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1. SHORT ANSWER QUESTIONS (Get straight to the point—but where you
are asked to show or explain something full credit will not be given for answers
that do not display sufficient work to make your reasoning clear.)

(a)[5] If X = A2B> is a 2 × 3 matrix, what are the dimensions (what is the size)
of B?

(b)[5] Find and simplify the value of cos(θ), where θ is the angle between (i.e.,
determined by) the vectors u = [5,−2, 1] and v = [1, 2, 5]
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(c)[5] Determine whether the following two lines are parallel:

x = −1 + t, y = 1 + 2t, z = 1 + 3t

and
x− 1

2
=
y − 2

4
=
z − 3

9
.

(d)[5] For what value(s) of parameter a does the following system have infinitely
many solutions?1 0 2

0 0 a2 − a
0 1 3

 xy
z

 =

 2
a− 1
−3


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(e)[5] Find all real values of a such that the following upper triangular matrix is
NOT invertible: a 3 2

0 a2 + 1 3
0 0 a2 − 4



(f)[5] Write the following sum using sigma notation:

−3

4
+

5

8
− 7

16
+

9

32
− · · · − 199

2100
.
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(g)[5] What is the remainder when f(x) = (2x)2012 + 8ix3 − 1 divided by
g(x) = 2x− i? (Simplify your answer.)

(h)[5] S is a set of five vectors in R4, whereas T is a set of four vectors in R5. One
of the sets S and T must be linearly dependent. Which one, and why?



DATE: April 21 2012, 9 AM – 12 noon

COURSE: MATH 1210
EXAMINATION: Classical and Linear Algebra

UNIVERSITY OF MANITOBA
FINAL EXAMINATION

PAGE: 5 of 14
TIME: 3 hours

EXAMINER: Craigen/Klurman

(i)[5] Suppose a, b, c, d ∈ R and that 1 + i, 2 − i are two of the zeros (over C) of
the polynomial p(x) = x4 + ax3 + bx2 + cx + d. Find all the other zeros of
p(x). What is the value of d?
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LONG/FULL ANSWER QUESTIONS

Show all necessary work for full credit

2.[10] Find a vector equation, in parametric form, for the line of intersection of the
following planes:

3x− 2y + 3z = −2, −x+ y + 2z + 5 = 0.
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3.[10] Let A =

1 2 0
0 1 1
2 0 1

, B =

(
0 1 3
1 1 1

)
C =

−1 1
2 1
1 3

. Observe that |A| = 5.

Further suppose that D is a 3× 3 matrix such that |D| = 3. For each part either
evaluate the expression or give a reason why it is not defined.

(a) det
(
2A−1D>

)

(b) B2 + AA>

(c) B + C>A

(d) A− 2BC

(e) A+ CB
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4.[10] (a) Simplify and express in Cartesian form:
(
√

3 + i)10

(
√

3− i)8

(b) Find all real number(s) b such that
2 + bi

1− bi
=
−7

10
+

9

10
i.
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5.[10] Let T : R3 → R3 be the linear transformation given by

T (̂ı) = ̂+ k̂, T (̂) = ı̂+ k̂, T (k̂) = ı̂+ ̂.

(a) Find the matrix A associated with T.

(b) λ = −1 is an eigenvalue of the matrix A. Find all eigenvalues A.

(c) For each of the eigenvalues λ of A, find all corresponding eigenvectors v.
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6.[10] Let A =

1 2 0
0 1 1
4 0 2

 .
(a) Find the characteristic polynomial of A.

(Do not attempt to find the eigenvalues of A.)

(b) Show that A DOES NOT have negative eigenvalues.

(c) A must have at least one (real) eigenvalue. Why?
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7.[10] Let A =

[
1 1
0 2

]
.

Use the Principle of Mathematical Induction to show that, for all n ≥ 1,

An =

[
1 2n − 1
0 2n

]
.
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8.[10] Solve the following system by putting its augmented matrix into Reduced Row
Echelon Form (RREF)

x− 2z = −4

x+ y − 2z + 5 = 0

2x+ 2y − 3z = −7
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9.[10] (a) Find the determinant of the following matrix by using elementary row (and/or
column) operations. (Show your work. At least one row or column operation
must be clearly used.)

A =


1 2 −1 1
2 4 0 2
3 6 1 4
4 9 0 5



(b) Is A invertible? Why, or why not?

(c) Find the entry of the adjoint matrix, adj(A), that is located in the second
row and the third column.
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10.[10] Use Cramer’s Rule to solve the following system of equations:

2x− 3y = 1,

x+ 5y = 4.

(NOTE: A correct solution by any other method will not receive full credit!)


