℓ
=

ℓ+m+k−n∑

i=⌊ ℓ+m+k−n+1
2

⌋

Âi
ℓ+m+k−n x

2i−ℓ−m−k+n 2i (x2 − 1)ℓ−i

i−1∏

j=0

(ℓ− j),

(2.70)

with coefficients Âi
k given by (2.22). This ultimately leads to the final result:

dk

dxk
Pm

ℓ (x) =
(−1)m

2ℓℓ!

k∑

n=0

(
k

n

)





n∑

i=⌊n+1
2

⌋

Âi
n x

2i−n(−2)i(1 − x2)
m
2
−i

i−1∏

j=0

(m
2
− j
)




×




ℓ+m+k−n∑

i=⌊ ℓ+m+k−n+1
2

⌋

Âi
ℓ+m+k−n x

2i−ℓ−m−k+n 2i (x2 − 1)ℓ−i
i−1∏

j=0

(ℓ− j)







 .

(2.71)

In [36],
dk

dθk
Pm

ℓ (cos(θ)) is developed using recurrence relations as:

dk

dθk
Pm

ℓ (cos(θ)) =
dk−1

dθk−1
Pm+1

ℓ (cos(θ))− (ℓ+m)(ℓ−m+1)
dk−1

dθk−1
Pm−1

ℓ (cos(θ)),

(2.72)

and, for Legendre polynomials, there is [37]:

dk

dxk
Pℓ(x) =

dk−1

dxk−1
Pℓ−2(x) + (2ℓ− 1)

dk−1

dxk−1
Pℓ−1(x). (2.73)

This simplicity cannot be extended to
dk

dxk
Pm

ℓ (x), as these recurrence rela-

tions have non-constant coefficients in x. There also exist a few large formulae

for
dk

dxk
Pm

ℓ (x) in [38], some of which require hypergeometric series.

A Fortran program of (2.71) is created. A few sample calculations illus-
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trating the method are included in Table 2.3. The results are compared to

Maple 11’s output with 18 correct digits in the evalf command.

x ℓ m k Formula (2.71) Valuesevalf[18]

0.5 1 1 1 .5773502691896257(0) .5773502691896258(0)
0.0 2 1 5 .4500000000000000(2) .4500000000000000(2)
0.5 2 1 5 .4105601914237338(3) .4105601914237339(3)
0.0 7 5 8 .8431644375000000(9) .8431644375000000(9)
0.5 7 5 8 .4152543313723771(10) .4152543313723771(10)
0.5 15 7 11 .1849994958475265(21) .1849994958475265(21)

Table 2.3: Numerical Evaluation of
dk

dxk
Pm

ℓ (x).

2.C.2 Chebyshev polynomials of the first kind

The Rodrigues formula for Chebyshev polynomials of the first kind is indeed

very similar to that satisfied by Legendre functions [37]:

Tn(x) =
Γ
(

1
2

)

(−2)n Γ
(
n+ 1

2

)(1 − x2)
1
2

dn

dxn
(1 − x2)n− 1

2 . (2.74)

Therefore, it is natural with the help of the Leibniz Formula (Formula 2.0.1)

to define the higher order derivatives of these functions as:

di

dxi
Tn(x) =

Γ
(

1
2

)

(−2)n Γ
(
n+ 1

2

)
i∑

l=0

(
i

l

)
dl

dxl

(
1 − x2

) 1
2

dn+i−l

dxn+i−l

(
1 − x2

)n− 1
2 .

(2.75)

Without going into great detail, we regard this example as identical to the

previous one. We apply the result of Corollary 2.1.1 and develop as the final
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result:

dk

dxk
Tn(x) =

Γ
(

1
2

)

(−2)n Γ
(
n+ 1

2

)
k∑

l=0

(
k

l

)





l∑

i=⌊ l+1
2

⌋

Âi
l x

2i−l (−2)i (1 − x2)
1
2
−i

i−1∏

j=0

(
1

2
− j

)


×




n+k−l∑

i=⌊n+k−l+1
2

⌋

Âi
n+k−l x

2i−n−k+l (−2)i (1 − x2)n− 1
2
−i

i−1∏

j=0

(
n− 1

2
− j

)





 .

(2.76)

with coefficients Âi
k given by (2.22).

A Fortran program of (2.76) is created. A few sample calculations illus-

trating the method are included in Table 2.4. The results are compared to

Maple 11’s output with 18 correct digits in the evalf command.

k Formula (2.76) Valuesevalf[18]

1 -.743750000000000(1) -.743750000000000(1)
2 .277500000000000(2) .277500000000000(2)
3 .522000000000000(3) .522000000000000(3)
4 -.108000000000000(4) -.108000000000000(4)
5 -.326400000000000(5) -.326400000000000(5)
6 -.230400000000000(5) -.230400000000000(5)
7 .129024000000000(7) .129024000000000(7)

Table 2.4: Numerical Evaluation of
dk

dxk
Tn(x), with (n, x) = (8, 0.25).

2.C.3 Hermite functions

Normalized Hermite functions are defined as [37]:

ψn(x) =
e−x2/2

√
n! 2n

√
π
Hn(x), (2.77)
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where the Hermite polynomials Hn(x) are defined as [37]:

Hn(x) = (−1)nex2 dn

dxn
e−x2

. (2.78)

Hermite polynomials satisfy the properties [37]:






Hn+1(x) = 2 xHn(x) − 2nHn−1(x)

di

dxi
Hn(x) = 2iHn−i(x)

i−1∏

j=0

(n− j),
(2.79)

where Hl(x) ≡ 0 for all l < 0. In addition, e−x2/2 satisfies:

dk

dxk
e−x2/2 = e−x2/2

k∑

i=⌊k+1
2

⌋

(−1)iÂi
k x

2i−k, (2.80)

with coefficients Âi
k given by (2.22).

Therefore, with the help of the Leibniz Formula (Formula 2.0.1) and equa-

tion (2.80), higher order derivatives of ψn(x) are given by:

dk

dxk
ψn(x) =

e−x2/2

√
n!2n

√
π

k∑

l=0

(
k

l

)


l∑

i=⌊ l+1
2

⌋

(−1)i Âi
l x

2i−l 2k−lHn−k+l(x)

k−l−1∏

j=0

(n− j)


 .

(2.81)

A Fortran program of (2.81) is created. A few sample calculations illus-

trating the method are included in Table 2.5. The results are compared to

Maple 11’s output with 18 correct digits in the evalf command.

2.C.4 Bessel functions

There are essentially eight different Bessel functions, that arise as the radial

solutions to the Helmholtz equation ∇2u = −v2u, in cylindrical or spherical
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k Formula (2.81) Valuesevalf[18]

1 .129922131632585(1) .129922131632585(1)
2 .183728266955170(0) .183728266955170(0)
3 -.919953679539818(1) -.919953679539817(1)
4 .905517887136197(1) .905517887136197(1)
5 .743968246692044(2) .743968246692044(2)
6 -.208374101622443(3) -.208374101622443(3)
7 -.523664931165155(3) -.523664931165155(3)

Table 2.5: Numerical Evaluation of
dk

dxk
ψn(x), with (n, x) = (5, 2).

coordinates:

x2 f ′′(x) + x f ′(x) +
(
v2 x2 − n2

)
f(x) = 0 in cylindrical coordinates, (2.82)

x2 f ′′(x) + 2x f ′(x) +
(
v2 x2 − n(n + 1)

)
f(x) = 0 in spherical coordinates. (2.83)

In the literature [37], the normal convention adopted for representing Bessel

functions arising in cylindrical and spherical coordinates, is given by:

Kind Cylindrical Spherical

First Jn(v x) jn(v x)

Second Yn(v x) yn(v x)

Modified First In(v x) in(v x)

Modified Second Kn(v x) kn(v x)

The first column specifies the cylindrical Bessel functions, while the second

column specifies the spherical Bessel functions. Each of the four Bessel func-

tions arise from the same differential equation (2.82) or (2.83), depending on

the allowed values of v, n and the function itself as its argument approaches the

origin or tends to infinity. In addition, there is a general conversion between

Bessel functions in cylindrical coordinates and Bessel functions in spherical
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coordinates such that:

cn(v x) =

√
π

2 v x
Cn+1/2(v x), (2.84)

where c represents any one of j, y, i, or k and where C represents the respective

J , Y , I, or K. Bessel functions of the first kind arise when v and n are real.

Bessel functions of the second kind are expressed as a combination of Bessel

functions of the first kind in order to provide a second linearly independent

solution to the second order differential equation. These functions only arise

when the solution need not be defined at the origin, when v is real, and when

n is an integer. Modified Bessel functions of the first kind, I, are intimately

related to Bessel functions of the first kind, J . They arise when v is imaginary,

and when n is real. These functions are finite at the origin, but tend to infinity

as their arguments become large. Modified Bessel functions of the second kind

are expressed as a combination of modified Bessel functions of the first kind

in order to provide a second linearly independent solution to the differential

equation. These functions only arise when the solution need not be defined

at the origin, when v is imaginary, and when n is an integer. Employing the

method of Frobenius [37] to solve (2.82), Bessel functions of the first kind are

expressed as:

Jn(v x) =

∞∑

k=0

(−1)k

k! Γ(k + n+ 1)

(v x
2

)2k+n

, (2.85)

although there are many more numerically stable formulae that exist. One

remarkably numerically stable formulation, as developed in [39], expresses both

the recurrence relation for Bessel functions of higher order and the infinite se-

ries as continued fractions. This method for the computation of continued
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fractions and simple forward recurrence can be combined to yield highly ac-

curate evaluations of Bessel functions.

The general Bessel derivative recurrence relation, valid for Jn(v x), Yn(v x),

Kn(v x), jn(v x), yn(v x) and kn(v x) is given by:

C ′
n(v x) =

n

x
Cn(v x) − v Cn+1(v x). (2.86)

This equation can be generalized as:

Cn+k(v x) = (−1)k x
n+k

vk

(
d

xdx

)k

(x−n Cn(v x)). (2.87)

We are now ready to apply Theorem 2.1 with (µ, ν,m, n) = (0, 0, 1, n) to

obtain:

dk

dxk
Cn(v x) =

k∑

i=0

(−1)i v
i Cn+i(v x)

xk−i
Ai

k, (2.88)

with coefficients Ai
k given by (2.7).

The Bessel derivative recurrence relation valid for In(v x) and in(v x):

C̃ ′
n(v x) =

n

x
C̃n(v x) + v C̃n+1(v x), (2.89)

gives a similar result:

C̃n+k(v x) =
xn+k

vk

(
d

xdx

)k

(x−n C̃n(v x)), (2.90)

which, after application of Theorem 2.1 with (µ, ν,m, n) = (0, 0, 1, n), yields:

dk

dxk
C̃n(v x) =

k∑

i=0

vi C̃n+i(v x)

xk−i
Ai

k, (2.91)
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with the same coefficients Ai
k. A few sample calculations illustrating the

method applied to jn(v x), In(v x), kn(v x) and Yn(v x) are included in Ta-

bles 2.6–2.9. The computation of the Bessel functions is performed using the

programs presented in [40]. The results are compared to Maple 11’s output

with different values of correct digits in the evalf command. In Tables 2.6–2.9,

the first four columns are relative errors, evaluated to 15 digits, between the

method and Maple 11’s evalf[64], while the last column is the value of evalf[64]

to 15 digits.

In the literature [41], a formula exists expressing the higher order deriva-

tives of Bessel functions as a sum of the Bessel functions and their first deriva-

tives; it requires recurrence relations to solve for the coefficients of the Bessel

functions and their first derivatives. However, a differentiation of the previous

coefficient is performed in these recurrence relations, which limits the formula’s

practicality. In contrast, the recurrence relations we obtain for the coefficients

Ai
k pose no computational problems. Also in the literature [42], there exist

a few other formulae for higher order derivatives of Bessel functions. None

of these is, however, as concise or as general as (2.88) and (2.91). In addi-

tion, these formulae often require evaluation of hypergeometric series, while

our formulae do not.

