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1 Governing Equations

The governing equations are written for conservation of mass, momentum, and energy of two-
dimensional Newtonian fluid flow. It has been assumed that the flow is steady, laminar, and
incompressible with negligible viscous dissipation and pressure work source terms in the energy
equation. Radiation heat transfer is also neglected. The Boussinesq approximation has been
applied to model the buoyancy force terms in the momentum equations. The equations for
conservation of mass, momentum, and energy are written as:
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The transient terms have been retained in Eqgs. (2) to (4) to allow relaxation in the iteration
toward the steady-state solution.

2 Discretisation of the Governing Equations

A finite volume method [1] is used to discretise the governing differential equations. Equa-
tions (1) to (4) are integrated over a typical control volume centred at P as shown in Figure 1.
For each face of the typical control volume, the mass flow rate is determined using the face
velocities, which are determined at the integration point (ip) at the centre of the face (denoted
by e, w, n, and s in Figure 1). Other fluxes are determined using the face value and gradient
of the dependent variables evaluated at the integration points. All fluxes computed at an ip
are are assumed constant along the face. All unknowns are located at cell centres and the
values at ne, nw, se, and sw corners in Figure 1 are estimated by linear interpolation.
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Figure 1: Control volume nomenclature
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The level 1 discretisation of Equations (1) to (4) yields the following algebraic equations
for conservation of mass, momentum, and energy, respectively.
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In the development of the coupled algebraic equations, unsuperscripted dependent variables
indicate values at the new time step level. Note that velocity-to-temperature coupling is
introduced by the use of Tp in Egs. (6) and (7).

In level 2 of the discretisation, the mass flow rates, the face values in the advection terms,
and the derivatives must be approximated appropriately. The mass flow rate at a face is
calculated as:

g = pAy (Vf ' ﬁf) = pAy (ﬁf Nte+ Vy nf,y> (9)

where the face velocity components are U and V and n¢e Mgy are the components of the
normal unit vector on the face. The normal unit vectors at faces are shown in Figure 1.

A momentum interpolation scheme referred to here as the Pressure-Weighted Interpolation
Method (PWIM) is used to estimate the face velocities in Eq. (9). The PWIM used in this
work is based on the work of Rhie and Chow [2] and is similar to the approach described by
Yu et al. [3]. It is formulated so that the converged solution is independent of the time step
size. The PWIM estimations of the face velocity components are:
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In Egs. (10) to (14), F = {E,W N,S} corresponding to f = {e,w,n,s}, and Wy is a geometric
linear interpolation factor at the face separating two adjacent nodes at P and F. The factor Wy
is computed using the distances from the integration point to the centres of the two adjacent
nodal points; it is equal to 0.5 for a uniformly spaced mesh. The grid weights are given in
Section 4.

In order to compute ¥ in Eq. (14), each control volume is divided into quadrants by lines
connecting the integration points e to w and n to s as shown in Figure 1. The volume at an
integration point, ¥¢, is the summation of the volumes of the quadrants in control volumes for
nodes P and F which are adjacent to the face f.

Egs. (10) and (11) have been written to contrast the active nodal velocity and face pressure
gradient terms that lead to the coupled algebraic equations versus the lagged terms which are
given in Egs. (12) and (13). The pressure gradients at faces in Egs. (10) and (11) are evaluated
using the appropriate combination of co-ordinate derivatives (%,%,%7%) and derivatives
of pressure in the § and ¢ directions (shown in Figure 1). The derivatives in the § and #
directions create connections to the six nodal pressures surrounding each face f. Therefore,
the discretisation of Eq. (5) produces implicit connections to five U nodes, five V' nodes, and
nine P nodes. The pressure gradients at control volume centres in Egs. (6), (7), (12), and
(13), on the other hand, are determined from face pressures which are computed by geometric
interpolation using surrounding nodal values.

The advection terms in Eqgs. (6) and (7) are made linear using mass flow rates from the
previous time step:

imUs = mSU; (15)
Vi = m4V; (16)

The advection terms in Eq. (8), however, are approximated by a Newton-Raphson linearisation
as in [4]:
Ty = miTy +mgT7 —m§Ty (17)

The new iteration level mass flow rates in the second term on the right hand side of Eq. (17) are
treated in the same way as the mass flow rates in continuity: they are evaluated using Egs. (9)
to (14). This linearisation and the use of the PWIM-based mass flow rates introduces implicit
connections to nodal velocities and pressures into the algebraic equation for the temperature.
This procedure produces implicit temperature-to-velocity coupling.

