
COMPLEX NUMBERS

Cartesian Form of Complex Numbers

The fundamental complex number is i, a number whose square is −1; that is, i is defined as
a number satisfying i2 = −1. The complex number system is all numbers of the form

z = x + yi (1)

where x and y are real. The number x is called the real part of z, and y is called the
imaginary part of z. For example, real and imaginary parts of 6 − 2i are 6 and −2.
Both real and imaginary parts of a complex number are themselves real numbers. The real
number system is a subset of the complex number system obtained when y = 0. We call
x + yi the Cartesian form for a complex number.

Complex numbers can be visualized geometrically as points in the complex (Argand)
plane. Some fixed point O is chosen to represent the complex number 0+0i. Through O are
drawn two mutually perpendicular axes (Figure 1), one called the real axis, and the other
called the imaginary axis. The complex number x + yi is then represented by the point x
units in the real direction and y units in the imaginary direction. For example, the complex
numbers 1 + 2i, −1− i, 4− 3i, and −2 + 2i are shown in Figure 2. The real number system
is represented by points on the real axis.
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Two complex numbers x+yi and a+ bi are said to be equal if their real parts are equal
and their imaginary parts are equal; that is,

x + yi = a + bi ⇐⇒ x = a and y = b. (2)

Geometrically, two complex numbers are equal if they correspond to the same point in the
complex plane.

We add and subtract complex numbers z1 = x + yi and z2 = a + bi as follows:

z1 + z2 = (x + a) + (y + b)i, (3a)
z1 − z2 = (x − a) + (y − b)i. (3b)

In words, complex numbers are added and subtracted by adding and subtracting their real
and imaginary parts. For example,

(3 − 2i) + (6 + i) = (3 + 6) + (−2 + 1)i = 9 − i,

(3 − 2i) − (6 + i) = (3 − 6) + (−2 − 1)i = −3 − 3i.

Complex numbers are multiplied according to the following definition. If z1 = x + yi
and z2 = a + bi, then

z1z2 = (x + yi)(a + bi) = (xa − yb) + (xb + ya)i. (4)

For example,
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(3 − 2i)(6 + i) = [(3)(6) − (−2)(1)] + [(3)(1) + (−2)(6)]i = 20 − 9i.

It is not necessary to memorize equation (4) when we note that this definition is precisely
what we would expect if the usual laws for multiplying binomials were applied, together with
the fact that i2 = −1:

(3 − 2i)(6 + i) = (3)(6) + (3)(i) + (−2i)(6) + (−2i)(i)
= 18 + 3i− 12i− 2i2

= 18 − 9i− 2(−1)
= 20 − 9i.

With addition, subtraction, and multiplication taken care of, it is natural to turn to
division of complex numbers. If we accept that division of any nonzero complex number
by itself should be equal to 1, and ordinary rules of algebra should prevail, a definition of
division of complex numbers is not necessary; it follows from equation (4). When z1 = x+yi
and z2 = a + bi, we calculate

z1

z2
=

x + yi

a + bi

by multiplying numerator and denominator by a − bi. This results in

z1

z2
=

x + yi

a + bi
=

(x + yi)(a − bi)
(a + bi)(a − bi)

=
(xa + yb) + (−xb + ya)i

a2 + b2
(using (4))

=
(

xa + yb

a2 + b2

)
+
(

ya − xb

a2 + b2

)
i.

For example,

3 − 2i

6 + i
=

(3 − 2i)(6 − i)
(6 + i)(6 − i)

=
16 − 15i

37
=

16
37

− 15
37

i.

In summary, addition, subtraction, multiplication, and division of complex numbers are
performed using ordinary rules of algebra with the extra condition that i2 is always replaced
by −1.

Example 1 Write the following complex numbers in Cartesian form:

(a) (3 + i)(2 − i)2 − i (b)
i3

2 + i
(c)

4 − 3i2 + 2i

(2 − 2i3)2

Solution
(a) (3 + i)(2 − i)2 − i = (3 + i)(3 − 4i) − i = (13 − 9i) − i = 13 − 10i

(b)
i3

2 + i
=

−i(2 − i)
(2 + i)(2 − i)

=
−1− 2i

5
= −

1
5
−

2
5
i

(c)
4 − 3i2 + 2i

(2 − 2i3)2
=

4 + 3 + 2i

(2 + 2i)2
=

7 + 2i

8i
=

(7 + 2i)(−i)
(8i)(−i)

=
2 − 7i

8
=

1
4
− 7

8
i•

Notice in part (c) of this example that we multiplied numerator and denominator by
−i rather than −8i; the result is the same in either case. Both lead to a real denominator.