2.C.5 Treatment of differential equations

Theorem 2.2: For a function f(x) satisfying an mth order linear homogeneous

differential equation of the form:

f(x) =

m∑

k=1

pk(x)
dk

dxk
f(x), (2.92)
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k Formula (2.88)(†) evalf[15](†) evalf[22](†) evalf[28](†) Valuesevalf[64]

11 .000(0) .119(-4) .639(-12) .000(0) -.459687936963032(-1)
12 .000(0) .124(-3) .632(-11) .000(0) .572920121838019(-1)
13 .000(0) .255(-2) .140(-9) .000(0) .393828142346694(-1)
14 .000(0) .310(-1) .184(-8) .000(0) -.504399076519013(-1)
15 .000(0) .715(0) .348(-7) .871(-14) -.344324623774753(-1)

(†) Relative Error of given formula with respect to Valuesevalf[64].

Table 2.6: Numerical Evaluation of
dk

dxk
jn(v x), with (n, v, x) = (1, 1, 1).

k Formula (2.91)(†) evalf[15](†) evalf[22](†) evalf[28](†) Valuesevalf[64]

11 .000(0) .175(-7) .295(-14) .000(0) .338766805941983(0)
12 .000(0) .105(-6) .779(-13) .000(0) .243783774241269(0)
13 .000(0) .265(-5) .633(-12) .000(0) .315639838946200(0)
14 .000(0) .677(-4) .985(-11) .000(0) .228794506240254(0)
15 .000(0) .102(-2) .679(-10) .000(0) .296695084720158(0)

(†) Relative Error of given formula with respect to Valuesevalf[64].

Table 2.7: Numerical Evaluation of
dk

dxk
In(v x), with (n, v, x) = (1, 1, 1).

the function f(xµ+1), µ ∈ R satisfies the following differential equation:

f(xµ+1) =
m∑

i=1

pi(x)
di

dxi
f(xµ+1), (2.93)

where:

pi(x) =

m∑

k=i

pk(x
µ+1)

(µ+ 1)k
xi−k(µ+1)

i∑

j=0

(−1)i−j (j − (k − 1)(µ+ 1))k,µ+1

j! (i− j)!
.

(2.94)

Proof. By making the substitution x↔ xµ+1 in the differential equation (2.92),
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k Formula (2.88)(†) evalf[15](†) evalf[22](†) evalf[28](†) Valuesevalf[64]

11 .188(-12) .265(-14) .000(0) .000(0) -.752413953761027(09)
12 .450(-12) .204(-14) .000(0) .000(0) .978138139947121(10)
13 .876(-13) .000(0) .000(0) .000(0) -.136939339593175(12)
14 .301(-11) .000(0) .000(0) .000(0) .205409009389820(13)
15 .280(-11) .304(-14) .000(0) .000(0) -.328654415023718(14)

(†) Relative Error of given formula with respect to Valuesevalf[64].

Table 2.8: Numerical Evaluation of
dk

dxk
kn(v x), with (n, v, x) = (1, 1, 1).

k Formula (2.88)(†) evalf[15](†) evalf[22](†) evalf[28](†) Valuesevalf[64]

11 .600(-12) .000(0) .000(0) .000(0) .252974959307709(8)
12 .559(-12) .329(-14) .000(0) .000(0) -.303796293136156(9)
13 .427(-11) .253(-14) .000(0) .000(0) .395162430091925(10)
14 .376(-11) .361(-14) .000(0) .000(0) -.553478113668334(11)
15 .784(-11) .240(-14) .000(0) .000(0) .830518694305487(12)

(†) Relative Error of given formula with respect to Valuesevalf[64].

Table 2.9: Numerical Evaluation of
dk

dxk
Yn(v x), with (n, v, x) = (1, 1, 1).

we obtain:

f(xµ+1) =
m∑

k=1

pk(x
µ+1)

dk

d(xµ+1)k
f(xµ+1)

=
m∑

k=1

pk(x
µ+1)

(µ+ 1)k

(
d

xµdx

)k

f(xµ+1)

=

m∑

k=1

pk(x
µ+1)

(µ+ 1)k

k∑

i=1

Ai
k x

i−k(µ+1) di

dxi
f(xµ+1), (2.95)

where we have employed Theorem 2.1 with (µ, ν,m, n) = (µ, 0, 0, 0) in the last

step, and where it is important to note that A0
k = 0 for k > 0 for this specific

case.
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By reversing the order of summation, we have:

f(xµ+1) =

m∑

i=1

di

dxi
f(xµ+1)

m∑

k=i

pk(x
µ+1)

(µ+ 1)k
xi−k(µ+1)Ai

k,

and we obtain (2.93) and (2.94) by replacing coefficients Ai
k by their analytical

expression (2.8) and by defining pi(x) as the summation over k.

Remark: The asymptotic behaviour of the functions pi(x) as x→ ∞ remains

invariant under the substitution xµ+1 ↔ xµ+1
(
a0 +

a1

x
+ · · ·+

)
.

As an example of application of Theorem 2.2, we solve the second order

linear differential equation:

f(x) =

(
1

9x5
− 1

3x2

)
d

dx
f(x) − 1

18x4

d2

dx2
f(x), (2.96)

where:

p1(x) =
1

9x5
− 1

3x2
and p2(x) = − 1

18x4
.

After the substitution x↔ xµ+1, we find:

p1(x) =
1

9(µ+ 1) x6µ+5
− 1

3(µ+ 1) x3µ+2
+

µ

18(µ+ 1)2 x6µ+5
(2.97)

p2(x) =
−1

18(µ+ 1)2 x6µ+4
, (2.98)

which, after wisely choosing µ = −2

3
, simplifies the equation to:

f(x
1
3 ) = − d

dx
f(x

1
3 ) − 1

2

d2

dx2
f(x

1
3 ), (2.99)

admitting the solution f(x
1
3 ) = e−x(a sin(x) + b cos(x)).
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Ultimately, the solution of our initial differential equation is then:

f(x) = e−x3 (
a sin(x3) + b cos(x3)

)
, (2.100)

which would not have been trivial to solve using a power series expansion or

Laplace transform.

This example serves to illustrate the capabilities of Theorem 2.2, the sub-

stitution x ↔ xµ+1 allows one to attempt to match the (linear homogeneous)

differential equation at hand with any differential equation that has been stud-

ied in depth, not only a simple one where the coefficients pi(x) are constant.

Analytical remainder estimate from a differential equation

Extrapolation methods requiring an analytical remainder estimate of the inte-

grand are among the most accurate and fast methods developed for evaluating

molecular integrals formulated as spherical Bessel integral functions [14–19].

As part of the envelope of the spherical Bessel integral functions, reduced

Bessel functions k̂n− 1
2
(x) are defined as [43]:

k̂n− 1
2
(x) =

√
2

π
xn− 1

2Kn− 1
2
(x) =

n∑

j=1

(2n− j − 1)!

(j − 1)!(n− j)!

xj−1e−x

2n−1
, (2.101)

and satisfy the differential equation:

k̂n− 1
2
(x) = −2(n− 1)

x

d

dx
k̂n− 1

2
(x) +

d2

dx2
k̂n− 1

2
(x). (2.102)

Considering that their argument in the spherical Bessel integral functions

is γ(x) =
√
τ + κx2 and noting that γ(x) has the asymptotic expansion as
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x→ ∞:

γ(x) =

∞∑

n=0

(
1/2

n

)
τn

κn− 1
2 x2n−1

= x
√
κ

(
1 +

τ

2κ x2
− τ 2

8κ2 x4
+ · · ·+

)
,

(2.103)

the asymptotic behaviour of the coefficients in (2.102) remains unchanged for

the composition k̂n− 1
2
[γ(x)]. Notably, p1(x) ∼ x−1 and p2(x) ∼ 1 as x → ∞

(For n = 1, p1(x) ∼ 1 and p2(x) = 0 as x→ ∞). This result follows naturally

from the development of Theorem 2.2 and the subsequent remark, but would

have been difficult to obtain by hand.

2.D Numerical discussion

The implications of Theorem 2.1 are twofold. Analytically speaking, compact

formulae of higher order derivatives of some special functions are producible;

numerically speaking, these formulae are critical. The straightforward calcula-

tion of
d14

dx14
jn(v x)

∣∣∣∣
(n,v,x)=(1,1,1)

using Maple 11’s evalf command to 15 correct

digits yields -0.052008. The number is only accurate to one digit, the true value

being -0.050439 90765 19013. In this case, an accuracy of 28 digits in Maple

11’s evalf command is required. A double precision Fortran code of (2.88)

or (2.91) gives an evaluation to 15 correct digits instantly. This problem in

accuracy and calculation time worsens when even higher order derivatives are

needed.

Referring to Tables 2.3–2.9, Theorem 2.1 is accurate to 15 correct digits

evaluated in double precision. This implementation in Fortran is remarkable

because all of the examples of Theorem 2.1 draw from the same coefficients

Ai
k, and all have the same (k + 1)-term summation. This is very practical
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from a computational perspective. With the recursive representation of the

coefficients, to calculate a certain derivative, only the coefficients of lower

order derivatives are required and not the lower order derivatives themselves.

This makes each derivative more independent from lower order derivatives. In

contrast, a recursive algorithm, like one stemming from a differential equation,

may diverge quite quickly.

Although Tables 2.6 and 2.7 highlight the efficacy of (2.88) and (2.91),

Tables 2.8 and 2.9 show their limitations, especially concerning the evalua-

tion of the derivatives of kn(v x) and Yn(v x). Formula (2.88) does not achieve

complete machine precision for these functions because for (v, x) = (1, 1),

(2.88) becomes an alternating series with each term approximately one order

of magnitude larger than the previous term. In this context, the summation

is susceptible to round-off error. This does not occur when computing the

derivatives of jn(v x) because each term is not significantly larger or smaller

than the previous one. This also does not occur when computing the deriva-

tives of In(v x), as (2.91) is not an alternating series. Interestingly, Maple 11

seems to show no difficulty computing the derivatives of kn(v x) or Yn(v x),

the modified Bessel functions.

In Tables 2.3, 2.4 and 2.5, we list the values obtained using the formulae

(2.71), (2.76) and (2.81) respectively. In these tables, values with 18 cor-

rect digits are obtained using Maple 11 evalf[18] and they are referred to as

Valuesevalf[18]. In Tables 2.6, 2.7, 2.8 and 2.9, we list the relative errors with

respect to values obtained using Maple 11 evalf[64], which are referred to as

Valuesevalf[64]. In these tables, we list the relative errors obtained using our

formulae, Maple’s evalf[15], evalf[22] and evalf[28].

In all tables, the numbers in parentheses represent powers of 10.
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Chapter 3

The G
(m)
n Transformation

3.A Definitions and basic properties

Let the natural numbers be denoted by N = {1, 2, 3, . . .}, and N0 = {0, 1, 2, 3, . . .}.

The integers are Z = {. . .−3,−2,−1, 0, 1, 2, 3, . . .}, and let Q,R,C denote the

rational, real, and complex numbers, respectively.

Let f and g be functions defined on D ⊂ X → Y , where the sets X and

Y could represent either the real numbers R or the complex numbers C. Let

A be a subset of D. Let X∞ be one of the sets R∞ = R ∪ {−∞,∞} or

C∞ = C ∪ {∞}. Suppose z0 ∈ A ⊂ X∞ (i.e. z0 is a limit point of A).

Definition ( [5]): We say f is in the order of g as z → z0 on A ⊂ X∞ if X∞

contains a neighbourhood U of z0 such that for some M :

z ∈ U ∩ A =⇒ |f(z)| ≤ M |g(z)|. (3.1)

We write f(z) = O(g(z)) as z → z0. Equivalently, if g is nonzero near
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z0 ∈ A, then:

lim sup
z→z0
z∈A

∣∣∣∣
f(z)

g(z)

∣∣∣∣ <∞, (3.2)

or

∣∣∣∣
f

g

∣∣∣∣ is bounded on A near z0.

