Sigma Exercise 2007 1 6

In MATH 3120 in the autumn of 2006, a correct answer to a problem was $3^n - 2 \cdot 2^n + 1$.

Answers submitted by two of the best students in the class, obviously using slightly different methods, were:

$$
S_1 = \sum_{k=2}^n \left[\binom{n}{k} \sum_{j=1}^{k-1} \binom{k}{j} \right] \text{ and } S_2 = \sum_{k=1}^{n-1} \left[\binom{n}{k} \sum_{j=1}^{n-k} \binom{n-k}{j} \right].
$$

$$
S_1^* = \bigcup_{k=1}^n \binom{n}{k} \sum_{j=1}^{n-k} \binom{n-k}{j} \frac{n-k}{j}.
$$

Given that the symbol $\binom{n}{j}$ is defined to abbreviate $\frac{n!}{j!(n-j)!}$, where $n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1(n \geq 1)$ and

 $0! = 1$, and that both $\sum_{n=1}^{\infty}$ $j=0$ \sqrt{n} j $= 2^n$, and $\sum_{n=1}^{\infty}$ $j=0$ \sqrt{n} j $\bigg\}2^j=\sum^n$ $j=0$ \sqrt{n} j $2^{n-j} = 3^n$, facts you will learn elsewhere,

verify in complete detail that the two answers are both correct, i.e., that $S_1 = 3^n - 2 \cdot 2^n + 1 = S_2$. The symbols $\binom{n}{j}$ are best left intact except in places where their numerical values are required, certainly always when they appear in a summation.

Hint. From
$$
\sum_{j=0}^{n} {n \choose j} = 2^n
$$
, $2^k = {k \choose 0} + \sum_{j=1}^{k-1} {k \choose j} + {k \choose k} = 2 + \sum_{j=1}^{k-1} {k \choose j}$ so that
$$
S_1 = \sum_{k=2}^{n} \left[{n \choose k} (2^k - 2) \right] = \sum_{k=2}^{n} {n \choose k} 2^k - 2 \sum_{k=2}^{n} {n \choose k}.
$$

Rest of solution. From $\sum_{n=1}^{\infty}$ $j=0$ \sqrt{n} j $\bigg(2^j = 3^n, 3^n = \binom{n}{0}$ θ $2^{0} + {n \choose 1}$ 1 $2 + \sum_{n=1}^{\infty}$ $k=2$ \sqrt{n} k $2^k = 1 + 2n + \sum_{n=1}^n$ $k=2$ \sqrt{n} k $\Big)2^k,$ and from $\sum_{n=1}^{\infty}$ $j=0$ \sqrt{n} j $= 2^n, 2^n = \binom{n}{0}$ θ $\Big\} + \Big\{ \frac{n}{4}$ 1 $+\sum_{n=1}^{n}$ $k=2$ \sqrt{n} k $= 1 + n + \sum_{n=1}^{n}$ $k=2$ \sqrt{n} k , so that $S_1 = 3^n - 2n - 1 - 2(2^n - n - 1) = 3^n - 2 \cdot 2$ $n + 1$ as required. From $\sum_{n=1}^n$ $j=0$ \sqrt{n} j $\bigg\} = 2^n, 2^{n-k} = \left(\begin{matrix} n-k \\ 0 \end{matrix} \right)$ θ $+$ \sum^{n-k} $j=1$ $\sqrt{n-k}$ j $= 1 +$ \sum^{n-k} $j=1$ $(n-k)$ j so that $S_2 =$ \sum^{n-1} $k=1$ \lceil (*n* k $\left[(2^{n-k}-1) \right] =$ \sum^{n-1} $k=1$ \sqrt{n} k $\bigg)2^{n-k}-\sum^{n-1}$ $k=1$ \sqrt{n} k . From $\sum_{n=1}^n$ $j=0$ \sqrt{n} j $2^{n-j} = 3^n, 3^n = \binom{n}{0}$ 0 $\Big)2^n +$ \sum^{n-1} $k=1$ \sqrt{n} k $\bigg\}2^{n-k}+\binom{n}{k}$ n $2^0 = 2^n +$ \sum^{n-1} $k=1$ \sqrt{n} k $2^{n-k}+1,$ and from $\sum_{n=1}^{\infty}$ $j=0$ \sqrt{n} j $= 2^n, 2^n = \binom{n}{0}$ 0 $+$ \sum^{n-1} $k=1$ \sqrt{n} k $\Big) + \Big(\begin{matrix} n \\ n \end{matrix} \Big)$ n $= 2 +$ \sum^{n-1} $k=1$ \sqrt{n} k , so that $S_2 = 3^n - 2^n - 1 - (2^n - 2) = 3^n - 2 \cdot 2^n + 1$ as required. Further comment. The facts $\sum_{n=1}^n$ \sqrt{n} $= 2^n$ and $\sum_{n=1}^n$ \sqrt{n} $2^j = \sum_{n=1}^n$ \sqrt{n} $2^{n-j} = 3^n$ are special cases for x and y

 $j=0$ j $j=0$ j $j=0$ j equal to 1 and 2 of the famous binomial theorem, $(x + y)^n = \sum_{n=1}^{\infty}$ $j=0$ \sqrt{n} j $\int x^j y^{n-j}$, which is fairly easily proved by induction using the fact that $\binom{n}{k}$ j $\Big) + \Big($. $j-1$ $\bigg) = \bigg(\begin{matrix} n+1 \\ 1 \end{matrix}$ j), itself easily verified just using the above definition

of $\binom{n}{j}$. Such a proof of the binomial theorem is available in binomialTheorem.pdf.