The complex conjugate z of a complex number z = x + yi is

z = x − yi. (5)

Geometrically, z is the reflection of z in the real axis (Figure 3).
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If we multiply a complex number z = x + yi by its complex conjugate, we obtain

zz = (x + yi)(x − yi) = x2 + y2. (6)

This real number represents the square of the length of the line segment joining the numbers
z = 0 and z = x + yi in the complex plane. We use this property in our procedure to divide
complex numbers. To divide z1 by z2, multiply z1/z2 by z2/z2,

z1

z2
=

z1

z2

z2

z2
=

z1z2

z2z2
.

The denominator will be real, and the Cartesian form is immediate.
With complex numbers in place, we can give a complete discussion of quadratic equa-

tions. When the discriminant of a quadratic equation is positive, the equation has two real
solutions. For example, the discriminant of

x2 + 4x − 2 = 0

is 16 + 8 = 24, and solutions of the equation are

x =
−4±

√
16 + 8

2
= −2 ±

√
6.

When the discriminant is zero, we regard the quadratic as having two real solutions
which are identical. For example, the discriminant of

x2 + 4x + 4 = 0

is zero. The left side may be factored in the form

(x + 2)2 = 0.

We say that −2 is a double root of the equation.
For quadratics with negative discriminants, we first consider the equation

x2 + 1 = 0.

The complex number i is a solution, but so also is −i since (−i)2 + 1 = −1 + 1 = 0. The
quadratic equation

x2 + 16 = 0

has two solutions x = ±4i. If we apply the quadratic equation formula to the equation

x2 + 2x + 5 = 0,

the result is

x =
−2±

√
4 − 20

2
=

−2 ±
√
−16

2
.
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By
√
−16 we would seem to mean the number that multiplied by itself is −16. But there

are two such numbers, namely ±4i. Let us make the agreement that
√
−16 shall denote

that complex number whose square is −16, and which has a positive imaginary part. By
this agreement,

√
−16 = 4i and −

√
−16 = −4i.

The quadratic formula applied to x2 + 2x + 5 = 0 therefore gives two complex numbers

x =
−2± 4i

2
= −1± 2i.

It is straightforward to verify that these two complex conjugates actually satisfy x2+2x+5 =
0.

The agreement made in this last example is worth reiterating as a general principle:
When a > 0 (is a real number),

√
−a =

√
a i. (7)

We call
√

a i the principal square root of −a; the other square root is −
√

a i.
The above examples lead us to state that every real quadratic equation

ax2 + bx + c = 0 (8a)

has two solutions

x =
−b ±

√
b2 − 4ac

2a
. (8b)

When b2 − 4ac > 0, roots are real and distinct; when b2 − 4ac = 0, roots are real and equal;
and when b2 − 4ac < 0, roots are complex conjugates. Verification of this is a matter of
substituting (2.8b) into (2.8a).

Example 2 Find all solutions of the following equations:

(a) x2 + x + 3 = 0 (b) x2 − 6x + 9 = 0 (c) 2x2 + 17x − 2 = 0 (d) x4 + 5x2 + 4 = 0

Solution (a) By quadratic equation formula (2.8b),

x =
−1 ±

√
1 − 12

2
=

−1±
√
−11

2
= −1

2
±

√
11
2

i.

(b) This quadratic can be factored, 0 = x2 − 6x + 9 = (x − 3)2, and therefore has a double
root x = 3.
(c) By (2.8b),

x =
−17±

√
289 + 16
4

=
−17±

√
305

4
,

two real roots.
(d) If we set y = x2, then

0 = x4 + 5x2 + 4 = y2 + 5y + 4 = (y + 4)(y + 1).

Consequently, y is equal to −1 or −4. Since y = x2, we set x2 = −1 and x2 = −4, These
equations have roots x = ±i and x = ±2i.•
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EXERCISES

1. Show each of the following complex numbers in the complex plane: 2 − i, 3 + 4i, −1 − 5i, −3 + 2i, 5i,
2(1 + i)

In Exercises 2–26 write the complex expression in Cartesian form.
2. (2 + 4i) − (3 − 2i) 3. (1 + 2i)2

4. (−2 + i)(3 − 4i) 5. 3i(4i− 1)2

6. i3 − 3i2 + 2i + 4 7. (1 + i)6

8.
1 − i

3 + 2i
9.