Definition ( [5]): We say f is in the little order of g as z → z0 on A ⊂ X∞ if

for all ǫ > 0, X∞ contains a neighbourhood Uǫ of z0 such that:

z ∈ Uǫ ∩ A =⇒ |f(z)| ≤ ǫ|g(z)|. (3.3)

We write f(z) = o(g(z)) as z → z0. Equivalently, if g is nonzero near z0 ∈ A

and f(z0) = 0 when z0 ∈ A, then:

lim
z→z0
z∈A

f(z)

g(z)
= 0. (3.4)

Definition ( [5]): If f − g = o(g) (z → z0 ∈ A), we say f is asymptotic to

g as z → z0 on A ⊂ X∞ and write f(z) ∼ g(z) as z → z0. Equivalently,

if g is nonzero near z0 ∈ A and f(z0) = g(z0) when z0 ∈ A, then f ∼ g is

equivalent to:

lim
z→z0
z∈A

f(z)

g(z)
= 1. (3.5)

We define the class of functions we denote A
(γ) by

Definition ( [5, 12]): A function α(x) defined for all large x > 0 is in the set

A
(γ) if it has a Poincaré-type asymptotic expansion of the form:

α(x) ∼
∞∑

i=0

αix
γ−i, x→ +∞. (3.6)
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If, in addition, α0 6= 0 in (3.6), then α(x) is said to belong to A
(γ) strictly.

Here γ is complex in general.

Building on this class of functions, we also have the

Definition ( [5, 12]): A function f(x) belongs to the set B
(m) if it satisfies a

linear homogeneous differential equation of order m of the form:

f(x) =

m∑

k=1

pk(x)f
(k)(x), (3.7)

where pk ∈ A
(k), k = 1, . . . , m, such that pk ∈ A

(ik) strictly for some integer

ik ≤ k.

3.B The G
(m)
n transformation

Let F (x) =
∫ x

0
f(t) dt and let I[f ] = lim

x→∞
F (x). Now, for functions in B

(m),

we can construct the asymptotic remainder of the difference between F (x) and

I[f ]. We have the

Theorem 3.1 ( [12]): Let f(x) ∈ B
(m) and let f(x) be integrable on [0,∞)

(i.e.
∫∞

0
f(t) dt < ∞). If for 1 ≤ i ≤ m and i ≤ k ≤ m, we have

lim
x→∞

p
(i−1)
k (x) f (k−i)(x) = 0 and for every integer l ≥ −1, we have

m∑

k=1

l(l −

1) · · · (l− k + 1)pk,0 6= 1 where pk,0 = lim
x→∞

x−k pk(x) for 1 ≤ k ≤ m, then as

x→ ∞, we have:

I[f ] − F (x) =

∫ ∞

x

f(t) dt ∼
m−1∑

k=0

xσk f (k)(x)

(
β0,k +

β1,k

x
+
β2,k

x2
+ · · ·+

)
,

(3.8)

for some integers σk ≤ k + 1 for k = 0, . . . , m− 1.
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To solve for the unknowns βk,i, we must set up and solve a system of linear

equations. To produce this system of linear equations, few methods have been

conceived. The first is called theD
(m)
n transformation. For this transformation,

a set of interpolating points x0, x1, . . . , xl is used to solve for the unknowns. If

we take the limiting case as all the points coalesce, we achieve the first confluent

form [5] of the D
(m)
n transformation, known as the G

(m)
n transformation [13].

The approximation G
(m)
n to

∫∞

0
f(t)dt is given as the solution of the system of

mn + 1 linear equations [13]:

dl

dxl

{
G(m)

n −
∫ x

0

f(t) dt−
m−1∑

k=0

xσkf (k)(x)

n−1∑

i=0

βk,i

xi

}
= 0, l = 0, 1, . . . , mn,

(3.9)

where it is assumed that
dl

dxl
G(m)

n ≡ 0, ∀l > 0. In the above system (3.9), σk =

min(sk, k+1) where sk is the largest of the integers s such that lim
x→∞

xsf (k)(x) =

0 holds, k = 0, 1, . . . , m−1. Also, G
(m)
n and βk,i are the respective set of mn+1

unknowns.

3.C An algorithm for the G
(1)
n transformation

The G
(1)
n transformation can be written as the solution to the linear sys-

tem (3.9) with m = 1.

Instead of solving the system of linear equations each time for each order

n, it would be ideal to resolve each approximation G
(1)
n in a recursive manner.

By considering the equation for l = 0:

G(1)
n − F (x) = xσ0f(x)

n−1∑

i=0

β0,i

xi
with F (x) =

∫ x

0

f(t)dt, (3.10)
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and by isolating the summation on the right hand side, we obtain:

G(1)
n − F (x)

xσ0f(x)
=

n−1∑

i=0

β0,i

xi
. (3.11)

To eliminate the summation, and consequently all of the unknowns β0,i, we

must apply some type of operator to both sides of the equation. In the non-

confluent case, this is achieved by the divided difference operator acting on

the different interpolation points of the D
(1)
n transformation. This culminates

with the conception of the W algorithm [5]. In the confluent case, we require

the

(
x2 d

dx

)
operator, which, applied n times, eliminates the summation. For

example, if we apply the

(
x2 d

dx

)
operator to the summation, we obtain:

(
x2 d

dx

)(n−1∑

i=0

β0,i

xi

)
= x2

n−1∑

i=1

−i β0,i

xi+1
=

n−1∑

i=1

−i β0,i

xi−1
(3.12)

and the first unknown β0,0 disappears. Successive application will continue to

eliminate the unknowns in this fashion and we obtain:

(
x2 d

dx

)n
[
G(1)

n − F (x)

xσ0f(x)

]
= 0 =⇒ G(1)

n =

(
x2 d

dx

)n(
F (x)

xσ0f(x)

)

(
x2 d

dx

)n(
1

xσ0f(x)

) , (3.13)

which leads to a recursive algorithm for the G
(1)
n transformation.

Algorithm 3.1.1:

1. Set:

N0(x) =
F (x)

xσ0f(x)
and D0(x) =

1

xσ0f(x)
. (3.14)
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2. For n = 1, 2, . . . , compute Nn(x) and Dn(x) recursively from:

Nn(x) =

(
x2 d

dx

)
Nn−1(x) and Dn(x) =

(
x2 d

dx

)
Dn−1(x).

(3.15)

3. For all n, the approximations G
(1)
n (x) to

(∫ x

0

+

∫ ∞

x

)
f(t) dt are given

by:

G(1)
n (x) =

Nn(x)

Dn(x)
. (3.16)

Since we are investigating integral tails
∫∞

x
f(t) dt rather than complete

semi-infinite integrals, the remaining integrals
∫ x

0
f(t) dt appear on both sides

of the above equation and we can then extract the approximation G̃
(1)
n (x) to

integral tails as follows:

G̃(1)
n (x) = G(1)

n (x) − F (x)

=
Nn(x) − F (x)Dn(x)

Dn(x)

=

∑n
r=1

(
n
r

)
Dn−r(x)

(
x2 d

dx

)r−1
(x2 f(x))

Dn(x)

=
Ñn(x)

Dn(x)
. (3.17)

The development of an algorithm for the case of m = 2 (i.e. for the G
(2)
n

transformation) is of interest as many oscillatory integrals satisfy second order

linear homogeneous differential equations of the form required for Theorem 3.1.

For the case of m > 1, general algorithms could be constructed based on the

E algorithm [2] and the FS algorithm [5]. However, as the G transformation

is a confluent transformation, in that the linear system (3.9) is essentially

created by differentiation, algorithms stemming from the E algorithm or the
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FS algorithm would be symbolic in nature and perhaps inefficient, due to the

recursive differentiation involved.
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Chapter 4

The G
(1)
n Transformation For

Incomplete Bessel Functions and

Tail Integrals of Probability

Distributions

We use the algorithm for the G
(1)
n transformation to approximate incomplete

Bessel functions and tail probabilities of the normal distribution, the gamma

distribution, the student’s t-distribution, the inverse Gaussian distribution and

Fisher’s F distribution. Using this algorithm, which can be computed recur-

sively when using symbolic programming languages, we are able to compute

these integrals to high pre-determined accuracies. Previous to this contribu-

tion, the evaluation of these tail probabilities using the G
(1)
n transformation

required symbolic computation of large determinants and/or systems of lin-

ear equations. With the use of our algorithm, the G
(1)
n transformation can be

performed relatively easily to produce explicit approximations.
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4.A Incomplete Bessel functions

Incomplete Bessel functions were a subject of significant research and we re-

fer the interested reader to these articles [44–53] for a rich history of these

functions. Of the many applications of incomplete Bessel functions, we note

that they appear when Ewald-type summation acceleration procedures [54] are

applied to electronic-structure calculations for systems described in terms of

Gaussian-type atomic orbitals, with periodicity in one, two, or all three phys-

ical dimensions. Incomplete Bessel functions of zero order are also involved in

numerous applications to electromagnetic waves [55–59].

4.A.1 Definitions and basic properties

Due to their integral representation [52]:

Kν(x, y) =

∫ ∞

1

e−x t−y/t

tν+1
dt, (4.1)

incomplete Bessel functions are a computational challenge. Equipped with the

developed algorithm, we apply the G
(1)
n transformation to compute incomplete

Bessel functions to high pre-determined accuracies. We also demonstrate that

this algorithm allows for a broad range of incomplete Bessel computation.

Integration by parts of the integral representation of Kν(x, y) in (4.1) leads

to the inhomogeneous recurrence formula [60, 61]:

xKν−1(x, y) + ν Kν(x, y) − yKν+1(x, y) = e−x−y. (4.2)
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Defining the modified Bessel function using the formula [62]:

Kν(z) =
1

2

∫ ∞

0

e−(z/2)(t+1/t)

tν+1
dt, (4.3)

and defining u =
√
x y and v =

√
x
y
, we have another important functional

relation [52]:

Kν(x, y) +K−ν(y, x) = 2 vν Kν(2 u). (4.4)

By interchanging x ↔ y, equation (4.4) can effectively double the ap-

plicable region of any algorithm, provided modified Bessel functions can be

calculated. In terms of u and v, equation (4.1) can be expressed as [52]:

Kν(u, v) =

∫ ∞

v

vν e−u(t+1/t)

tν+1
dt, (4.5)

or, it can be expressed as a generalized incomplete gamma function [61, 63]:

Kν(x, y) = xν Γ(−ν; x; x y) where Γ(α; x; b) =

∫ ∞

x

tα−1 e−t−b/t dt.

(4.6)

4.A.2 Computing incomplete Bessel functions

Since incomplete Bessel functions satisfy a first order linear homogeneous dif-

ferential equation, we use the G
(1)
n transformation in order to obtain the eval-

uation of Kν(x, y) for a wide range of the involved parameter and variables to

a high pre-determined accuracy. We begin our numerical discussion with the

following equation obtained from (4.6):

Kν(x, y) + xν

∫ x

0

e−t−xy/t

tν+1
dt = xν

∫ ∞

0

e−t−xy/t

tν+1
dt. (4.7)
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The integrand f(t) =
e−t−xy/t

tν+1
in (4.7) satisfy the first order linear homo-

geneous differential equation given by:

f(t) = − t2

t2 − x y + (ν + 1) t
f ′(t), (4.8)

whereupon we find that f(t) ∈ B
(1) and σ0 = 0.

Symbolically programming the G
(1)
1 transformation to the right hand side

of (4.7) through our algorithm gives:

G
(1)
1 (x, y, ν) =

N1(x)

D1(x)

=
xν+2

x2 − x y + (ν + 1) x
f(x) + xν

∫ x

0

e−t−xy/t

tν+1
dt. (4.9)

Since incomplete Bessel functions are defined as integral tails rather than

complete semi-infinite integrals, the remaining integral appears on both sides

of the equation. We can then extract the approximation to the functions

Kν(x, y), which is given by:

G̃
(1)
1 (x, y, ν) =

x e−x−y

x2 − x y + (ν + 1) x
. (4.10)

Low order transformations like (4.10), however, may not be sufficient to

cover the entire relevant range of the parameter ν and the variables x and y.