Finally, the face values of the dependent variable (¢;) and its derivative in the diffusion

terms ( g—i

f) are approximated in terms of nodal values. The advected scalars at the faces
are estimated using an approximation to the exponential differencing scheme as proposed by
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Raithby [5]. Gradients at faces are calculated by linear interpolation and have a diffusion
weighting coefficient applied to them as in [5]. The details are given below.

P = (0.5 + ) dp + (0.5 — ) o (18)
bw = (0.5 + a,) pw + (0.5 — ) Pp (19)
¢n = (0.5 + ) dp + (0.5 — o) dx (20)

¢s = (0.5 + o) s + (0.5 — o) Pp (21)

The convective weight coefficients at each face, ay, are computed as a function of the local
Peclet number using the approximation to the exponential differencing scheme proposed by

Raithby [5].
1 Pe?
a2§<6?ﬁ§) (22)

To get the correct sign on « (it should carry the sign of the mass flow), use:
a=a— (23)

Gradients at faces are calculated by linear interpolation. For example, at the east face:

ool (¢r— ¢p)
% . - ﬁe (55)6 (24)

More details of gradient calculations are given in Section 6.

The diffusion weighting factor, 3¢, applied as in [5]:

(14 0.005 Pe?)
(1 +0.05Pe?)

B = (25)

Following the discretisation procedure described above, the final form of the linearised set
of coupled algebraic equations for conservation of momentum, mass, and energy can be written
as:

ap"Up + ) axpsUns + ap”Pe + D axhuPasa + ap'Tp = b (26)

ap’Vo + ) axipsVass + ap’ P + > alh,Puss + ap'Ty = bp (27)

(l%ppp + Zazﬁ%gPNBs + CLZP),’UUP + Za%;lUNm + G%UVP + Za%;LVNEA = b{; (28)
ag'Tp + Zaf\}ﬁgsTNBs + ag'Up + Zaf\}%4UNB4 + ap'Vp + Za§%4VNB4+

ap"Po + ) apsPuss = bp  (29)

The first and second superscripts of the a coefficients refer to the equation label and the

multiplied variable, respectively. In summations, NB4={E, W ,N,S} and NB8={NB4,NE, NW,
SE,SW}. The details of the summations are:

Z (l;f(éz;q)NBzi = aE’d)CDE + a%{?@w + a§¢®N + a§’¢c1)s (30)
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and
Z aifﬁs@NBs = Z a§%4q)NB4 + a;f:(I)NE + aiﬁv@Nw + ag’g@SE + ag’\?{;@sw (31)

Details of the computation of the coefficients in Eqgs. (26) to (29) may be found in Section 7.

The nomenclature of the grid generation is given next in Section 3. That nomenclature is
needed in the description of geometric interpolations and gradient calculations that follow in
Sections 5 and 6.

3 Grid Nomenclature

The typical control volume and its eight neighbours on a structured grid are shown logically
in Figure 2. The ¢ and 7 indices reference each control volume in an organized fashion. The ¢

YA(jindex)
NW N NE
[ o [
i-1,j+1 i,j+1 i+1,j+1
W " E
° W P_o_ e °
i-1,] i, ] i +1,]
S
SW S SE
(-] o (-]
i-1,j-1 i,j-1 i+1,j-1
"X
(iindex)

Figure 2: Indexing notation for neighbouring control volumes

index proceeds from I B (i = 2) for the first control volume on the west side of the domain to
IE (i = NX + 1) for the last control volume on the east, where N X is the number of control
volumes along the i index. The west to east direction of increasing ¢ index is referred to as
the § direction. The j index goes from the first control volume on the south, JB (j = 2), to
the last control volume on the north, JE (j = NY + 1), where NY is the number of control
volumes along the j index. The south to north direction of increasing j index is referred to as
the ¢ direction. Each control volume also has a north, south, west and east face as indicated
by the lower case letters in the centre control volume labeled “P”. Zero-width control volumes
on the boundaries of the domain to implement the boundary conditions. These nodes are
referenced by IB — 1 on the west, IF + 1 on the east, JB — 1 on the south, and JE 4+ 1 on
the north.
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Figure 3: Quadrant notation for a control volume

The quadrant notation used in a each control volume is shown in Figure 3.

