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1.  Definition and Introduction

It is worth starting with a definition of linearity (and thus non-linearity) to attempt to

reduce a variety of misunderstandings an disagreements in discussions of nonlinearity.  Consider

initially just a single series which is to be explained by a vector , which may include laggedxt y
t

(linear) values of .  If the conditional mean of given  takes the formxt xt y
t

(1.1)E[xt |y t
] ' Ny

t
% (y

t
)

then the relationship may be called linear in mean if all t, otherwise the relationship is( y
t
) ' 0

nonlinear.  In (1.1) is considered to be chosen to maximize the (linear) relatedness betweenN

 and linear combinations of .  This definition was proposed by Hal White.xt y
t

There are a number of features of the definition that need emphasis.

(i) The linearity is in variables, not coefficients.  Thus could take the formNyt

and then be linear in variables but not in coefficients.  This second formy1t%
2 y2t

of nonlinearity is of considerable importance when discussing estimation questions

and might be relevant when considering linear simplifications of the properties of a

process but is of little relevance for nonlinearity properties.

(ii) The definition relates to a particular form of the process , in this case the mean. xt

One could apply the same definition to some function of , such as , thenxt k(xt)

E[k(xt) |yt ] ' Nk k(yt)% k (y
t
)

where means that each component is replaced by k(-) of that component;k(yt) y
t

and again, if is zero, the relationship between   and is linear.  Itk (y
t
) k(xt) k(yt)

will be seen later that this applies to some ARCH models.

The definition (1.1) has to be specified rather carefully in that the components of  shouldy
t
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be defined individually rather than jointly, apart from lags.  Thus   can include  and , fory
t

wt w 2
t

example.  However, if  include  but , say, then the relationship between  andy
t

wt wt ' log rt xt

 is linear but not between and .  wt xt rt

A rather more modern version of the definition (1) would allow coefficients to be time-

varying, so that now

.E[xt |y t
] ' Nt y t

% t(y t
)

If , a vector of deterministic functions, then the relationship is still linear if . 
t
/ (t) t ( y

t
) / 0

If is a function of components of , the specification is nonlinear.  If where is
t

y
t t / (Z

t
) Z

t

a “state-space” variable then if is i.i.d. one still has linearity with the usual conditional, butZ
t

otherwise if can be forecast from previous , by use of the Kalman filter, for instance,(Z
t
) y

t

one will get nonlinearity.

For ease of exposition, just univariate or bivariate series will be considered.  In most cases,

the multivariate generalizations are obvious but some models only exist in a bivariate case, as will

be seen.  One problem that has to be faced is that there is no generally agreed method of

measuring the basic properties of nonlinear processes.  There is nothing compared to the linear

properties, the  autocorrelations and the spectrum.  Naturally, these quantities can be deducedk

for a nonlinear process but at best they can only partly capture the major properties of the process

while at worst they can be mis-leading as shown in an example given later.

In many specifications of nonlinear models, there is included as an input an unobserved set

of stochastic shocks .  One might think of a specificationt

xt ' f ( y
t
, t)

for example.  The process is said to be invertible if, given , it is possible toxt&j, y
t&j

, j'0,1 ,ç
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estimate , with no error, asymptotically.  In some specifications there are more than onet

stochastic impulse used in the generation of a variable, and these shocks may be independent.  An

example is the model for variance called “stochastic volatility.”  For this example the shocks are

not invertible, but there are cases in which there are two shocks used to generate a single variable

but they are both potentially invertible, see later.

The diagram illustrates the inter-relationship between stationarity or not and linearity or

not.

Nonlinear

Linear

Stat Non-Stat

The majority of the classical time series models were stationary and linear, then Box and Jenkins

introduced the unit root models which included one aspect of non-stationarity in the variance. 

When classes of nonlinear models are considered, below, they all, with just one notable exception,

include linearity as a special case.  The exceptions are the chaos (deterministic) models.  I view

this use of the linear model as a kind of anchor as an example of the difficulty in escaping the

linear formulation which has been the basis of time series modeling for so long.  A different

example is the continued use of a normality assumption for the distribution of errors or shocks. 

Similarly, the attention paid just to means and variances, possibly conditional, pertains to normal
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distributions and thus linear relationships.