By expanding the derivations involved in the functions Nn(x) and Dn(x) given

by equation (3.16) in the algorithm, and by proceeding as above, we are able to

develop explicitly the numerator Ñn(x, y, ν) and denominator Dn(x, y, ν) of the

approximations G̃
(1)
n (x, y, ν) for incomplete Bessel functions. The numerator
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Ñn(x, y, ν) is given by:

Ñn(x, y, ν) =

(
x2 d

dx

)n(
F (x)

xσ0f(x)

)
− F (x)

(
x2 d

dx

)n(
1

xσ0f(x)

)
. (4.11)

For the development of Dn(x, y, ν), we use the Leibniz product rule and

the SSF I with (µ, ν,m, n) = (−2,−ν − 1, 0, 0) as follows:

Dn(x, y, ν) =

(
t2

d

dt

)n (
tν+1et+xy/t

)∣∣∣∣
t=x

=

n∑

r=0

(
n

r

) (
t2

d

dt

)n−r

exy/t

∣∣∣∣∣
t=x

(
t2

d

dt

)r (
tν+1et

)∣∣∣∣
t=x

=

n∑

r=0

(
n

r

)
(−x y)n−rey

(
t2

d

dt

)r (
tν+1et

)∣∣∣∣
t=x

=

n∑

r=0

(
n

r

)
(−x y)n−rey

r∑

i=0

Ai
r t

ν+1+i+r di

dti
et

∣∣∣∣
t=x

=
n∑

r=0

(
n

r

)
(−x y)n−rey

r∑

i=0

Ai
r x

ν+1+i+rex, (4.12)

which upon further simplification leads to:

Dn(x, y, ν) = (−x y)n xν+1 ex+y
n∑

r=0

(
n

r

)
(−y)−r

r∑

i=0

Ai
r x

i. (4.13)

In a similar manner, we develop Ñn(x, y, ν) by using the Leibniz product

rule and the SSF I with (µ, ν,m, n) = (−2, ν − 1, 0, 0) :

Ñn(x, y, ν) =
e−x−y

xν y

n∑

r=1

(
n

r

)
Dn−r(x, y, ν) (x y)r

r−1∑

s=0

(
r − 1

s

)
y−s

s∑

i=0

Ai
s(−x)i.

(4.14)

The coefficients Ai
r in (4.13) and Ai

s in (4.14) are given by equation (2.7).
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Our approximations to Kν(x, y) take the form:

G̃(1)
n (x, y, ν) = xν Ñn(x, y, ν)

Dn(x, y, ν)
. (4.15)

4.A.3 Numerical discussion

In [52], four numerical cases are presented and evaluated using a multiplicity

of methods. With the approximations G̃
(1)
n (x, y, ν), we are capable of repli-

cating these cases to the same pre-determined accuracy of ±1 × 10−10. We

also show new results obtained with an accuracy of ±1 × 10−15 for which, in

general, higher order transformations are required to achieve the higher pre-

determined accuracy. For the region where x ≥ y, we use the approximations

G̃
(1)
n (x, y, ν) straightforwardly, and for the region where x < y, we use the

inversion formula (4.4) and compute the approximations G̃
(1)
n (y, x,−ν) for the

incomplete Bessel function K−ν(y, x) and compute Kν(2 u) with the subrou-

tine mikv.for from [40]. In Tables 4.1 and 4.2, we show the input variables x

and y and parameter ν, the maximal order n of the transformation required,

the corresponding approximation G̃
(1)
n (x, y, ν) of our FORTRAN 77 program,

along with an approximation to the absolute error:

Error =
∣∣∣G̃(1)

n (x, y, ν) − G̃
(1)
n−1(x, y, ν)

∣∣∣ . (4.16)

The four cases in [52] are:

Case 1. x = 0.01, y = 4.00, ν = 0(1)9. We use (4.4) to invert x and y.

Case 2. x = 4.95, y = 5.00, ν = 2. We again use (4.4) to invert x and y.

Case 3. x = 10, y = 2, ν = 6. For this case, (4.4) is unnecessary, as x > y.

We produce K6(10, 2) = 0.00000 04150 04594 19162 55, which is different from

50



the “Accurate Value” K6(10, 2) = 0.00023 44186 32699 given in [52] and the

value obtained from the "Research of" [52] K6(10, 2) = 0.00023 44186 19816.

However, we suspect that there is a typographical error in [52] as numerical

integration with Maple gives the: “Accurate Value” K6(10, 2) = 0.00000 04150

04594 23189 99. Evidently, there is a disagreement between even the two

accurate values, which leads us to suspect that the output in [52] does not

correspond with K6(10, 2). Our approximation has an absolute error less than

10−10 with n = 4 and less than 10−15 with n = 10.

Case 4. x = 3.1, y = 2.6, ν = 5.

Table 4.2 corresponds to a new table of values that we have compiled. This

table shows the regions where the approximations G̃
(1)
n (x, y, ν) perform well,

and also where a high order transformation is required to attain the desired

pre-determined accuracy.

In Table 4.2, our approximations G̃
(1)
n (x, y, ν) are demonstrated on a wide

range of x, y and ν. Simple values to approximate include rows 6, 7 and 8,

where x and y are large. Challenging values to approximate include rows 1, 2,

12 and 13, where x and y are small. We note that in rows 9, 10 and 11, values

of ν are real and non-integer. Equations (4.14) and (4.13) reveal that the

computational complexity of the approximations G̃
(1)
n (x, y, ν) is independent

of ν, which allows for an evaluation of Kν(x, y) with real-, or even complex-,

valued ν. In Table 4.2, we emphasize large values of ν. This is because the

recurrence relation (4.2) is more stable in the downward direction for x ≥ y.

Therefore, since the values of ν vary from 0 to 16, the computation procedure

would be more stable starting at the maximal ν and recurring downwards to

maintain the pre-determined accuracy.
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x y ν n G̃
(1)
n (x, y, ν) Error

0.01 4 0 10 0.2225310761289636( 1) 0.57(-10)
0.01 4 1 7 0.2138941668493954( 0) 0.96(-10)
0.01 4 2 5 0.5450346981126452(-1) 0.78(-10)
0.01 4 3 6 0.2325312150773913(-1) 0.21(-11)
0.01 4 4 7 0.1304275099607653(-1) 0.21(-11)
0.01 4 5 8 0.8567534990653542(-2) 0.31(-11)
0.01 4 6 9 0.6208676806589944(-2) 0.66(-11)
0.01 4 7 10 0.4801085238209789(-2) 0.19(-10)
0.01 4 8 11 0.3884072049500670(-2) 0.72(-10)
0.01 4 9 13 0.3246798003147811(-2) 0.62(-12)
4.95 5 2 16 0.1224999251036423(-4) 0.27(-10)
10.0 2 6 4 0.4150010642122851(-6) 0.29(-10)
3.1 2.6 5 12 0.5285042839881951(-3) 0.62(-10)

Table 4.1: Numerical Results for G̃
(1)
n (x, y, ν) for incomplete Bessel functions.

x y ν n G̃
(1)
n (x, y, ν) Error

1 1 8 48 0.1642584157597500(-1) 0.56(-15)
1 1 16 38 0.8393633437083270(-2) 0.68(-15)
5 5 4 18 0.8224363011631705(-5) 0.46(-15)
5 5 8 16 0.5034054653465547(-5) 0.60(-15)
5 5 16 13 0.2737360566898996(-5) 0.71(-15)

10 1 16 9 0.6565409733529793(-6) 0.69(-15)
10 5 16 8 0.1410826247065302(-7) 0.22(-15)
10 10 16 6 0.1204845014455500(-9) 0.20(-16)
1 5 1.6 18 0.4064821958669517(-2) 0.40(-15)
1 10 2.1 9 0.2137545215106365(-3) 0.56(-15)
5 10 3.5 16 0.1419478426782529(-6) 0.17(-15)

0.1 0.1 16 37 0.5113063337908691(-1) 0.93(-15)
0.5 0.5 12 46 0.3044667055799152(-1) 0.32(-15)

Table 4.2: Numerical Results for G̃
(1)
n (x, y, ν) for incomplete Bessel functions.
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4.B Tail integrals of probability distributions

4.B.1 Definitions and basic properties

In this section, we define the normal distribution, the gamma distribution,

the student’s t-distribution, the inverse Gaussian distribution and Fisher’s F

distribution. For more details on these distributions and their properties, we

refer the interested readers to [64, 65].

The normal distribution (Gaussian distribution) has the probability density

function (PDF) given by:

fN(x) =
1√

2 π σ2
exp

(
−(x− µ)2

2 σ2

)
for −∞ < x < +∞, (4.17)

where µ denotes the mean of the distribution and σ2 represents the variance.

By making the change of variable z = x−µ
σ

the normal distribution reduces

to the standard normal distribution where µ = 0 and σ2 = 1. In this case, the

PDF is given by:

gN(z) =
1√
2 π

exp

(
−z

2

2

)
for −∞ < z < +∞. (4.18)

The gamma distribution has the PDF:

fg(x) =
xa−1 e−

x
b

Γ(a) ba
for 0 < x < +∞, (4.19)

for which a > 0 and b > 0 are two parameters and Γ refers to the gamma

function. The parameter a is responsible for the shape of the distribution

whereas the parameter b affects the scale. The mean of the gamma distribution

is µ = a b and the variance is σ2 = a b2. The gamma distribution is transformed
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to the exponential distribution by setting a = 1. It is also related to the chi-

squared χ2 distribution by setting a = v/2 and b = 2, where v is the number

of degrees of freedom. Indeed, the gamma distribution also forms the heart of

the noncentral gamma distribution studied in [66].

The student’s t-distribution has the PDF:

ft(x) =
Γ(v+1

2
)√

v π Γ
(

v
2

)
(

1 +
x2

v

)−( v+1
2

)

for −∞ < x < +∞, (4.20)

where the parameter v > 0 stands for the number of degrees of freedom. For

a sample size of n independent variables, the number of degrees of freedom is

defined to be v = n− 1. The mean of the student’s t-distribution is 0 and the

variance is σ2 = v
v−2

when v > 2, σ2 = ∞ when 1 < v ≤ 2 and undefined

otherwise. As v tends to infinity, the student’s t-distribution converges toward

the standard normal distribution.

The inverse Gaussian distribution has the PDF:

fi(x) =

(
λ

2 π x3

) 1
2

exp

(
−λ (x− µ)2

2µ2 x

)
for 0 < x < +∞, (4.21)

where µ and λ are two parameters. The mean of the inverse Gaussian distri-

bution is µ and the variance is σ2 = µ3

λ
.

Fisher’s F distribution has the PDF:

fF (x) =
Γ
(

a+b
2

)

Γ
(

a
2

)
Γ
(

b
2

)
(a
b

)a/2 x
a−2
2

(
1 +

(
a
b

)
x
) a+b

2

for 0 < x < +∞,

(4.22)

for which the integers a and b are two parameters. The mean of Fisher’s F

distribution is µ = b
b−2

for b > 2 and the variance is σ2 = 2 b2 (a+b−2)
a (b−2)2 (b−4)

for b > 4.
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4.B.2 Computing the probability distributions

The objective of this section is to compute integral tails
∫∞

x
f(t) dtwhere f(t) is

a probability density function, using the algorithm for the G̃
(1)
n transformation

presented above.

The normal distribution

For simplicity, we first apply G
(1)
n to the standard distribution. We derive the

analytic expression of G̃
(1)
n for the integral tail of the standard distribution, and

then we make the change of variable z = x−µ
σ

to obtain the analytic expression

of G̃
(1)
n for the integral tail of the normal distribution.

It is easy to show that the standard normal distribution PDF given by (4.18),

satisfies a first order differential equation given by:

gN(z) = p1(z) g
′
N(z), (4.23)

where the coefficient p1(z) is given by:

p1(z) = −1

z
= −z−1 ⇒ σ0 = −1 (see (3.9) for the definition of σ0) .

(4.24)

All the conditions required to apply the G
(1)
n transformation to the standard

distribution are satisfied. By Using SSF 1 with (µ, ν,m, n) = (−2,−1, 1, 0) we

obtain:

Dn(z) =

(
z2 d

dz

)n

z
√

2πez2/2

=
z1+n

gN(z)

n∑

i=0

Ai
n z

2i, (4.25)
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where the coefficients Ai
k are calculated using the recurrence relations in (2.7)

with (µ, ν,m, n) = (−2,−1, 1, 0).