The locations of point where x and y coordinate values are stored are labeled in Figure 4.
The centre node, “P”, is referenced as “southwest” and the top right corner as “northeast”.
The south points are referenced as the north points of the control volume to the south, for
example (XNW; ;_1), YNW(; ;_1)). The west points are referenced as the east points of the
control volume to the west. The southwest corner is referenced as (XNE¢;_1 j_1), YNE;_1;_1)).

nw_n
(XNW,YNW)

ne
(XNE,YNE)

@ location of
stored value

o derived value

F;(i’j) = location

(XSW,YsSw)  [(XSE,YSE)

se

Figure 4: Locations of control volume points

The nomenclature for control volume distances, areas, and volumes is shown in Figure 5.
A Cartesian grid is shown for simplicity. The distances are the length between points in the
quadrilateral control volume. The quadrants are split into two triangles each. The volume of
each triangle is calculated and then the two are added together to get the correct volume for
each quadrant. A unit depth is used to compute areas and volumes.

The non-orthogonal grid needs some direction unit vectors and distances defined because
the grid will not necessarily be aligned with the Cartesian coordinate directions. As shown in
Figure 6, there are separate direction vectors for each face and the central node of the main
control volume. The § vectors point from west to east and the ¢ vectors point from south to
north. The vectors on the east face of the present node have subscript “e”, and on the north
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Figure 5: Nomenclature for lengths, areas, and volumes of a control volume

Xy

Figure 6: Grid direction vectors

face they have subscript“n”. At an east face, the ¢ vector is along the face. Likewise, on a
north face, the s vector is along the face. The vectors on the west and south of the typical
node are referenced by ¢ — 1 and j — 1 respectively.

Because of the non-orthogonal grid, variables are defined that describe the distance between
locations. Figure 7 shows the location of these distance variables for the non-orthogonal grid.
The distance between a node and its neighbor to the east, along the s, vector, is defined as:

(ds)eq, ;) = \/ (XSWiit15) — XSWii )" + (YSWipr, 5 — YSWi ) (32)

€Gi.g)
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Xy

Figure 7: Locations of distance variables

The distance between a node and its neighbor to the north, along the ¢, vector, is defined as:

2 2
(d)n,, = \/ (XSW i) = XSWij))™ + (YSWei 1) — YSWii) (33)
The distances (ds),, and (dt). are defined as:
(d$)n, ,, = DINW(; ;) + DINE, (34)
and
(dt)e,,,, = DISE) + DINE) (35)

respectively, and are always equal to the sum of grid quadrant distance variables even if the
grid is skewed.

The distances (ds) and (dt) are also evaluated for the nodal location ((ds), and (dt),), the
west face ((dt),,), and the south face ((ds)s) analogously to Equations (34) and (35). Likewise,
(ds), and (dt)s are defined in a similar fashion to Equations (32)and (33) respectively, although
they are not shown in Figure 7.

The north normal unit vector, n,, is defined outward normal to the north face of a control
volume as follows:

. — (YNE; ;) — YNE; 1 )

Mn(ig) = 5 5
\/ (XNE(i,j) — XNE(_1,5))” + (YNEq ) — YNEG-1,)
(XNE¢,j) — XNE(1,))

?

+

J (36)

\/ (XNE(; ;) — XNE(1)" + (YNEG ;) — YNE; 1)’
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or in terms of arc lengths

R - (YNE(M-) — YNE(FL]-)) . (XNE(M) - XNE(Z-,M))
Nn(i,g) = t
(ds)n (ds)n

0 (37)

where the gradients are defined and evaluated at the north face and converted to normal
unit vector notation

R ox

(i) = 5

. Oy
L+ ==
I on
The east normal unit vector,n,, is defined outward normal to the east face of a control

)= Ngn T+ Nyn J (38)

volume as follows:

A

(YNE() — YNEG; 1)) .

