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[8] 1. (a) Use mathematical induction to show that for all integers n > 1,

Z 12 n(n + 1)6(2n + 1)' )
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[5] (b) Use Identity (1) and other known identities to compute
10
> (@K —k+1).
k=1

[6] 2. Find all solutions of the equation 2? = 2+ 2i. Express your answers in exponential form.
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[5]
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3. Consider the polynomial f(z) = —2*"* — 221 — 7 — 1.

(a) Find the remainder when f(z) is divided by x + i, where ¢ is the fundamental com-

plex number.

(b) Show that f(z) has no zeros greater than 1.
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4. Let P, : 2x +3y —2z =1 and P, : * + 2y + 32 = 2 be two planes, Ly : (z,y,z) =
(1,0,2) +t(1,2,3), t € R, be a line and A(2,3,1) be a point.

[5] (a) Find the intersection of the planes P, and P.
[5] (b) Find the equation of the line Ly parallel to L; and going through the point A.
[5] (c) Find the intersection of L; and P. [Hint: you are looking for a value of ¢ such that

a point (z,y, z) on Ly satisfies Py.]
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-1 -5 7 12 0 0
5. Let A=10 1 —4(,B=|0 2 0 |,andC bean arbitrary invertible 3 x 3
0O 0 =2 0o -2 -4
matrix.
[5] (a) Find det(A2C3*(BT)~'C®).
[6] (b) Find det(adj A). (Hint: you do not need to compute adj A. Recall the formula

involving A~! and adj A.)
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[4]
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1 2 3
6. (a) Use direct method to find the inverse of A = [2 5 4 |. Indicate clearly the
1 -1 10

elementary row operations used in each step.

(b) Use the information from part (a) to solve the following system

5(71+2172+33L’3:2
221 + 919 + 423 =0
$1—.Z'2—|—10£L’3:15
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[6] 7. Show that the following vectors are linearly independent:

(2,3,4),(1,2,—1),(3,—5,0).

[6] 8. Let A be a square matrix. State three additional properties that are equivalent to “A is

invertible”.
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1 1 1
9. Let A= |0 2 —1/.
0 -3 0

(a) Find all eigenvalues for A.

(b) Find the eigenvector(s) corresponding to the eigenvalue A = 1.
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10. A square matrix A € M,, is idempotent if A* = A.

(a) Show that the determinant of an idempotent matrix can only be 0 or 1.

(b) Show that the only nonsingular idempotent matrix is the identity matrix I,.
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[5] 11. Let A be a square matrix. Assume that (A, v) is an eigenpair of A. Use mathematical

induction to show that (A", v) is then an eigenpair of A", for any integer n > 2.
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