Since the elements Dn(z) are now available, to evaluate the numerator

Ñn(z), we only need to evaluate the following:

(
z2 d

dz

)r−1(
z2 1√

2 π
e−

z2

2

)
. (4.26)

We use the SSF 1 with (µ, ν,m, n) = (−2,−2, 1, 0) to obtain:

(
z2 d

dz

)r−1(
z2 1√

2 π
e−

z2

2

)
= z1+r gN(z)

r−1∑

i=0

Bi
r−1 (−1)i z2i, (4.27)

where the coefficients Bi
k are calculated using the recurrence relations in (2.7)

with (µ, ν,m, n) = (−2,−2, 1, 0).

Inserting these results into equation (3.17), we obtain:

G̃(1)
n (z) = z gN(z)




n∑

r=1

(
n

r

) n−r∑

i=0

Ai
n−r z

2i
r−1∑

j=0

Bj
r−1 (−1)j z2j

n∑

k=0

Ak
n z

2k



. (4.28)

Upon the change of variables z = x−µ
σ

to return to the general normal

distribution, we obtain:

G̃(1)
n (x) = (x− µ) fN(x)




n∑

r=1

(
n

r

) n−r∑

i=0

Ai
n−r ω

i
r−1∑

j=0

Bj
r−1 (−ω)j

n∑

k=0

Ak
n ω

k



, (4.29)

where ω =
(

x−µ
σ

)2
.
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In Table 4.3, we list values of the normal distribution. This table repro-

duces the numerical results presented in [26] for the normal distribution.

x µ σ n G̃
(1)
n (x) ǫn Maple values

1.2 0 1 48 .115069670221707( 0) .22(-15) .115069670221708( 0)
1.6 0 1 34 .547992916995587(-1) .36(-15) .547992916995579(-1)
2.0 0 1 28 .227501319481791(-1) .79(-15) .2275013194817920(-1)
3.0 0 1 19 .134989803163009(-2) .41(-15) .134989803163009(-2)
6.0 0 1 11 .986587645037697(-9) .00( 00) .986587645037698(-9)

10.0 0 1 7 .761985302416049(-23) .70(-15) .7619853024160526(-23)
12.0 0 1 7 .177648211207767(-32) .13(-15) .1776482112077678(-32)
45.0 18 6 12 .339767312473006(-5) .88(-15) .339767312473006(-5)
54.2 2 25 28 .183989173418575(-1) .28(-15) .183989173418576(-1)
0.3 0 1 162 .382088577811118( 0) .30(-13) .382088577811047( 0)

Table 4.3: Numerical evaluation of the tail integral of the normal distribution
by (4.29).

The gamma distribution

The probability density function fg(x) given by (4.19) satisfies the first order

differential equation given by:

fg(x) = p1(x)f
′
g(x), (4.30)

where the coefficient p1(x) is given by:

p1(x) =
bx

ab− b− x
=

∞∑

n=0

−bn+1(a− 1)n

xn
⇒ σ0 = 0. (4.31)
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Using SSF 1 with (µ, ν,m, n) = (−2, a− 1, 0, 0), we obtain:

Dn(x) =

(
x2 d

dx

)n

Γ(a) ba x1−a exp
(x
b

)

=
xn

fg(x)

n∑

i=0

Ai
n

(x
b

)i

. (4.32)

For the numerator, we use (µ, ν,m, n) = (−2,−a− 1, 0, 0) to develop:

(
x2 d

dx

)r−1

(x2fg(x)) = xr+1fg(x)
r−1∑

i=0

Bi
r−1

(
−x
b

)i

. (4.33)

Inserting these results into equation (3.17), we obtain:

G̃(1)
n (x) = x fg(x)




n∑

r=1

(
n

r

) n−r∑

i=0

Ai
n−r

(x
b

)i
r−1∑

j=0

Bj
r−1

(
−x
b

)j

n∑

k=0

Ak
n

(x
b

)k



. (4.34)

In Table 4.4, we list values of the gamma distribution. This table repro-

duces the numerical results presented in [26] for the gamma distribution.

The student’s t-distribution

The probability density function ft(x) given by (4.20) satisfies the first order

differential equation given by:

ft(x) = p1(x)f
′
t(x), (4.35)
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x a b n G̃
(1)
n (x) ǫn Maple values

13.0 7.000 2.0000 8 .526523622518000( 0) .00( 00) .526523622517999( 0)
15.0 7.000 2.0000 8 .378154694323469( 0) .00( 00) .378154694323469( 0)
20.0 7.000 2.0000 8 .130141420882482( 0) .00( 00) .130141420882482( 0)
35.0 7.000 2.0000 8 .147001977487619(-2) .00( 00) .147001977487619(-2)
40.0 7.000 2.0000 8 .255122495856300(-3) .00( 00) .255122495856300(-3)
45.0 7.000 2.0000 8 .407935571774570(-4) .00( 00) .407935571774571(-4)
50.0 7.000 2.0000 8 .610629446192788(-5) .00( 00) .610629446192790(-5)
60.0 7.000 2.0000 8 .117319420023469(-6) .00( 00) .117319420023469(-6)
120.0 7.000 2.0000 7 .629224133230851(-18) .38(-15) .629224133230850(-18)
12.0 2.000 3.0000 3 .915781944436709(-1) .00( 00) .915781944436709(-1)
25.5 4.430 2.0230 11 .251747197371780(-2) .15(-13) .251747197371771(-2)
45.0 5.432 4.5432 13 .453930946920760(-1) .24(-13) .453930946920784(-1)
14.0 1.111 9.0000 45 .245873088348530( 0) .33(-15) .245873088348520( 0)

Table 4.4: Numerical evaluation of the tail integral of the gamma distribution
by (4.34).

where the coefficient p1(x) is given by:

p1(x) = − x2 + v

x(v + 1)
= x

(
− 1

v + 1
− v

(v + 1)x2

)
⇒ σ0 = 1. (4.36)

The G
(1)
n transformation then gives:

G̃(1)
n (x) = xft(x)




n∑

r=1

(
n

r

) n−r∑

i=0

Ai
n−r (ω)i z

i
r−1∑

j=0

Bj
r−1 (−ω)j z

j

n∑

k=0

Ak
n (ω)k z

k



, (4.37)

where ω = −v+1
2

, z = − 2 x2

v+x2 and (x)n = x(x+1) · · · (x+n−1) is a Pochhammer

symbol, and where Ai
k are the coefficients of the SSF 1 with (µ, ν,m, n) =

(−2, 1, 1, 0) and the Bi
k are the coefficients of the SSF 1 with (µ, ν,m, n) =

(−2,−2, 1, 0).

In Table 4.5, we list values of the student’s t-distribution. This table repro-
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duces the numerical results presented in [26] for the student’s t-distribution.

x v n G̃
(1)
n (x) ǫn Maple values

1.812 10 28 .500376310329719(-1) .17(-11) .500376310329236(-1)
2.228 10 26 .250058859084132(-1) .16(-11) .250058859085556(-1)
3.169 10 19 .500231668217826(-2) .57(-12) .500231668219242(-2)
4.587 10 21 .499918645935931(-3) .62(-13) .499918645938171(-3)
6.927 20 12 .500032563506471(-6) .46(-13) .500032563506499(-6)
5.449 60 11 .499901999489751(-6) .85(-14) .499901999489723(-6)
3.373 120 21 .500752580750085(-3) .45(-13) .500752580749990(-3)
20.0 120 11 .255269495907817(-39) .16(-15) .255269495907814(-39)
12.49 45 9 .158367022750732(-15) .37(-14) .158813184049678(-15)
5.402 5 15 .146875507310926(-2) .40(-11) .146875507309968(-2)

Table 4.5: Numerical evaluation of the tail integral of the student’s t-
distribution by (4.37).

The inverse Gaussian distribution

The probability density function fi(x) given by (4.21) satisfies the first order

differential equation given by:

fi(x) = p1(x)f
′
i(x), (4.38)

where the coefficient p1(x) is given by:

p1(x) =
−2µ2x2

λx2 + 3µ2x− λµ2
=

(
−2µ2

λ
+

6µ2

λ2x
− . . .

)
⇒ σ0 = 0. (4.39)
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The G
(1)
n transformation then gives:

G̃(1)
n (x) =

2 x2 fi(x)

λ

×




n∑

r=1

(
n

r

)
(−1)r

n−r∑

k=0

(
n− r

k

)
(−ω)k

k∑

i=0

Ai
k z

i
r−1∑

q=0

(
r − 1

q

)
ωq

q∑

l=0

Bl
q (−z)l

n∑

m=0

(
n

m

)
(−ω)m

m∑

p=0

Ap
m z

p



,

(4.40)

where ω = 2 x
λ

and z = λ x
2 µ2 , and where Ai

k are the coefficients of the SSF 1

with (µ, ν,m, n) = (−2,−3
2
, 0, 0) and the Bi

k are the coefficients of the SSF 1

with (−2,−1
2
, 1, 0).

In Table 4.6, we list values of the inverse Gaussian distribution. This table

reproduces the numerical results presented in [26] for the inverse Gaussian

distribution.

x µ λ n G̃
(1)
n (x) ǫn Maple values

1.50 1.00 1.00 107 .189232007000019( 0) .92(-15) .189232007000020( 0)
2.00 1.00 1.00 82 .114524574013992( 0) .43(-15) .114524574013993( 0)
3.00 1.00 1.00 61 .468120792572114(-1) .63(-15) .468120792572116(-1)
4.50 1.00 1.00 42 .143011829460930(-1) .00( 00) .143011829460931(-1)
6.00 1.00 1.00 35 .484988213370218(-2) .00( 00) .484988213370217(-2)

10.00 1.00 1.00 36 .350414537208826(-3) .65(-15) .350414537208819(-3)
16.00 1.00 1.00 24 .943916863494728(-5) .39(-15) .943916863494723(-5)
32.00 1.00 1.00 16 .122006566375975(-8) .72(-15) .122006566375975(-8)
24.00 2.00 4.00 27 .510429100438049(-6) .14(-15) .510429100438016(-6)
33.46 4.54 2.78 40 .621975008388134(-2) .72(-15) .621975008388144(-2)
23.00 6.54 6.00 55 .333636164607366(-1) .71(-15) .333636164607370(-1)
0.50 1.00 1.00 165 .635024451788276( 0) .49(-11) .635024451827040( 0)

Table 4.6: Numerical evaluation of the tail integral of the inverse Gaussian
distribution by (4.40).
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Fisher’s F distribution

The probability density function fF (x) given by (4.22) satisfies the first order

differential equation given by:

fF (x) = p1(x)f
′
F (x), (4.41)

where the coefficient p1(x) is given by:

p1(x) = − 2ax2 + 2bx

(2a + ab)x+ 2b− ab
= x

(
− 2

2 + b
− 2b(b+ a)

(2 + b)2ax
− . . .

)
⇒ σ0 = 1.

(4.42)

The G
(1)
n transformation then gives:

G̃(1)
n (x) = xfF (x)




n∑

r=1

(
n

r

) n−r∑

i=0

Ai
n−r (ω)i z

i
r−1∑

j=0

Bj
r−1 (−ω)j z

j

n∑

k=0

Ak
n (ω)k z

k



, (4.43)

where ω = −a+b
2

and z = − a x
a x+b

, and where Ai
k are the coefficients of the

SSF 1 with (µ, ν,m, n) = (−2, a
2
, 0, 0) and the Bi

k are the coefficients of the

SSF 1 with (−2,−a+2
2
, 0, 0).

In Table 4.7, we list values of Fisher’s F distribution. This table reproduces

the numerical results presented in [26] for Fisher’s F distribution.

4.B.3 Numerical discussion

The SSF 1 greatly simplifies the computation of the algorithm when using

a FORTRAN compiler due to the recurrence relations (2.7) satisfied by the

coefficients Ai
k. This internal recursion leads to a considerable gain in the cal-
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x a b n G̃
(1)
n (x) ǫn Maple values

4.190 3 4 14 .100029643896889( 0) .68(-13) .100029643896895( 0)
6.590 3 4 12 .500168891790474(-1) .11(-12) .500168891790405(-1)
9.980 3 4 11 .249965339234578(-1) .31(-13) .249965339234568(-1)
16.70 3 4 9 .999383733001448(-2) .17(-13) .999383733001462(-2)
5.750 5 1 10 .306042577763992( 0) .15(-12) .306042577763857( 0)
3.340 1 1 18 .318737836141563( 0) .43(-12) .318737836141636( 0)
23.23 10 5 7 .142310351602081(-2) .17(-13) .142310351602084(-2)
12.05 8 3 6 .325796489130341(-1) .53(-14) .325796489130337(-1)

Table 4.7: Numerical evaluation of the tail integral of Fisher’s F distribution
by (4.43).

culation times compared to the use of a method to solve the linear system (3.9).