Me(ij) = 5 5
\/ (XNE(i,j) = XNE(i,j-1))" + (YNE(,j) — YNE(;-1)

— (XNE(; ;) — XNE; 1)

+ = - 7 (39)
\/ (XNE(i,j) — XNE(i,j-1))” + (YNE(j) — YNE(;-1)
or in terms of arc lengths
(YNEG ) — YNEg 1) - — (XNEG;) — XNEg; 1))
Ne(ig) = : : 0 : : 0 40
Te(i,j) (dt)e L+ (dt)e ¢ ( )

where the gradients are defined and evaluated at the east face and converted to normal unit
vector notation

ox

Re(ig) = 5

. Oy
T

The west to east geometric grid unit vector for the north face of a control volume, §,, is

J=Nge L+ Nye ] (41)

e

defined along the line between the northwest and northeast corners of a control volume as
follows:

_ (XNE ;) — XNE(_1 ) R
Sn(i,j) = ¢

\/ (XNE(j — XNEg1,))" + (YNE(5) — YNEG1 )"
(YNE(,j — YNE( 1))

+ = - 7 (42)
\/ (XNE(ij) — XNE(-1,5))” + (YNEq ) — YNE-1,5)
or in terms of arc lengths
(XNE(j) = XNE¢ 1) . (YNEg ) — YNEG 1)
Sn(i,j) = : : : =1 43
Sn(i,j) (ds)y v+ (ds)n, (43)

where the gradients are defined and evaluated at the north face and converted to a west to
east geometric grid unit vector notation
Ox

Sn(ig) = 52

. Oy
L+ =
I 0s

J=Sanl+Syn ] (44)

m
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The west to east geometric grid unit vector for the east face of a control volume, 5., is
defined along the line between the present node and east node as follows:

(XSW(i41,5) — XSWi ) - (YSWii1y) — YSWii ) ;

Sefini) = (ds) (ds) (45)

€(4,4) €(4,5)

where the gradients are defined and evaluated at the east face and converted to a west to
east geometric grid unit vector notation

ox

Se(i,j) = 95

A A~

0
Z—I——y

0s

j = Sze 1+ Syej (46)

The west to east geometric grid unit vector for the centre of a control volume, §,, is defined
along a line between the centre of the west face and centre of the east face as follows:

b = (XSE(,j) — XSE(i-1,)) .
(L)

\/ (XSE() — XSEq-1)” + (YSEG) — YSEG 1)’
(YSEq) — YSE(i-1,))

\/ (XSE() — XSEq1)” + (YSE() — YSEG 1)

+

7 (47)

2

or in terms of arc lengths

. (XSE(iy) — XSE(-1) N (YSE(iy) — YSEG-14)

e (ds), (ds), )

where the gradients are defined and evaluated at the centre of a control volume and converted
to a west to east geometric grid unit vector notation
ozx| . 0Oy

Osp,  Osl

~

Sp(i,j) = j = Sap ) + Sypj (49)

The south to north geometric grid unit vector for the north face of a control volume, t,, is
defined along the line between the present node and north node as follows:

A (XSWeig4n) = XSWig) N (YSWeij00) — YSWii ) ;

tn(ig) = (dt) (dt) (50)

n(i,5) n(i,5)

where the gradients are defined and evaluated at the north face and converted to a south
to north geometric grid unit vector notation

; ox A_i_@y
n(i,j) — a5 az
@)= o, ot

J=tent+ty, ) (51)

The south to north geometric grid unit vector for the east face of a control volume, f.,
is defined along the line between the southeast and northeast corners of a control volume as
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follows:

A (XNE(, ;) — XNE ;1)) :

be(ig) = 5 5
\/ (XNE(i,j) — XNE(,j-1))" + (YNE(j — YNE(j-1))
(YNE(, ) — YNE,;-1))

+ - - j (52)
\/ (XNE(i,j) — XNE(,j-1))" + (YNE(j — YNE(;;-1))
or in terms of arc lengths
P (XNE(,j) — XNEg,;-1)) - (YNE(j — YNEg,-n) (53)
() (dt). (dt).

where the gradients are defined and evaluated at the east face and converted to a south to
north geometric grid unit vector notation

R ox

. Oy
beii) = ¢

v+ =

ot j:txefz+tyej (54)

e

The south to north geometric grid unit vector for the centre of a control volume, fp, is
defined along a line between the centre of the south face and the centre of the north face as
follows:

o (XNWi j) = XNW1)) A
bp(ig) = !

