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1. (a)[8] Use mathematical induction to show that for all integers n ≥ 1,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
. (1)
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(b)[5] Use Identity (1) and other known identities to compute

10∑
k=1

(
2k2 − k + 1

)
.

2.[6] Find all solutions of the equation z2 = 2+2i. Express your answers in exponential form.
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3. Consider the polynomial f(x) = −x2014 − x2013 − x− 1.

(a)[5] Find the remainder when f(x) is divided by x+ i, where i is the fundamental com-

plex number.

(b)[5] Show that f(x) has no zeros greater than 1.
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4. Let P1 : 2x + 3y − z = 1 and P2 : x + 2y + 3z = 2 be two planes, L1 : (x, y, z) =

(1, 0, 2) + t(1, 2, 3), t ∈ R, be a line and A(2, 3, 1) be a point.

(a)[5] Find the intersection of the planes P1 and P2.

(b)[5] Find the equation of the line L2 parallel to L1 and going through the point A.

(c)[5] Find the intersection of L1 and P2. [Hint: you are looking for a value of t such that

a point (x, y, z) on L1 satisfies P2.]
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5. Let A =

−1 −5 7

0 1 −4

0 0 −2

 , B =

1/2 0 0

0 2 0

0 −2 −4

 , and C be an arbitrary invertible 3× 3

matrix.

(a)[5] Find det(A2C3(BT )−1C−3).

(b)[6] Find det(adjA). (Hint: you do not need to compute adjA. Recall the formula

involving A−1 and adjA.)
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6. (a)[6] Use direct method to find the inverse of A =

1 2 3

2 5 4

1 −1 10

. Indicate clearly the

elementary row operations used in each step.

(b)[4] Use the information from part (a) to solve the following system

x1 + 2x2 + 3x3 = 2

2x1 + 5x2 + 4x3 = 0

x1 − x2 + 10x3 = 15
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7.[6] Show that the following vectors are linearly independent:

〈2, 3, 4〉, 〈1, 2,−1〉, 〈3,−5, 0〉.

8.[6] Let A be a square matrix. State three additional properties that are equivalent to “A is

invertible”.

(1)

(2)

(3)
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9. Let A =

1 1 1

0 2 −1

0 −3 0

.

(a)[5] Find all eigenvalues for A.

(b)[5] Find the eigenvector(s) corresponding to the eigenvalue λ = 1.
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10. A square matrix A ∈Mn is idempotent if A2 = A.

(a)[4] Show that the determinant of an idempotent matrix can only be 0 or 1.

(b)[4] Show that the only nonsingular idempotent matrix is the identity matrix In.
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11.[5] Let A be a square matrix. Assume that (λ, v) is an eigenpair of A. Use mathematical

induction to show that (λn, v) is then an eigenpair of An, for any integer n ≥ 2.



DATE: December 18, 2014

COURSE: MATH 1210

EXAMINATION:

Techniques of Classical and Linear Algebra

UNIVERSITY OF MANITOBA

MIDTERM EXAMINATION

PAGE: 11 of 11

TIME: 120 Minutes

EXAMINER: Various

Blank page: For rough work only; no work on this page will be marked.