(3 + i)2

2 − i

10. i24 − 3i13 + 4 11. (i − 2)[(2 + i)(1 − i) + 3i − 2]

12. 6i

(
1 + i

2 − i

)
+ 3

(
i − 4
2i + 1

)
13. 2 + i − (3 + 4i)

14. 1 + i
2
+ (1 + i)2 15.

(
1
2
−

√
3

2
i

)3

16. (1 + 2 − i)2 17.
(2i + 3)(4 − i)

(3 + i)(−6 + 2i)

18.
(1 + i)2(2 − i)

(3 + 2i)2
19. (1 − i)12(2i + 3)

∗20. (4 − i)2 ∗21.
1
2i

(
1√
2

+
i√
2

)18

∗22.
1

1 +
1

1 + 2i

∗23.

i

3 + i
(2 − i)2

∗24.
(1 + i3)2(2 − i)

4 − 5i
∗25.

(
1√
2

+
i√
2

)4( 1√
2
− i√

2

)4

∗26.
(

2i

1 + i

3 − 4i

3 + 4i

)2

In Exercises 27–36 find all solutions of the equation.
27. x2 + 5x + 3 = 0 28. x2 + 3x + 5 = 0
29. x2 + 8x + 16 = 0 30. x2 + 2x − 7 = 0
31. x2 + 2x + 7 = 0 32. 4x2 − 2x + 5 = 0
∗33.

√
3x2 + 5x +

√
15 = 0 ∗34. x4 + 4x2 − 5 = 0

∗35. x4 + 4x2 + 3 = 0 ∗36. x4 + 6x2 + 3 = 0

∗37. Verify the following properties for the complex conjugation operation:
(a) z1 + z2 = z1 + z2

(b) z1 − z2 = z1 − z2

(c) z1z2 = z1 z2

(d)
(

z1

z2

)
=

z1

z2

(e) zn = zn, n a positive integer. Hint: Try mathematical induction.
∗38. Verify that all complex numbers z satisfying the equation zz = r2, r > 0 a real constant, lie on a circle.

What is its centre and radius?
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∗39. Prove that if z1z2 = 0, then at least one of z1 and z2 must be zero.
∗40. We have made the agreement that when a > 0 is a real number,

√
−a denotes a complex number with

positive imaginary part. Show that with this agreement,
√

z1z2 is not always equal to
√

z1
√

z2.
∗41. Explain the fallacy in

−1 =
√
−1

√
−1 =

√
(−1)(−1) =

√
1 = 1.

∗42. Find two numbers whose sum is 6 and whose product is 10.
∗43. Verify that the values of x in (2.8b) satisfy (2.8a).
∗44. To find the square roots of a complex number, say i, we could set (x + yi)2 = i, and solve the equation

for x and y. Do this by using 2 for equality of complex numbers.
∗45. Use the technique of Exercise 44 to find square roots for (a) −7− 24i (b) 2 + i.

Answers
2. −1 + 6i 3. −3 + 4i 4. −2 + 11i 5. 24− 45i 6. 7 + i 7. −8i
8. 1/13− (5/13)i 9. 2 + 4i 10. 5 − 3i 11. −4− 3i 12. −24/5 + (33/5)i
13. −1 + 3i 14. −4i 15. −1 16. 8 + 6i 17. −7/10− (1/4)i
18. 58/169− (4/169)i 19. −192− 128i 20. 15− 8i 21. 1/2 22. 3/4 + (1/4)i
23. −9/250 + (13/250)i 24. −28/41− (6/41)i 25. 1 26. −672/625− (1054/625)i
27. (−5±

√
13)/2 28. (−3/2)± (

√
11/2)i 29. −4 double root 30. −1± 2

√
2

31. −1±
√

6i 32. (1/4)± (
√

19/4)i 33. (−5/(2
√

3)) ± [
√

12
√

5− 25/(2
√

3)]i
34. ±1, ±

√
5i 35. ±i, ±

√
3i 36. ±

√
3 +

√
6i, ±

√
3 −

√
6i 38. z = 0, r

42. 3± i 44. ±[(1/
√

2) + (1/
√

2)i]
45. (a) ±(3 − 4i) (b) ±[(

√√
5 + 2/

√
2) + (

√√
5 − 2/

√
2)i]
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