\/ (XNW i) = XNW (i) + (YNWig) = YNW)°
(YNWij) = YNW,1))

+ J (55)

\/ (XNW i) = XNW(i1)” + (YNW i) = YNW))°

or in terms of arc lengths

o (XNWiy = XNWeijn) o (YNWiy) = YNW6,)
tp(i j) = 1+ 7 (56)
’ (dt), (dt),

where the gradients are defined and evaluated at the centre of a control volume and converted
to a south to north geometric grid unit vector notation

R ox

. Oy
boig) = 57 e

1+
Ip ot

J=topt+ty,] (57)
b

4 Grid Weights

The grid weights used in Equations (10) to (14) are computed using the grid distances shown
in Figure 5. The four face grid weights are computed as follows:

W _ DISW ;415
(i) DISE; ;) + DISW ;41 )

(58)
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W _ DJSW (541, (59)
"D DINW ) + DISW 4 )

Wu;(i’j) == We(ifl,j) (6())

Wiy = Waaso (61)

’Note: Are there signs changes on the west and south grid weights?‘

5 Corner Interpolations

In order to use nine-point solution method, the values at corners are incorporated to estimate
derivatives on the faces. The corner vertices are indicated as ne, nw, se, and sw in Figure 1.
Geometric interpolations are used to approximate scalar values at corners in a non-uniform

grid.
One = Cne1®p + Crea®r + Crea®ng + Crea®Pn (62)
Pnw = CrunPp + Cruwn2®x + CruzPrxw + CruaPw (63)
Pse = Cse1Pp + CseaPs + CseaPs + CseaPr (64)
Psw = Cau1Pp + CouwzPw + CouzPsw + CsuwaPs (65)

where the numbering order of C' coefficients starts from 1 for node P and goes counter-clockwise
around the control volume.

6 Gradient Calculations

On a non-orthogonal grid, the face derivatives in Cartesian x and y directions must be defined
in terms of the gradients along the unit vector directions, § and ¢ as shown in Figure 6. Using
the chain rule and Cramer’s rule, the derivatives in Cartesian x and y directions on face f are

equal to:
0P 0P 0P
o f—yt,f g'f—ys,f W‘f (66)
0P 0P 0P
a_yf— s,f E)f_ t’fgf (67>
where
Oz
Os|;
Xy g = (68)
(8_:6 oy| _ x| oy )
Os|,0t|, Ot];0s|;

Pressure-Based Co-located FVM with T-V Coupling Page 13 of 19



Technical Report CTFSRG-TR-01-2011

July 2011 (Rev. A: 2012-09-02)

8_:(:

ot

Xt,f: f
(8_1: oy| _ o @)
8sf8tf atfasf

oy

0s

ys,f: !
(@ oy| _ dx| oy )
8sf8tf thﬁsf

%y

ot

Vig = !
(a_w oy| _ o @)
8sf8tf 8tf83f

(71)

and As shown in Figure 6, there are separate direction vectors § and ¢ for each face (i.e. e,

w, n, and s) and central node for the main control volume. Thus, the derivatives in Cartesian

directions (Equations (66) and (67)) should be approximated for each face using nodal and

corner values.

B, i O =0~
3], T (B a0+
g—i ) = (?;;;)w (Pw — Pp) —
B, = o =
| = T )+
o] - 5 o
), o e~ 090+
g—j ) = «f—;)ss (s — Pp) —

ys e
(5t) ((bne ¢se)

(5t) <¢ne ¢se)

yS’lU
S (G = O

T (e = 6)
T (0= 0)
~ 5 (e = )
T (G )
(fft; (Gse — Bow)

Note: Need to add equations for normal-direction derivatives.‘

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)
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7 Coefficients of the Coupled Algebraic Equations

7.1 Continuity

Substituting Equations (62) to (65) into Equations (72) to (79) for the pressure variable (¢ =
P), the pressure gradients on the faces in Equations (10) and (11) are approximated in terms

of nodal values. Now, the coefficients of continuity equation (Equation (28)) are:
ap’ =ap’ = Z (pPAWs) = pAW. + pAuWay + pA W, + pAWs

ag" = ag’ = pAg (1= Wy)

o = A {55 G (O = O] 4 e 554 5 (€ = Co)
+pA,dl { y 2 (Cer — cnwl)] — pAd: [ (y ot (y ‘*; (Cur — Cour)
[ ] [+