In addition, the recurrence relations (2.7) allow us to stop the calculation as

soon as the desired precision is attained. That is, we calculate the approxi-

mation G̃
(1)
n+1 only if the precision attained by G̃

(1)
n is insufficient. We use the

following test based on an approximation to the relative error as a stopping

criterion in the calculations:

ǫn =

∣∣∣∣∣
G̃

(1)
n (x) − G̃

(1)
n−1(x)

G̃
(1)
n (x)

∣∣∣∣∣ ≤ ǫ, (4.44)

where ǫ is defined according to the desired degree of precision. In all our

calculations, ǫ is set at 10−15.

In general, the test of accuracy (4.44) works well. However, in certain

instances, when the behavior of the sequence of approximations {G̃(1)
n (x)}

is unstable and after an optimal order of approximation, the error will only

grow larger (see Figures 4.1(a) and 4.1(b) and their corresponding Tables 4.8

and 4.9). In such a situation, we must therefore stop the calculation, knowing

that the error will only grow larger. The stopping criterion in such an instance
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is determined by the following test:

̺i =

∣∣∣∣∣
G̃

(1)
n−i(x) − G̃

(1)
n−1−i(x)

G̃
(1)
n−1−i(x) − G̃

(1)
n−2−i(x)

∣∣∣∣∣ > 1 for i = 0, 1, 2, . . . . (4.45)
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Figure 4.1: Plot of log10 (ǫn) given by (4.44) as a function of the order n of the

approximations G̃
(1)
n (x) for (a) Fisher’s F distribution with x = 4.19, a = 3,

and b = 4 (corresponds to Table 4.8) and for (b) the student’s t-distribution
with x = 4.587 and v = 10 (corresponds to Table 4.9).

We found that ̺0 > 1 was a sufficient stopping criterion for Fisher’s F

and the gamma distributions. For the student’s t-distribution, ̺i > 1 for

i = 0, 1, 2 are required in order to achieve the best numerical result. For

Fisher’s F distribution, when ̺0 > 1 is used, we found that the G̃
(1)
n−1(x) term

gives the best result. In Table 4.8, we have ̺0 > 1 at n = 15 and the best

approximation is given by G̃
(1)
14 (x).

For the gamma distribution, we found that the G̃
(1)
n (x) term gives the best

result. Using ̺i > 1 for i = 0, 1, 2 for the student’s t-distribution, we found

that the G̃
(1)
n−3(x) term gives the best result. In Table 4.9, we have ̺i > 1 for

i = 0, 1, 2 at n = 24 and the best approximation is given by G̃
(1)
21 (x).

Figure 4.1 shows representative plots of log10 (ǫn) for (a) Fisher’s F distri-
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bution and for (b) the student’s t-distribution. Figure 4.1 (a) shows a typical

error curve which allows the test for ̺0 > 1 to achieve the optimal approxi-

mation. In contrast, Figure 4.1 (b) shows a typical error curve which prevents

the test for ̺0 > 1 from achieving the optimal approximation. Heuristically

speaking, the irregularities in the sequence of relative errors present in Fig-

ure 4.1 (b) but absent in Figure 4.1 (a) cause the test for ̺0 > 1 to stop

the algorithm premature of the optimal approximation. After analysis of nu-

merous similar plots, we find that only the student’s t-distribution requires

additional test.

n G̃
(1)
n ǫn ̺0

...
...

...
...

7 .100 029 643 323 462( 0) .46(-07) .09(0)
8 .100 029 643 826 732( 0) .50(-08) .10(0)
9 .100 029 643 887 614( 0) .60(-09) .12(0)

10 .100 029 643 895 591( 0) .79(-10) .13(0)
11 .100 029 643 896 704( 0) .11(-10) .13(0)
12 .100 029 643 896 869( 0) .16(-11) .14(0)
13 .100 029 643 896 896( 0) .27(-12) .16(0)
14 .100 029 643 896 889( 0) .68(-13) .24(0)

15 .100 029 643 896 918( 0) .28(-12) .42(1)

16 .100 029 643 896 873( 0) .44(-12) .15(1)
17 .100 029 643 896 887( 0) .13(-12) .30(0)
...

...
...

...
59 .978 730 933 819 339(-1) .50(-02) .68(0)
60 .987 747 825 057 981(-1) .91(-02) .18(1)
61 .977 349 542 823 236(-1) .10(-01) .11(1)
62 .940 746 788 876 968(-1) .38(-01) .35(1)
...

...
...

...

Table 4.8: Error table for Fisher’s F distribution for x = 4.19 and a = 3 and
b = 4 by (4.43). G̃

(1)
14 is the approximation obtained from our algorithm.

Generally speaking, the accuracy improves as the order n in the G̃
(1)
n trans-
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n G̃
(1)
n ǫn ̺0 ̺1 ̺2

...
...

...
...

...
...

16 .499 918 645 938 139(-3) .32(-12) .48(0) .16(1) .03(0)
17 .499 918 645 938 192(-3) .11(-12) .33(0) .48(0) .16(1)
18 .499 918 645 937 877(-3) .63(-12) .59(1) .33(0) .48(0)
19 .499 918 645 936 838(-3) .21(-11) .33(1) .59(1) .33(0)
20 .499 918 645 935 900(-3) .19(-11) .90(0) .33(1) .59(1)
21 .499 918 645 935 931(-3) .62(-13) .03(0) .90(0) .33(1)
22 .499 918 645 928 744(-3) .14(-10) .23(3) .03(0) .90(0)
23 .499 918 645 876 004(-3) .11(-09) .73(1) .23(3) .03(0)

24 .499 918 645 725 138(-3) .30(-09) .29(1) .73(1) .23(3)

25 .499 918 645 449 595(-3) .55(-09) .18(1) .29(1) .73(1)
26 .499 918 644 750 484(-3) .14(-08) .25(1) .18(1) .29(1)
...

...
...

...
...

...
49 .906 689 643 668 337(-3) .91(-01) .65(0) .14(1) .16(1)
50 .925 745 751 045 273(-3) .21(-01) .23(0) .65(0) .14(1)
51 .143 490 605 510 311(-2) .35( 00) .27(2) .23(0) .65(0)
...

...
...

...
...

...

Table 4.9: Error table for the student’s t-distribution for x = 4.587 and v = 10
by (4.37). G̃

(1)
21 is the approximation obtained from our algorithm.

formation increases. However, after a certain value of iteration depending on

the arguments provided, overflow occurs. The program returns the message

NaN (Not a Number) due to the divergent nature of the coefficients in the

SSF 1. In such a situation, we used the following stopping criteria in our

algorithm:

Ñn(x) > Huge or Dn(x) > Huge. (4.46)

The value of Huge is chosen close, but not equal to the largest real number

that can be stored by the machine. We chose the value 10300 in our program.

In this case, we pick the value G̃
(1)
n−1(x) as the best result.

Tables 4.8 and 4.9 show sequences of values obtained at each iteration of the
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G̃
(1)
n transformation for the F distribution and the t distribution respectively.

From these tables, we can clearly see how the use of the ̺i > 1 test helped us

reach the most accurate numerical results.

Tables 4.3 to 4.7 reproduce all of the numerical results presented in [26].

In the calculation presented in Table 4.4, it is important to note that for

integer values of a, the integrand has a closed-form anti-derivative, thus G̃
(1)
a (x)

is equal to the true value. For the numerical calculation of the gamma function

we use the subroutine Mgamma.for [40]. In this table, we also add additional

values with non-integer parameters to show how our method performs when

no closed-form anti-derivatives are known.

When we compare our numerical results with those obtained in [26], all

values agree except for the seventh entry in Table 1 in [26]. For this entry, we

find .1776482112077677(−32) which is in agreement with the value that we ob-

tained using the symbolic programming language Maple .177648211207767(−32).

The value given in [26] is 0.367097(−50) and we suspect this is a typographical

error.

We also used Maple to compute the tail probabilities with an accuracy

of 15 correct digits and the values obtained are listed in Tables 4.3-4.7 in

the columns ‘Maple values.’ The evalf[15] command of Maple was used for

a straightforward calculation of the integral tails, where the [15] denotes the

number of digits Maple will return in the computed expression. A straight-

forward calculation in Maple consists of entering the infinite-range integrals

symbolically and recuperating a numerical value, whether the integral has a

closed-form antiderivative or not.
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Chapter 5

Analysis of Convergence

Properties

In this chapter, we study the convergence properties of the G
(1)
n transforma-

tion. We begin by sharpening the asymptotics of the G
(1)
n transformation,

first proved in [13]. Then, with the explicit expression from the algorithmic

form for the G
(1)
n transformation and with a specific form for the integrand, we

study the rational and Padé approximants [67] given by the G
(1)
n transforma-

tion. With this connection established, we use the method of Viskovatov to

transform the rational and Padé approximants with an accuracy-through-order

condition into continued fractions. Upon extrapolation to the limit, through

convergence theorems on continued fractions, we infer convergence of the G
(1)
n

transformation applied to the normal and gamma distributions.
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5.A Connection with rational and Padé approx-

imants

As can be seen from equations (4.29), (4.34), (4.37), (4.40) and (4.43), the

approximations G̃
(1)
n (x) to the tail probabilities all have similar forms. To study

the forms more closely, including their connection with other approximation

methods, we require the following Lemma.

Lemma 5.1: Let f(x) have the form:

f(x) = Axµer(x), (5.1)

where A ∈ R/0, µ ∈ R and r(x) ∈ R[x] with deg(r(x)) = r0 ≥ 0. Then, for

i = 0, 1, . . . , and for α ∈ R and β ∈ R, it follows that:

(
xα+1 d

dx

)i

(xβf(x)) = xα i+βf(x)si(x), (5.2a)

(
xα+1 d

dx

)i(
xβ

f(x)

)
=
xα i+β

f(x)
ti(x), (5.2b)

where si(x) ∈ R[x] with deg(si(x)) = i r0 and ti(x) ∈ R[x] with deg(ti(x)) =

i r0.

Proof. The demonstration of either (5.2a) or (5.2b) is sufficient, as 1
f(x)

= A−1x−µe−r(x)

is still in the form of (5.1) if, for example, we take B = A−1, ν = −µ and

s(x) = −r(x).
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To prove (5.2a), we begin with i = 0. In this case s0(x) = 1. For i = 1:

xα+1 d

dx
(xβf(x)) = xα+1

[
A(β + µ)xβ+µ−1 + Axβ+µr′(x)

]
er(x)

= xα+βAxµer(x) [(β + µ) + x r′(x)]

= xα+βf(x)s1(x), (5.3)

where s1(x) ∈ R[x] with deg(s1(x)) = r0. For i > 1, the proof follows by

induction:

(
xα+1 d

dx

)
(xβ+α(i−1)f(x)si−1(x)) = xα(i−1)si−1(x)

(
xα+1 d

dx

)
(xβf(x))

+ xβf(x)

(
xα+1 d

dx

)
(xα(i−1)si−1(x))

= xα(i−1)si−1(x)x
α+βf(x)s1(x)

+ xβf(x)(α(i− 1)xα isi−1(x) + xα i+1s′i−1(x))

= xα i+βf(x)si−1(x)s1(x)

+ xα i+βf(x)(α(i− 1)si−1(x) + x s′i−1(x))

= xα i+βf(x)si(x), (5.4)

where si(x) ∈ R[x] with deg(si(x)) = i r0.

Lemma 5.2: Let ω(x) be such that:

ω(x) ∼ Axµer(x), as x→ ∞, (5.5)

where A ∈ R/0, µ ∈ R and r(x) ∈ R[x] with deg(r(x)) = r0 ≥ 0. Then, for
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n = 0, 1, . . . , and for α ∈ R, it follows that:

(
xα+1 d

dx

)n−1(
1

ω(x)

)

(
xα+1 d

dx

)n(
1

ω(x)

) ∼ ωn

xα+r0
, as x → ∞, (5.6)

where ωn ∈ R is a constant.