For ease of discussion, deterministic components, such as polynomial or exponential

trends or trigonometrical seasonal components, will not be considered.

2.  Nonlinear Autoregressive Models

A widely investigated class of models take the form

(2.1)xt ' f (xt&1 ) % h (xt&1 ) t

where  are zero mean i.i.d.  They can also be called NL scale models as they involve just at

mean f and a scale h functions.  More generally they will involve more lags of and, inxt

multivariate cases, also other variables.  It is well known that a necessary and sufficient condition

for stability, provided h(x) is bounded, is:

(2.2)
| f (x) |

|x |
< 1 all |x | > |x0 |

see Tweedie (1975), Meyn and Tweedie (1993).  Stability means that asymptotically the marginal

distribution of tends to a constant distribution.  Provided coefficients in the model arext

constant, the condition will also give stationarity.  Effectively it means that for  far enoughxt

away from zero

.f (xt) ú xt g(xt) where |g(xt) |<1

A simple example is the threshold autoregressive model, for instance

xt ' 1 xt&1% t if xt&1 < 2
' 2 xt&1% t if xt > 2

with 0 <  1 <  2 < 1 which will obey the stability condition (2.2).  More complicated forms of

threshold models have been considered by Tong (1983) and others, usually involving more lags. 

Smoothed versions replaced the step function by a logistic function



-5-
xt ' xt&1 g (xt&1)% t

g(xt&1) ' 1%exp(&xt&1%k)
, | | <1

giving an example of a smooth transition regression model discussed in Granger and Teräsvirta

(1993).

A special class of NLAR models are those that produce chaos.  Essentially they are a map

xt ' f (xt&1 )

involving no stochastic shock which, on occasion, can produce some properties of an independent

sequence.  An example is the tent map

(2.3)xt ' 4xt&1 (1&xt&1 )

which, when started at an appropriate place, will generate a series which visually is similar to a

bounded white noise and which empirically has all autocorrelations zero and thus a flat spectrum. 

It should be noted that the chaotic process does not have the property of an i.i.d. process, as

sometimes claimed, as usually corr .  If the specification is known completely[ g (xt ) g(xt&k )] û 0

then is forecastable exactly from   at least within computer round-off error.xt&1 xt

In the physical sciences, a nonlinear model is almost invariably a chaos model, but in

economics, for example, there is no evidence that the data is satisfactorily fitted by such a model,

possibly because series are relatively short and naturally very noisy.

If one adds a noise to the map (2.3) one gets a non-stable NLAR process; in fact an

explosive process, and this is generally true for chaos generators.  To add noise one has to change

the model to a form such as

xt ' 4 xt&1 (1&xt&1 )% t , 0< <1

where is i.i.d. and , so that .  t 0# t <1& 0#xt#1

It is not clear to me if tests for chaos exist.  Those most used on economic data involve
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1  It is useful to use the following maximum notation:   notes that is max(A,B,C). A¢B / max(A , B) A¢B¢C
Similarly is min (A,B).  Throughout is a white noise, uncorrelated series, possibly heteroskedastic.A  B t

2  JASA 87, 864-877.

estimates of the Lyapunov exponent which considers generating sequences using the same map

but nearby starting points, and then measuring the speed at which the two series so obtained

diverge apart.  It is useful when comparing series that are deterministic but some stochastic series

have a positive Lyapunov exponent - which is taken to be the distinguishing feature of a chaotic

process.  An example is the linear explosive AR(1) with coefficient greater than one, or perhaps

such a series reduced modulo (k), so that if   is subtracted from it to return it to the region (0,xt

k).  Some people would define such a process to be chaotic, even though stochastic, but this

merely illustrates the difficulty with definitions in this area when it interacts with statistics.

There are many specific NLAR models that have been discussed to various extent,

including:1

1.  Threshold AR(1) [Tong (1983)].

Xt ' 1 Xt&1% 2 Xt&1¢0% t

and so equally could be written

Xt ' 1 X %

t&1% 2 X &

t&1% t

where 

if , is zero otherwiseX %

t ' Xt Xt >0

if , is zero otherwise.X &

t ' Xt Xt <0

The process has been called “double threshold” if both the conditional mean and variance change

with thresholds.