R e A R
i =on( 8;;’56 ) e (B~ i) O
o (g 4 ) oo (B i) €=
ot = oo (s i) ok (B~ ) G
s (555 = ) Gt ot (B = 55 ) (o = o

7 ys n 7 Xs n 7 ys e 7 Xs e
op u ) v ) u € v )
o =~ (d" G0, "), ) o (de o0, <6t>e) Cret

o (B~ e ) G = (55~ 55 ) €= Con

-, (82 - Xss) o ( Do g i),

o (A5~ i) Com = o (2755 - ?> ) €a=Cu
o = (A — oA G — p: gt; ool ) s
PSS S T

(82)

(83)

(84)

(85)
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ys e Xs e yt s Xt s
¢p A Tu A ) A Tu A ) i
o5t == (i e — padifi AL — oA ) O ()
ys w v Xs w

yts e th
A — pAs A.d¥—
= Ayt = pA S Sd8<5s>s)csw3 (%0)

b= oAy (0 + 1) (97)

it = (pnds 35

7.2 X-Momentum

Using geometric directions for each face of the typical control volume, the diffusion terms in
X-momentum equation are approximated in terms of nodal values. In Equation (26), the U
velocity coefficients of main node (ap™) and its eight neighbour nodes (aypg) are as follows:

V
st = (p—P) — (0.5 — ) 1ite + (0.5 + ) 1y — (0.5 — ) it + (0.5 + ag) 1ing

At
Dif. | Difu  Dibu DI .
1 Débe | Dby Dubuy Dibs 4 pug o (Crer — Cuar)

'ﬁ'e : ge 'ﬁ'w : =§w ﬁn : =§n ns Ss

_quf;ﬁw’yx,w (anl - Cswl) + D /Bn’Yy n ( nel — anl) - Dgﬁs’yy,s (Csel - Cswl) (92)

(05— )i, — f “i@e D ButynCrez — D ByrysCies
D Bme (Coez — Cus)  (93)
0 = = 05+ )ty = 222 — D26y ot + Dty Con
— Dy BV (Crwa — Csw2) (94)
= <0-5 - an) My, — ﬁDf—iz + Dgﬁe%c,ecn% - Diﬁw%,anwz
+D, BnYyn (Crea — Cru2) — (95)
D8,

ag™ = — (0.5 4 ag) s —

~ Dzﬂe/ya;,eoseﬁ + Dﬁ;ﬂw’yz,woswll

s - Ss
— D¢ Bsyy,s (Csez — Caua) (96)
axg = (D!BeVae + Db BuVyn) Cnes (97)
axw = — (D3 BuYew + DiBnYyn) Crus (98)
agy = — (D Beae + DyiBnvy,s) Ces (99)
agy = (DyyBuYew + DY Bsvy.s) Cows (100)

where

O I o o
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(0s); iy - 3y (00)f i5 - 3
’Ya:,f - 5t A~ A ’yy7f - 5 ~ 7 (102>
(0t); 7oy - 3y (0s) ;g -ty

The pressure terms in the momentum equations are implicitly discretised and simulta-

neously solved in a fully coupled manner. For this reason, the approximations of Cartesian
derivatives on main control volume faces (i.e. Equations (66) and (67)), are written for the
centre node P. Using geometric interpolation for the face pressures, the pressure coefficients
of main node (ap”) and its four neighbours (ayg,) in Equation (26) are derived as follows:

gl — VP(J’(;T’Z (W, — W) — Vp?};T’)]; W, — W) (103)
A = ¥ (35’; (1- W) (104)

gl — —VP(J;T’Z) (1— W) (105)

a%? = —¥p g;t;; (1-W,) (106)

ab? = ¥ fgtf (1-w,) (107)

If the buoyancy term is implicitly discretised, the temperature coefficient in Equation (26)
is:
w,t
ap’ = —¥p g, B p (108)
It is obvious that ag’t = 0, if no buoyancy forces are considered in the flow or they are treated
explicitly.
Considering an implicit role for the buoyancy term, the right hand side of Equation (26)
is:

