Sigma Exercise 200716

In MATH 3120 in the autumn of 2006, a correct answer to a problem was 3™ — 22" 4 1.
Answers submitted by two of the best students in the class, obviously using slightly different methods, were:
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Given that the symbol ( ) is defined to abbreviate ﬁ, where n! = n(n—1)(n—2)---3-2-1(n > 1) and
gl(n —j)!
0! = 1, and that both Z < ) =2" and Z ( ) Z <n> 2"=J = 3" facts you will learn elsewhere,
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verify in complete detail that the two anbwerb are both correct, i.e., that §1 =3" —2-2" +1 = S5. The
symbols (?) are best left intact except in places where their numerical values are required, certainly always
when they appear in a summation.
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Rest of solution. From Z <n> 27 — 3", 3" =
j=0

and from E n =2" 2" = n + =1+n+ " , so that
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as required.
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andfromjé(?):Z" <g>+2() ()—2+k:(2),sothat

Sog=3"—-2"—-1— (2" —2)=3"—2.2"+1 as required.

Further comment. The facts Z ( ) =2" and Z < ) Z (]) 2"~J = 3" are special cases for  and y
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equal to 1 and 2 of the famous binomial theorem, (x 4+ y)" = (n> /y" 7, which is fairly easily proved by
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induction using the fact that [ | +{ . 1) = .|, itself easily verified just using the above definition
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of (’;) Such a proof of the binomial theorem is available in binomialTheorem.pdf.