2.  Multivariate Adaptive Regression Splines (MARS)-AR (Lewis and Stevens, 1991)2.
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3  Adv. Appl. Prob. 21, 781-803.

4  Annals of Probability 21, ??-??

Xt ' a11 [ (Xt&1%c1)¢0]%a12[(Xt&1%c2¢0]

.% a21[(Xt&2%c3)¢0]%æ% t

3.  Xt ' & |Xt&1 |% t

4.  , no coefficient needed, scale change in X just changes variance of gt.Xt ' sign |Xt&1 |% t

5.  Doubly Stochastic AR(1) (Tjøstheim, 1986).

Xt ' At Xt&1% t

where A t is stochastic, possibly function of another variable.

6.  MAX-ARMA (Davis and Resnick, 1989)3

xt ' 1 xt&1¢ 2 xt&2¢ t¢ 1 t&1

could involve more lags of .  It usually requires all ’s, ’s to be positive.xt , t

An interesting property of the max AR(1) model is

 using the obvious notation.xt ' ¢
4

j'0

j
t&j

7.  M-M Model (Granger and Hyung, 1998)

Xt ' (aXt&1% )¢ (bYt&1% )% 1t

Yt ' (cXt&1% )  (dYt&1% )% 2t

so the first equation involves a maximum, the second a minimum.  An interesting

integrated-type process occurs if a = b = c = d = 1.  This model is unusual in that it is

bivariate but there are no interesting univariate equivalents or components.

8.  MOD-AR (Hildebrand, 1983)4

Xt ' at Xt&1% t (mod )

where X mod  = X -  if X > .
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9.  Nonparametric AR (Teräsvirta, Tjøstheim, and Granger, 1994)

A fairly obvious class is obtained by plotting against , say, and then aXt Xt&1

nonparametric smoother used to get a diagrammatic relationship.  Such models may be

difficult to use for forecasting.

10.  Generalized Autoregressions (GAR, Mittnick, 1991)

A generalized autoregressive process is defined to contain products of the form

and to be GAR (r, p) if the maximum power used on any term is r and if pXt&1 Xt&2çXt&p

lags are used.  Thus, for example, the G(2.2) model would be

Xt ' a1 Xt&1%a2 Xt&2%b1 Xt&1 Xt&2%c1 X 2
t&1 Xt&2

%c2 Xt&1 X 2
t&2%d1 X 2

t&1 X 2
t&2

.%e1 X 2
t&1%e2 X 2

t&2% t

Without shocks, some chaotic models fall into this class.  It is also clear that many of these

models do not obey the stability criterion and so will produce explosive series.  That this

does not always occur is found in the relationship with the bilinear model, as discussed

below.  Mittnick also shows that there is a state space representation possible for the

G(r,p) model, although it is complicated.

I am sure that there are many other specific models that I have missed.

3.  Moving Averages and Bilinear Models

There are many simple NLMA models such as

Xt ' t% t&1 t&2

and Xt ' t% 1 t&1¢0% 2 t&1 0

which is a threshold form.  These models are not invertible.  The Volterra representation is a
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nonlinear generalization of the Wold representation for stationary, and used products of all lags,

so includes , ,  all j, k, i ... values, with coefficients.  Although oft&j t&j t&k t&j t&k t&i , ç

possible theoretical interest it has proved of virtually no practical relevance.

Bilinear models add terms like to ARMA models.  A simple example isXt&j t&k

.Xt ' Xt&1% Xt&2 t&1% t

If  = 0, this model has the interesting property that all theoretical autocorrelations are zero, even

though can be forecast nonlinearly from .  Results for stationarity andXt&1 Xt&j j$0

invertibility are known in some special cases, but are unlikely to be used in practice.  Using

economic data, bilinear models have not been found to be very relevant.  However, many tests of

linearity are found to have low power against bilinear data.