V.
bié - (p_P) Ulg - VP gz 6 pTref (109>

7.3 Y-Momentum

Each term in the y-momentum equation is derived in the same manner as was used for the
z-momentum equation. The corresponding coefficients for Equation (27) are expressed as:

v u,u vvo U
ap = ap App = App (110)

The diffusion coefficient for v as the same as those for wu:

1A, (A, pA, pAs
v — DU == DU - DU - ]‘1]‘
° (0s), Y (89), " (ds), o (0s) (111)
X, p X p
vp _ ; _ _ Rt — 112
ap Vp (&)p W, — W) — ¥p (53)p (We — Wy,) (112)
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X, p
vp , .
E ¥p (5S)p (1-=W,) (113)
X,p
R Ly 114
CLW VP (5S)p ( Ww) ( )
XSP
v,p , -
al = Vp—(dt)p (1-W,) (115)
XSP
o= () 11
S Vp <5t)p ( WS) ( 6)
ap’ = —¥p g, B p (117)
V
bg = (pAtP) VP VP gyﬁpTref (118)

7.4 Energy

The derivation of a;’t and af{i is analogous to that for the U velocity coefficient in X-momentum
equation using C% instead of ;1 in Dy coefficients.

The Newton-Raphson linearisation of the advection terms couples the energy equation with
the velocity and pressure fields. The derivation of velocity and pressure terms in the energy
equation is similar to the derivation of continuity equation coefficients.

ap' = ap’ =Y (pPAWTY) = pAWT? + pAWLTY + pA LTS + pAWT?  (119)
ag’ = ag’ = pA; (1 - W,T?) (120)

7 e s,e X ,€ Xse
a%p = pAe {_dg [ yt, - y : (Cnel - Csel):| + dv |: : 7

3

(Onel - Csel )

(6s), (1), (6s), (o), ‘
u yt,w ys,w o v Xt W Xs,w - |
o {554 5 o = o] =i [5G ot = o)

3

u ys,n yt,n . v Xs n Xt,n -
o {055 5 (o = o] = 5 = 55 (G = o

u ys,s yt,s :| v |i Xs ,8 Xt s
+ As _ds + Cse - Csw + s +
o=t [ G+ 55 (O = Con] 4 [+ 5

7 yte Xte 7 ytn X t,n
tp _ A u ) Jv T° — pA u ) v T°
o = o (digs — i) 2 o (i~ A5 ) o

(Cse1 — Csu1) | p T2 (121)

vl

—— —— —— — —
3

yts th yse Xse
—pAs | d dv T? — pA. | d d?— — T°
o (A 0 ) iz = e (B 4 5 ) (G G
(122)
ytw 7 th ytn 7 th
tp A u v ) T® A U v ) T®
o = pate (i + B ) To o (i — st ) CoT
m yts v Xt,s o w ysw . v Xs,w _ o
o (55~ sy ) Gt e (55~ B ) (o = G T2
(123)
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N A Xsn 7 s,e 7 XS@
ak? = pA, (—dz (35};’)” +dpy )T£+pAe (dZ Yoe o ) CreaT?

(01),, (0t),  “(ot),
7 ysw 7 Xsw 7 ytn th
A U > _qu > o To _ An U ) . v o _an T°
o (A5 = ) Qoo (5355~ 55 ) €= Cral

(124)

~ ~ X s 5o X s
—pAw ( y&w — dv S ) Osw4qu pA (du y; — d'zi) (0532 - Csw4) Tso (125)

tp _ Ju ys,e v XS@ o U ytn e Xt,n 0

aNp = {pA ( “(o1), d? “T5t), TO — pA, | d "(0s). +d; 5s). T2 | Ches (126)
tp u ysw v Xs,w ) u ytn v th > 0:|
agw = {pA (d " 5t)., d,, o) T + pA, ( d* "(0s). v "5s). T2 Crws (127)
yse v Xs, o uyts U'th o
G~ i ) o (Ui ) T

uysw ) Xs,w o uyts Uth 0
w(Gr), M <5t>w) T =pds (d Gs), T %), )T } Crwa (129)

w

du

Q
wm o+
[e3lhS
Il
|
1
S
=
/\\ /\

V
b = <pA:>T0—|—ZpAf (B + by + g ) T (130)
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