Proof. By Lemma 5.1, since ω(x) ∼ f(x), where f(x) is given in (5.1), the

left-hand side of (5.6) is then:

(
xα+1 d

dx

)n−1(
1

ω(x)

)

(
xα+1 d

dx

)n(
1

ω(x)

) ∼

(
xα+1 d

dx

)n−1(
1

f(x)

)

(
xα+1 d

dx

)n(
1

f(x)

) , as x→ ∞, (5.7)

=

xα(n−1)

f(x)
tn−1(x)

xα n

f(x)
tn(x)

, (5.8)

=
tn−1(x)

xα tn(x)
, (5.9)

∼ ωn

xα+r0
, as x→ ∞, (5.10)

where ωn ∈ R is a constant whose dependence on n is highlighted.

We now have the tools to derive asymptotic error estimates for the G
(1)
n

transformation. However, we do this with a generalized notation. Let F (x) =∫ x

0

f(t) dt and let I[f ] = lim
x→∞

F (x). Let also:

I[f ] − F (x) ∼ ω(x)

∞∑

i=0

βi

xα i
as x→ ∞, (5.11)

where α ∈ R+ and ω : R → R. Then, using the analogous annihilation
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operator to the one used in (3.17), we obtain the approximations:

G(1,α)
n (x) =

(
xα+1 d

dx

)n(
F (x)

ω(x)

)

(
xα+1 d

dx

)n(
1

ω(x)

) . (5.12)

It is self-evident that when ω(x) = xσ0f(x), then G
(1,1)
n (x) = G

(1)
n (x). We now

develop the asymptotic error estimate for this generalized G
(1,α)
n transforma-

tion.

Theorem 5.1: Let lim
x→∞

F (x) = I[f ]. Let I[f ] − F (x) have the asymptotic

expansion given by (5.11) where ω(x) is such that (5.5) holds. Then the

approximations G
(1,α)
n (x) given in (5.12) satisfy:

I[f ] −G
(1,α)
n (x)

I[f ] −G
(1,α)
n−1 (x)

= O
(

1

xα+r0

)
as x→ ∞. (5.13)

Proof. Using (5.12), the ratio (5.13) is given by:

I[f ] −G
(1,α)
n (x)

I[f ] −G
(1,α)
n−1 (x)

=

(
xα+1 d

dx

)n(
I[f ] − F (x)

ω(x)

)

(
xα+1 d

dx

)n−1(
I[f ] − F (x)

ω(x)

) (5.14)

×

(
xα+1 d

dx

)n−1(
1

ω(x)

)

(
xα+1 d

dx

)n(
1

ω(x)

) , (5.15)

since I[f ] is a constant and since

(
xα+1 d

dx

)
is a linear operator. We investi-

gate both ratios separately. Firstly, from the asymptotic condition (5.11), the
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first ratio is asymptotic to a constant:

(
xα+1 d

dx

)n(
I[f ] − F (x)

ω(x)

)

(
xα+1 d

dx

)n−1(
I[f ] − F (x)

ω(x)

) ∼

(
xα+1 d

dx

)n ∞∑

i=0

βi

xα i

(
xα+1 d

dx

)n−1 ∞∑

i=0

βi

xα i

as x→ ∞,

(5.16)

=

∞∑

i=n

(−α)ni!βi

(i− n)!xα(i−n)

∞∑

i=n−1

(−α)n−1i!βi

(i− n+ 1)!xα(i−n+1)

, (5.17)

∼ (−α)nn!βn

(−α)n−1(n− 1)!βn−1
as x→ ∞,

(5.18)

= −αnβn

βn−1
. (5.19)

And from Lemma 5.2, the second ratio is asymptotic to:

(
xα+1 d

dx

)n−1(
1

ω(x)

)

(
xα+1 d

dx

)n(
1

ω(x)

) ∼ ωn

xα+r0
, as x→ ∞. (5.20)

Combining these ratios, it is trivial to obtain the asymptotic condition (5.13).

By induction on the order n of the transformation, it is equivalent to state:

I[f ]

ω(x)
− G

(1,α)
n (x)

ω(x)
= O

(
1

x(α+r0)n

)
as x → ∞. (5.21)
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or for the G̃
(1,α)
n (x) transformation defined by G̃

(1,α)
n (x) = G

(1,α)
n (x) − F (x):

G̃
(1,α)
n (x)

ω(x)
−
∫∞

x
f(t) dt

ω(x)
= O

(
1

x(α+r0)n

)
as x→ ∞. (5.22)

With these tools, we are able to describe the general form of the approxima-

tions G̃
(1)
n (x) to

∫∞

x
f(t) dt for integrals whose integrands are of the form (5.1).

Theorem 5.2: Let f(x) be integrable at infinity (i.e.

∣∣∣∣
∫ ∞

x

f(t) dt

∣∣∣∣ < ∞ for

some x ∈ R) and have the general form prescribed by (5.1). The approxi-

mations G̃
(1,α)
n (x) to

∫∞

x
f(t) dt take the form:

G̃(1,α)
n (x) = x f(x)

an(x)

bn(x)
, (5.23)

where an(x) ∈ R[x] with deg(an(x)) ≤ (n − 1) r0 and bn(x) ∈ R[x] with

deg(bn(x)) = n r0.

Proof. The function (5.1) satisfies:

f(x) = p1(x)f
′(x), (5.24)

where:

p1(x) =
x

µ+ x r′(x)
∼ x1−r0

∞∑

i=0

αi

xi
as x→ ∞. (5.25)

Therefore, f(x) ∈ B
(1) and the approximations G̃

(1,α)
n (x) can be constructed

as in section 3.B.
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Applying Lemma 5.1 to (3.17) or its generalization (5.12), we obtain:

G̃(1,α)
n (x) =

∑n
r=1

(
n
r

)
Dn−r(x)

(
xα+1 d

dx

)r−1
(xα+1 f(x))

Dn(x)

=

∑n
r=1

(
n
r

)
x−σ0+α(n−r)

f(x)
tn−r(x) x

α+1+α(r−1)f(x)sr−1(x)

x−σ0+α n

f(x)
tn(x)

= x f(x)

∑n
r=1

(
n
r

)
tn−r(x) sr−1(x)

tn(x)

= x f(x)
an(x)

bn(x)
, (5.26)

where the polynomials an(x) and bn(x) and the bounds on their degrees are

as prescribed above.

Before applying these tools to the five examples above, we take a moment

to discuss a special class of rational approximants, the Padé approximants [67].

Consider the (formal) power series F(x) =
∑∞

i=0 fix
i as x→ 0. Then the Padé

approximants [l/m]f (x) to F(x) are the rational approximants:

P [l/m](x)

Q[l/m](x)
=

p0 + p1x+ · · · + plx
l

q0 + q1x+ · · ·+ qmxm
with l,m ∈ N0, (5.27)

which satisfy the maximal accuracy-through-order condition:

F(x) − P [l/m](x)

Q[l/m](x)
= O(xl+m+1), as x→ 0. (5.28)

Of course, this formalism for the construction of Padé approximants also works

if we start from an inverse power series. The only difference is that we then

obtain Padé approximants in 1/x instead of x. This modified asymptotic
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condition is then:

F(1/x) − P [l/m](1/x)

Q[l/m](1/x)
= O

(
1

xl+m+1

)
as x→ ∞. (5.29)

5.A.1 The distributions

In applying Theorems 5.1 and 5.2, we first consider the standard normal dis-

tribution, where:

gN(x) = Axµer(x), (5.30)

where A−1 =
√

2 π, µ = 0 and r(x) = −x2/2. The approximations take the

form:

G̃(1)
n (x) = x gN(x)

an(x)

bn(x)
, (5.31)

where deg(an(x)) ≤ 2n − 2 and deg(bn(x)) = 2n, which is in agreement

with (4.28). The approximations G̃
(1)
n (x) = G̃

(1,1)
n (x) satisfy the asymptotic

error estimate:

G̃
(1)
n (x)

gN(x)/x
−
∫∞

x
gN(t) dt

gN(x)/x
= O

(
1

x3n

)
as x→ ∞. (5.32)

The case for the general normal distribution fN (x) may be developed similarly.

We next consider the gamma distribution, where:

fg(x) = Axµer(x), (5.33)

where A−1 = Γ(a) ba, µ = a− 1 and r(x) = −x/b. The approximations, then,

take the form:

G̃(1)
n (x) = x fg(x)

an(x)

bn(x)
, (5.34)
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where deg(an(x)) ≤ n−1 and deg(bn(x)) = n, which is in agreement with (4.34).

The approximations G̃
(1)
n (x) = G̃

(1,1)
n (x) satisfy the asymptotic error estimate:

G̃
(1)
n (x)

fg(x)
−
∫∞

x
fg(t) dt

fg(x)
= O

(
1

x2n

)
as x→ ∞. (5.35)

In fact, given the accuracy-through-order condition derived above, the bound

on the degree of an(x) can be made more precise. Indeed, deg(an(x)) = n− 1.

Furthermore, the rational approximants of (4.34) are Padé approximants in

inverse powers of x as x→ ∞.

We consider the student’s t-distribution. In this case, only the asymptotic

error estimate for the approximations G̃
(1)
n (x) = G̃

(1,1)
n (x) can be deduced, as

Theorem 5.2 does not apply. Since ω(x) = x ft(x), the approximations satify:

G̃
(1)
n (x)

x ft(x)
−
∫∞

x
ft(t) dt

x ft(x)
= O

(
1

xn

)
as x→ ∞. (5.36)

We consider the inverse Gaussian distribution. In this case, only the asymp-

totic error estimate for the approximations G̃
(1)
n (x) = G̃

(1,1)
n (x) can be deduced,

as Theorem 5.2 does not apply. Since ω(x) = fi(x), the approximations satify:

G̃
(1)
n (x)

fi(x)
−
∫∞

x
fi(t) dt

fi(x)
= O

(
1

x2n

)
as x→ ∞. (5.37)

Lastly, we consider Fisher’s F distribution. In this case, only the asymp-

totic error estimate for the approximations G̃
(1)
n (x) = G̃

(1,1)
n (x) can be deduced,

as Theorem 5.2 does not apply. Since ω(x) = x fF (x), the approximations sat-

ify:

G̃
(1)
n (x)

x fF (x)
−
∫∞

x
fF (t) dt

x fF (x)
= O

(
1

xn

)
as x→ ∞. (5.38)
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Remark:

1. Theorem 2 in [13] provides the first accuracy-through-order condition for

the G
(m)
n transformation in the literature. It states that, among other

conditions, if F (x) → I[f ] as x→ ∞ then:

I[f ] −G
(m)
n

I[f ] − F (x)
= O

(
1

xn

)
as x→ ∞. (5.39)

They prove this result explicitly for m = 1 using the determinantal

formula derived from the system of equations (3.9). By using the algo-

rithmic form for G
(1)
n and its generalization G

(1,α)
n , we are able to prove

in Theorem 5.1 a different result, one which depends more closely on the

integrand, specifically, deg(r(x)) = r0.

2. The asymptotic expansion suggested by equations (3.6) and (3.9), is the

asymptotic expansion in (5.11) with ω(x) = xσ0f(x) and α = 1. It is

known that for f(x) ∈ B
(1), satisfying a first order linear homogeneous

differential equation, this asymptotic expansion is certainly true and

valid. However, it may be that different values of α exist which may

lead to different approximations G
(1,α)
n . For example, it is known that

the asymptotic expansion of the tail integral of the standard normal

distribution is more concisely given in inverse powers of x2 as in:

∫ ∞

x

e−t2/2

√
2 π

dt ∼ e−x2/2

x
√

2 π

∞∑

i=0

(−2)i(1/2)i

x2 i
, as x→ ∞, (5.40)

than simply in inverse powers of x. In cases like these, where such an

α 6= 1 can be legitimately found, then the G
(1,α)
n transformation may be

applied to obtain a higher accuracy-through-order condition than that
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obtained through G
(1)
n . However, in approximating the value of a tail

integral as x → 0, or even for a medium-valued x, a higher accuracy-

through-order condition may not help, as there are other factors which

govern convergence.