Mittnick (1991) shows that the invertible, stationary, bilinear model

Xt ' t% Xt&1 t&1

has a generalized autoregressive GAR(2,4) representation

.Xt%1 ' t%j
4

k'1
1, 2 , ç , k Xt&k

k

i'1
Xt&i

4.  State Space Models

There seems to be considerable disagreement in the literature about how state space

models should be defined.  A general form is

(4.1)Xt ' f (Xt&1 , St , t , )

where is the state variable, are a series of shocks, and is a vector of coefficients.  MoreSt t

lags of could be included and (4.1) has to be augmented by a generating mechanism for ,Xt St

usually Markovian.  However, Meyn and Tweedie (1993) call the univariate version of (4.1)

without a “scalar nonlinear state space model.”  St
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A form closer to the familiar linear state space model would be

(4.2)Xt ' m (St )%g(St) Xt&1%h(St) t

(4.3)St ' (St&1 )% t

where (4.2) is the observation equation and (4.3) the state variable generating equation. 

However, could be replaced by some other variable in (4.2), such as a measure as the state ofSt

the economy (unemployment level, capacity utilization for example), which are directly

observable.

A different form has

, the observation equation (4.4)Xt ' At St% t t

, the state-variable equation (4.5)St ' t St&1% t t

where in the standard linear form the coefficients (or matrices in the multivariate case) , , ,At Bt t

are know deterministic functions of times.  In the generalization form considered by Abrahamt

and Thavaneswaran (1991) these coefficients are all functions of past observed values, , j $ 0,Xt&j

and thus gives a nonlinear form.  They give prediction and fixed point smoothing algorithms for

the general model.

It is well known that the Kalman filter can be used to investigate the time-varying

parameter form of the model (4.4).  J. Hamilton (1994) provides a comprehensive discussion of

these models, “Handbook of Econometrics, Volume IV,” Chapter 50, edited by R. F. Engle and

D.L. McFadden.

5.  Growth Series, Stochastic Trends, Cointegration

A growth series might be defined as one having the property as t 6 4. Prob (xt 6 4 )'1

This can be stated more formally, but is not a useful definition is practice.  However, it does
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illustrate the fact that a series can have a growing mean but not be a growth series.  A simple

linear illustration uses the random walk with drift

xt ' xt&1%g% t

with and g > 0.  Then and and for t largevar( t ) '
2(t) E[xt] ' gt var(xt)/ vt 'j

t
j'0

2 (j)

.  The lower end of any confidence interval will be of the formxt - N(gt , vt)

A ' gt&b vt

for some appropriate b and this is not growing if .  Thus, the likely range of the processb(vt)
½>gt

includes a non-growth region and so as t 84.  As this example shows, afterprob (xt'4 ) û1

subtracting a possibly growing mean, the volatility of the series can also be growing.  A|xt |

series with a trending mean, or having a growing volatility has become known in the economic

literature as a “stochastic trend.”

A nonlinear class of stochastic trends has been considered by Granger, Inoue, and Morin

(1997)

(5.1)Xt%1 ' Xt%g(Xt)% t%1

where ,  is given andg(xt)>0 X0

.E [ 2
t |Xt&j, j>1] ' 2 (Xt&1)>0

Kershing (1986) proves some growth or not results depending on whether g(x) is o(x) or O(x) and

the balance between the sizes of g(x) and as x becomes large.  It is found that a wide2 (x)

variety of trends can be generated by (5.1) and they are related to, but dominate on occasion, the

deterministic trend generated by (5.1) but with all .t/0

Most of the discussion of stochastic trends in economics are in connection with unit root

processes
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(5.2)(1&B)Xt ' t

where B is the lag operator, so that , so that (5.2) is the standard random walk,B k xt ' xt&k

without drift.  A model that is less discussed by is relevant is

(5.3)(1& B) xt ' t , >1

which produces an explosive autoregressive series.  A realistic generalization are the stochastic

root models

(5.4)(1&exp( t)B) xt ' t

where is a stationary series, with no causality from to .  The stochastic unit root processt xt t

(STUR) has .  If it gives an “explosive stochastic root,” or XSR. E [ exp( t) ] ' 1 E [ e t ] ' >1

This last process has explosive phases, followed by returns to the mean if  is not too large.  It has

the appearance of a hyper inflation, for example.

