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In MATH 3120 in the autumn of 2006, a correct answer to a problem was 3n − 2 · 2n + 1.
Answers submitted by two of the best students in the class, obviously using slightly different methods, were:
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2n−j = 3n, facts you will learn elsewhere,

verify in complete detail that the two answers are both correct, i.e., that S1 = 3n − 2 · 2n + 1 = S2. The
symbols
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are best left intact except in places where their numerical values are required, certainly always
when they appear in a summation.
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Rest of solution. From
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, so that

S1 = 3n − 2n − 1 − 2(2n − n − 1) = 3n − 2 · 2n + 1 as required.
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, so that

S2 = 3n − 2n − 1 − (2n − 2) = 3n − 2 · 2n + 1 as required.
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. Such a proof of the binomial theorem is available in binomialTheorem.pdf.