3. Theorem 5.2 does not apply to the approximations of the student’s t,

Fisher’s F and the inverse Gaussian distributions. Other general forms

for integrands such as f(x) = xµ p(x)
q(x)

or even f(x) = xµ p(x)
q(x)

exp(xνr(x))

where µ ∈ R, ν ∈ Z, p(x) ∈ R[x], q(x) ∈ R[x] and r(x) ∈ R[x] may be

able to provide further insight in the forms of rational approximants de-

rived from the G transformation; however, the introduction of a rational

function dramatically increases the upper bounds to the degrees in the

polynomials in the analogous Lemma 5.1 (by the quotient rule for deriva-

tives) such that they are neither accurate nor helpful in characterizing

the overall solution.

5.B Correspondence with continued fractions

In this section, we search for a different method of computing the G̃
(1)
n (x)

transformation, as the ratio of polynomials is neither recursive nor stable as

n→ ∞. The method of Viskovatov [68] allows for the transformation of a ratio

of infinite series to a continued fraction. Before we present the method, and its

modifications to explicitly demonstrate the correspondence as x → ∞ in our

case, we begin with some preliminaries on continued fractions. A continued
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fraction [69] is an expression of the form:

b0 +
a1

b1 +
a2

b2 +
a3

b3 + ...

(5.41)

where the sequences {am}∞m=1 and {bm}∞m=1 are, in general, sequences of com-

plex numbers. Recently, more effective notation has been introduced to alle-

viate the descending staircase aspect of continued fractions. Equation (5.41)

may be represented by:

b0 +
a1

b1 +

a2

b2 +

a3

b3 + · · · or (5.42)

b0 +
∞

K
m=1

(
am

bm

)
. (5.43)

The symbol K in the (infinite) continued fraction (5.43) comes from the Ger-

man Kettenbruch, and is the analogue of the symbol Σ in (infinite) summa-

tions. In addition, the nth approximant is denoted by the complex number:

fn = b0 +
a1

b1 +
a2

b2 +
a3

b3 + ...
+
an

bn

(5.44)
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or:

fn = b0 +
a1

b1 +

a2

b2 +

a3

b3 + · · ·+
an

bn
or (5.45)

fn = b0 +
n

K
m=1

(
am

bm

)
. (5.46)

5.B.1 S-fractions and their convergence

A continued fraction of the form:

F (z) =
∞

K
m=1

(amz

1

)
, am > 0, (5.47)

is called a Stieltjes fraction or S-fraction.

A convergence result for S-fractions

Theorem 5.3 ( [69]): An S-fraction K(amz/1) corresponding at z = 0 to

L(z) =
∑∞

k=1 ckz
k is convergent in {z ∈ C : | arg z| < π} if one of the

following conditions holds:

1.

am ≤M, m = 1, 2, . . . , (5.48)

2.
∞∑

m=1

1√
am

= ∞, (5.49)

3. Carleman criterion:
∞∑

k=1

1

|ck|
1
2k

= ∞. (5.50)

If the S-fraction K(amz/1) is convergent, then it converges to a finite value.
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5.B.2 The modified method of Viskovatov

Let {c0,i} and {c1,i} be sequences in C and for x ∈ C/0, consider the quotient:

∑∞
i=0 c1,ix

−i

∑∞
i=0 c0,ix−i

. (5.51)

This may be rewritten as:

1

c0,0

c1,0
+

∑∞
i=0 c0,ix

−i

∑∞
i=0 c1,ix−i

− c0,0

c1,0

, (5.52)

=
1

c0,0

c1,0
+
c1,0

∑∞
i=0 c0,ix

−i − c0,0

∑∞
i=0 c1,ix

−i

c1,0

∑∞
i=0 c1,ix−i

, (5.53)

=

c1,0

c0,0

1 +

∑∞
i=0

(
c1,0c0,i − c0,0c1,i

c0,0

)
x−i

∑∞
i=0 c1,ix−i

, (5.54)

=

c1,0

c0,0

1 +
1
x

∑∞
i=0 c2,ix

−i

∑∞
i=0 c1,ix−i

, (5.55)

where:

c2,i :=
c1,0c0,i+1 − c0,0c1,i+1

c0,0
∀i ∈ N0. (5.56)

Notice, now, that in the bottom right corner of (5.55), there is another ratio of

asymptotic expansions and compared with (5.51), the first indices on the coef-

ficients ck,i is increased by 1. Applying this technique recursively, we are able

to transform a ratio of asymptotic expansions into a modified S-fraction [69].
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The modified method of Viskovatov

Let {c0,i} and {c1,i} be sequences in C and for x ∈ C/0, consider the quo-

tient (5.51). Define the sequences:

ck,i :=
ck−1,0ck−2,i+1 − ck−2,0ck−1,i+1

ck−2,0
, k ≥ 2, i = 0, 1, . . . . (5.57)

The quotient (5.51) may be written as the continued fraction:

x
∞

K
m=1

(
(cm,0/cm−1,0)/x

1

)
. (5.58)

Naturally, if for some integers M and N the terms in the sequences c0,i = 0,

i > M and c1,i = 0, i > N , then the continued fraction (5.58) should be

truncated after the P th approximant, P = max{M,N}.

5.B.3 Correspondence with continued fractions

With the necessary preliminaries given on continued fractions, we establish the

correspondence of continued fractions of the form (5.58) with the Padé-type

approximants developed for the G̃
(1)
n transformation.

Theorem 5.4: Let f(x) be a function of the form prescribed in Theorem 5.2.

Let M = n r0 and let N = (n − 1)r0 such that P = max{M,N} = M .

Furthermore, let the approximants (5.23) be written as:

G̃
(1)
n (x)

x f(x)
=
an(x)

bn(x)
, (5.59)

= x−r0

∑N
i=0 a

(n)
N−ix

−i

∑M
i=0 b

(n)
M−ix

−i
, (5.60)
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where the superscript (n) on the coefficients respects the order n of the G̃
(1)
n

transformation. Define the sequences:

c
(n)
0,i := b

(n)
M−i, i = 0, 1, . . . ,M, (5.61)

c
(n)
1,i := a

(n)
N−i, i = 0, 1, . . . , N, c

(n)
1,i := 0, i = N + 1, . . . ,M, (5.62)

c
(n)
k,i :=

c
(n)
k−1,0c

(n)
k−2,i+1 − c

(n)
k−2,0c

(n)
k−1,i+1

c
(n)
k−2,0

, k ≥ 2, i = 0, 1, . . . ,M − k.

(5.63)

Then the approximants (5.23) may be written as:

G̃
(1)
n (x)

x f(x)
= x1−r0

M

K
m=1

(
(c

(n)
m,0/c

(n)
m−1,0)/x

1

)
. (5.64)

Proof. With the approximants written explicitly as in (5.60), and the se-

quences defined as in (5.61)–(5.63), the modified method of Viskovatov may

be applied to transform the quotient of (5.60) into a continued fraction.

Theorem 5.5: Let f(x) be a function of the form prescribed in Theorem 5.2.

Let the approximants:

G̃
(1)
n (x)

x f(x)
(5.65)

be written as the continued fraction (5.64). The sequence of continued frac-

tions (5.64) corresponds to the formal power series of:

∫∞

x
f(t) dt

x f(x)
=

∞∑

i=0

β0,i

xi
, at x = ∞. (5.66)

Proof. By equality in (5.64), the asymptotic condition (5.22) holds for the

continued fraction ∀n ∈ N.
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5.C Extrapolation to the limit

With the G̃
(1)
n transformation defined by the ratio in (5.23), and with knowl-

edge of the large asymptotic growth of specific examples of the coefficients of

those polynomials1 it becomes difficult to answer the question:

What is lim
n→∞

G̃(1)
n (x) ? (5.67)

With the material developed in the preceding section on the correspondence

with continued fractions, we are now capable of addressing the question with a

more convenient approach. In this section, we intend to develop the continued

fractions for the approximations G̃
(1)
n (x) for the tail integrals of the normal

distribution and the gamma distribution. As continued fractions, we examine

their convergence.

1This comes from equations (4.28) and (4.34) and from the asymptotics of the Ai
k derived

in subsection 2.B.2.
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5.C.1 The normal distribution

From (4.28), we use simple algebraic manipulations to render the approxima-

tions to the form:

G̃
(1)
n (z)

z gN(z)
=

1

z2




n−1∑

i=0

{
n∑

r=1

(
n

r

)(n−1−i∑

l=0

(−1)lAn−1−i−l
n−r Bl

r−1

)}
z−2i

n∑

i=0

An−i
n z−2i



, (5.68)

=
1

x

n−1∑

i=0

c
(n)
1,i x

−i

n∑

i=0

c
(n)
0,i x

−i

, (5.69)

where:

x := z2, c
(n)
0,i := An−i

n , (5.70)

c
(n)
1,i :=

n∑

r=1

(
n

r

)(n−1−i∑

l=0

(−1)lAn−1−i−l
n−r Bl

r−1

)
. (5.71)

Then, from the sequences (5.61)–(5.63), we obtain the continued fraction:

G̃
(1)
n (z)

z gN(z)
=

n

K
m=1

(
(c

(n)
m,0/c

(n)
m−1,0)/z

2

1

)
, (5.72)

and in the limiting case, the sequence {c(n)
m,0}∞m=0 as n → ∞ is of interest.

Numerical computations with symbolic software help reveal that c
(n)
0,0 = 1,

c
(n)
1,0 = 1, c

(n)
2,0 = 1, c

(n)
3,0 = 2, c

(n)
4,0 = 6, . . . , ∀n ∈ N. At this point in time, we
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conjecture that cm,0 = (m− 1)! for m > 0, and so:

lim
n→∞

G̃(1)
n (z) = z gN(z)

(
1

z2 +

∞

K
m=1

(
m/z2

1

))
, (5.73)

a convergent S-fraction result that is, after an equivalence transformation,

given in [69].

5.C.2 The gamma distribution

From (4.34), we use simple algebraic manipulations to render the approxima-

tions to the form:

G̃
(1)
n (x)

x fg(x)
=
b

x




n−1∑

i=0

{
n∑

r=1

(
n

r

)(n−1−i∑

l=0

(−1)lAn−1−i−l
n−r Bl

r−1

)}(x
b

)−i

n∑

i=0

An−i
n

(x
b

)−i



, (5.74)

=
1

ξ

n−1∑

i=0

c
(n)
1,i ξ

−i

n∑

i=0

c
(n)
0,i ξ

−i

, (5.75)

where:

ξ :=
x

b
, c

(n)
0,i := An−i

n , (5.76)

c
(n)
1,i :=

n∑

r=1

(
n

r

)(n−1−i∑

l=0

(−1)lAn−1−i−l
n−r Bl

r−1

)
. (5.77)

Then, from the sequences (5.61)–(5.63), we obtain the continued fraction:

G̃
(1)
n (x)

x fg(x)
=

n

K
m=1

(
(c

(n)
m,0/c

(n)
m−1,0) b/x

1

)
, (5.78)
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and in the limiting case, the sequence {c(n)
m,0}∞m=0 as n → ∞ is of interest.

Numerical computations with symbolic software help reveal that c
(n)
0,0 = 1,

c
(n)
1,0 = 1, c

(n)
2,0 = 1 − a, c

(n)
3,0 = 1 − a, c

(n)
4,0 = (2 − a)(1 − a), . . . , ∀n ∈ N. At this

point in time, we conjecture that:

lim
n→∞

G̃(1)
n (x) = x fg(x)

∞

K
m=1

(
am(a) b/x

1

)
, (5.79)

where:

a1(a) = 1, a2j(a) = j − a, a2j+1(a) = j, j ≥ 1. (5.80)

This convergent S-fraction result is given in [69].
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Chapter 6

Conclusion

This thesis is concerned with the development of new formulae for higher order

derivatives, and the algorithmic, numerical, and analytical development of the

G
(1)
n transformation, a method for computing infinite-range integrals. We in-

troduce the Slevinsky-Safouhi formulae I and II with applications, we develop

an algorithm for the G
(1)
n transformation, we derive explicit approximations

to incomplete Bessel functions and tail probabilities of five probability distri-

butions from the recursive algorithm for the G
(1)
n (x) transformation, and we

present all extant work on the analysis of the convergence properties of the

G
(1)
n transformation.
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