A pair of series might be called “co-growing” if they each contain growingXt , Yt

components but some linear combination is not growing, .  This will only occur ifZt ' Xt&A Yt

have the same growth component and so may be writtenXt , Yt

(5.5)Xt ' A Wt% X̃ t , Yt ' Wt% Ŷ t

where is some growth process,  are not growing.  This can all be generalized so thatWt X̃ t , Ŷ t

contains a function of , is a function of but this case is not well developed.  TheYt Wt Zt Xt , Yt

earliest version considered had   a random walk, so that was stationary, in whichWt (1&B)Wt

case   are generated by an “error-correction model”Xt , Yt

(1&B ) Xt ' 1 Zt&1% lags Xt , Yt % 1t

(1&B ) Yt ' 2 Zt&1% lags Xt , Yt % 2t

where and is non-zero, so that at least one of is non-zero. ' (1&B ) | 1 |% | 2 | 1 , 2

Nonlinear versions of these equations have been considered with being replaced by ,Zt g1 (Zt)
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in the two equations.  Sometimes, to explore nonlinear possibilities, is replaced byg2 ( Zt) Zt

components, where if Z > 0, = 0 otherwise.Z %

t , Z &

t Z %

' Z

6.  Regime Switching Models

Suppose that in every time period there are two independently generated series ,W1t,W2t

so that the value taken by may depend on lagged but not on current and lagged andW1t W1t W2t

vice-versa and that the input shocks or stochastic components, if any, are independent across and

within series.  Let the observed series be

Xt ' W1t at times t'1, 2,ç ,S1

' W2t at times S1%1, S1%2,ç ,S2

' W1t at times S2%1,%ç
etc.

where the times of the switches are generated by some mechanism which may be deterministic or

stochastic and can depend on the value of and its lags.  This could be thought of as a “pureXt

switching model” as the two processes that one switches between are unrelated.  This formulation

is little used.  More commonly the underlying processes  are inter-related so that in aW1t , W2t

linear framework they may be generated by a vector autoregression (VAR).  A yet more common

form of model has (in the univariate case)

(6.1)Xt ' f (Xt&1 ,
t
)% t

where the Markovian, homoskedastic case is shown for simplicity, and the vector of parameters is

itself following a “pure switching model” usually deterministically generated but stochastically

switching.  A successful example is the Markov Switching Model, in which parameters in (6.1)

are fixed, but different in different regimes leading to switching specifications, the switches

occurring purely stochastically according to a Markov chain process (see Hamilton 1989, 1994
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for discussions).  Here the number of states is fixed at two in the example above but it clearly can

be larger.  An example is:

Xt ' 1 Xt&1% t when in state 1
Xt ' 2 Xt&2% t when in state 2

which is just the specification

Xt ' Xt&1% Xt&2% t

with in state 1, in state 2.  Possibly ways to generalize, or' 1, ' 0 ' 0, ' 2

complicate, such models are clear.  Rather than having the switch occur exogenously through the

Markov chain one could introduce exogenous variables, involving the state of the business cycle,

for example.  The switch could also occur deterministically.  An example has, with monthly data,

Xt ' S Xt&1% t

where the value of depends on the month, so that is different for January than forS S

September but repeats cyclically year by year.  This class of seasonal series has been extensively

considered by Franses (1996).  They have the property that the standard concept of seasonal

adjustment does not seem to apply as seasonality is deeply imbedded in the fabric of the model,

rather being an additive or multiplicative component.

All of these models involve sharp switches from one regime to another.  Although one can

argue that an individual decision matter may use decisions that induce such breaks, if investigating

aggregate data where individuals have breaks at different points, the outcome might be a smooth

transition from one regime to another.  In the previous notation, this would suggest models of the

form

Xt ' t f (Xt&1 , 1t)% (1& t) f (Xt&1 , 2t)% t

again in the univariate, homostochastic case, where 0 #  t # 1 and   t is some smooth switching
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variable, either deterministic or stochastic,  are the parameter values in regime 1, the1t 2t

values in regime 2.  An example would have   t a function of capacity utilization, so that   t near

1 would correspond to the peak of the business cycle and then most of the weight is on regime 1,

but   t would be near 0 when utilization is low, corresponding to a trough in the cycle, and so Xt

would be in regime 2.  For other values of   t,   would be in transition.  These models haveXt

been discussed in Granger and Teräsvirta (1993) with   t being specified as a logistic function of

driving variables, either lagged or causal variables, called smooth transition autoregressiveXt

(STAR) and smooth transition regression (STR) models.

A situation that is frequently being considered in recent research is where there are many

possible regimes and the parameter values corresponding to each are unknown.  Occasionally, due

to a “structural break” the economy may switch to a new regime with unknown specification, so

that a learning process has to occur.  Adaptive, unit root processes perform relatively well directly

after the break and a time-varying parameter model, based on a state-space formalization and the

Kalman filter, will do relatively well over a somewhat longer period, and, if there is stability in a

regime long enough, eventually a more complicated, even nonlinear specification can be used.

One special class of models that has been frequently discussed but probably less frequently

used, at least in economics, are those that are designed to have specific, simple, linear temporal

properties whilst at the same time producing a series with a pre-specified marginal distribution.  A

normal distribution is easy, of course, but various tricks, including switching regimes, have been

used for other marginal distributions.  For example, Garver and Lewis (1980) suggested the

“exponential autoregressive” (EAR(1)) model

Xt ' Xt&1%
O with probability

t with probability 1&
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where is iid, exponentially distribution.   has the autocorrelations of an AR(1)t Xt k '
k

process and has a marginal (not conditionally marginal) exponential distribution.  Various other

specifications produce processes with the same properties.

A few other specific marginal distributions have been considered including the Pareto,

logistic, and gamma.

The basic regime switching model has also been adapted for the unit

root/cointegration/error-correction models, with switching cointegrations or time-varying

parameters in error correction models, for example Siklos and Granger (1997).  There is no

particular difficulty in extending the specification of any nonlinear model in the same way.

7.  Models of Volatility

Before discussing the topic of this section it is perhaps worth returning to the topic of the

definition of linearity and thus of nonlinearity.  Suppose that a positive series has the propertyXt

(7.1)E [ Xt |Xt&1] ' Xt&1

so that the expected mean is linear in the explanatory variable.  Define , then (7.1) canYt ' loge Xt

be written

(7.2)E[exp(Yt) |Yt&1] ' exp (Yt&1)

which at first sight may seem to be nonlinear, but according to the definition used in Section 1, it

is linear in the variable , i.e. .  This rather trivial discussion has some relevance whenexp (Yt) Xt

is a series having zero conditional mean, so that , , j > 0, andXt µ t ' E[Xt | I t&1 ] ' 0 I t&1 :Xt&j

consider the conditional variance

. (7.3)ht ' E[X 2
t | I t&1]

Suppose that
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(7.4)ht ' w%aX 2
t&1

so that the specification considered is

X 2
t ' w% X 2

t&1% t

where

E[ t |Xt&j , j$1] ' 0

and so the model is linear in .  (7.4) is know as the ARCH(1) specification, for AutoregressiveX 2
t

Conditional Heteroskedasticity of order 1, as only one lag is used.  Clearly more lags can be

considered.  A straightforward extension is the generalized ARCH, or GARCH, which in its (1.1)

form is

ht ' w% X 2
t&1% ht&1

although more lags can be included.  ARCH was introduced by Engle (1982) and GARCH by

Bollerslev (1986).  Both are linear in , or .  However, in most accounts of nonlinearX 2
t (Xt&µ t )

2

processes they are classified as nonlinear.

Since their introduction a large variety of extensions of the basic ARCH/GARCH model

have been proposed, many of these models are nonlinear.  These extensions are often designed to

capture particular properties of processes that might be found in practice, such as nonsymmetry. 

A survey of some of these models is given by Bollerslev, Engle, and Nelson (1994)

A particularly important and useful form, due to Nelson (1991) is the exponential ARCH

(EARCH) which takes the form

loght ' w% (1% (B)){ Zt&1% [ |Zt&1 |&E[ |Zt&1 |}

where and is a polynomial of order p in the lag operator.  One can both getZt ' Xt /h
½
t (B)

nonsymmetry and there are no difficulties in ensuring that the estimated value of is positive. ht
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As a final example of the many possible models in this area is one that has been found useful with

financial data, introduced by Ding, Granger, and Engle (1993).  It is known as the Asymmetric

Power ARCH) (or A-PARCH) with specification

ht ' w%j
p

i'1
i ( |Xt&1 |& iXt&i ) %j

q

j'1
jht&j

with w > 0,  > 0,  i  i $ 0 for all i.

A stochastic volatility model (SV) will take the form

Xt ' µ t% t t

where  is the conditional mean and is a changing volatility.  However, unlike ARCHµ t t

models where is modeling in term of potentially observed components, such as , ist
2
t&j

stochastic volatility models only unobserved components are used, so that one may have

log t ' % [ log t&1& ]% t

for example, with  t iid, zero mean.  Alternative specifications are used, sometimes  = 1 is

assumed but if the distribution of is assumed to be Gaussian, say, the parameters of the modelt

for can be estimated, if the specification is correct.  It should be noted that the SV andlog t

ARCH models are not nested.  Further, SV models have two sets of input stochastic shocks, t

and usually assumed to be independent, which are not invertible, so that observing will nott Xt

allow one to observe (i.e. estimate) either   and unless possibly an earlier value of theset t

series is known without error.

8.  Empirical Models

Under this heading I will consider a sampling of models or techniques that do not start

with a specific specification but are allowed to evolve in the modeling process to provide a

satisfactory in-sample data-fit.
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A neural network model, in which  is explained in terms , takes the formXt Y
t

Xt 'j
q

j'1
j ( N

j
Y

t
)% t

where  ( ) is some bounded function.  Thus one has a linear combination of a nonlinear function

of linear combinations of the explanatory variables.  A popular choice for  is the logistic function

but the specific choice is not critical.  If the true relationship is

Xt ' F (Y
t
)%et

then a neural network model can provide a close approximation if F( ) is bounded for q large

enough and possible also if F ( ) is not bounded in some directions.  A successful use of neural

nets is discovering very good approximations to maps of chaotic processes based on fairly short

series.  A discussion of these models and their estimation can be found in White (1989).

Nonparametric modeling of time series does not require an explicit model, which is the

strength of the procedure.  Essentially a smoothing or averaging filter is applied to associatedY
t

with each and thus a diagrammatic, possibly multi-dimensional, is obtained.  References areXt

Ullah (1989) and Härdle (1990).

An alternative, intermediate model is “projection pursuit” where initially

.Xt ' S( N1 Y
t
)% 1t

S is a nonparametric smoother and the ’s are chosen as an optimum projection, a second

dependent variable is formed as and is modeled as and so forthXt&S ( N1 Yt) S ( N2 Y
t
)% 2t

sequentially until the variance of the residual is not reduced significantly by adding further terms.

These, and other techniques that fall in the same category, such as splines, have similar

strengths and weaknesses.  They are flexible and will search over many possibilities to find a good

fit.  On the other hand they are inclined to overfit and need to be checked by cross-validation and
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by post-sample forecastability tests, the models are usually invalid for trending or nonstationary

series and the individual parameter values are not interpretable in economic terms in most cases. 

It is also true that sometimes the methods do not provide satisfactory forecasts if the explanatory

variables take post-sample values outside of the range observed in sample.

9.  Some Final Comments

For an example of having two stochastic shocks which are potentially observable, suppose

that we have a pair of invertible processes withY1t , Y2t

Y1t ' g1(Y1,t&1 , 1t)
Y2t ' g2(Y2,t&1 , 2t) say

and , the directly observable series being decomposed as with Xt Xt ' sign (Xt) |Xt | sign (Xt) ' Y1t

.  This may be called the multiplicate observable decomposition.| Xt | ' Y2t

An example of a nonlinear process which has been found to have misleading linear

properties is the simple stationary NLAR (1)

Xt ' sign (Xt&1)% t

where is Gaussian iid, .  If  is small compared to 1, the process will be essentiallyt N(0 , 2)

regime switching.  Let  = then the theoretical autocorrelationsp ' Prob( 1% ) <0 Prob( &1)>0

for areXt

k ' ( 1&2p)k

and so are short memory.  However, simulations show that if p is small, the process will switch

only occasionally and the process is a sample of 2 thousand to 20 thousand terms will appear to

be I(d), a factional integrated (a form of 1/ ) process, sometimes called long-memory.

This is just a brief over-view and many aspects of nonlinearity have not been covered. 

There is no claim that it is comprehensive.
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