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1.[7] Let A =

 1 2 1
0 1 −1
0 0 1

 . Use mathematical induction to prove the identity

An =

 1 2n n(2− n)
0 1 −n
0 0 1


for all integers n ≥ 1 .
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2.[7] Let z denote a complex number such that (1 + i)z = i− z . Find the Cartesian
form of z .

3.[6] Find all eigenvalues of the matrix A =

(
3 −3
3 −1

)
.
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4.[8] Consider the polynomial equation P (x) = 0 where

P (x) = 3 x6 − 2x5 + ax4 + bx3 − 7x2 + 8x− 1 ,

where a and b are some nonzero real numbers. It is given that P (x) has exactly
three negative real roots.

(A) Determine which one of the following statements is true. (You must give
adequate reasons for your answer.)

• a and b are both positive.

• a and b are both negative.

• a is positive and b is negative.

• a is negative and b is positive.

(B) Show that P (x) must have at least one positive real root. (You do not need
part (A) to answer this part.)
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5.[6] Find parametric equations for the line of intersection of the two planes

2x− 3y + 5z = 4 and 3x+ 5y − 2z = 3 .

6.[7] Use Cramer’s rule to find the value of y only. (No marks will be given for the
use of any other method.)

x+ y +z = 3

− y +3z = 0

2x −z = 0
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7.[10] Consider the linear system of equations

w − 3x −y +4z = 0

−2w + 6x −y −2z = 0

3w − 9x −5y +16z = 0

First find the reduced row echelon form of the augmented matrix and then find
all basic solutions of the system. Use your answer to find a solution in which
w = 1 and y = −1 .
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8.[8] Consider the matrix B =

 b b b
b 2 b+ 1
b b+ 1 2

 where b is any real number.

(A) Evaluate |B| .

(B) Find all values of b for which the matrix B is invertible.
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9.[10] Show that the vectors u = 〈 2 , −1 , 3 , −4 〉 , v = 〈 3 , 1 , −2 ,−1 〉 , and
w = 〈 9 , 8 , −19 , 7 〉 are linearly dependent, and write v as a linear combination
of u and w .
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10. Let A =

 −2 0 1
1 1 0
3 0 −1

 .

(a)[8] Find A−1 by any method of your choice.

(b)[3] Use your answer from part (a) to solve the system AT

 x
y
z

 =

 1
−1

2

 .

(c)[4] Find det

(
1

4
adj (A)

)
. (Hint: you do not need to compute adj (A) .)



DATE: April 17, 2014

EXAMINATION: Techniques of Classical and Linear Algebra
COURSE: MATH 1210

UNIVERSITY OF MANITOBA
FINAL EXAMINATION

PAGE: 9 of 11
TIME: 150 minutes

EXAMINERS: Chipalkatti, Kucera, Moghaddam

11. Let T be the linear transformation from R2 to R2 defined by reflecting points
about the line y = x .

(a)[3] Find the matrix of T .

(b)[2] Find a vector v = 〈v1, v2〉 such that T (v) = 〈
√

2 , 3〉 .

(c)[2] Find the matrix of T−1 .
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12. Let A =

 2 −1 −1
−1 2 −1
−1 −1 2

 . It is given that the characteristic equation of the

matrix A is −λ(λ− 3)2 = 0 .

(a)[6] Find two linearly independent eigenvectors u and v corresponding to λ = 3.

(b)[3] It is given that w = 〈1, 1, 1〉 is an eigenvector for the eigenvalue λ = 0 .
Explain why u and v are orthogonal to w .



DATE: April 17, 2014

EXAMINATION: Techniques of Classical and Linear Algebra
COURSE: MATH 1210

UNIVERSITY OF MANITOBA
FINAL EXAMINATION

PAGE: 11 of 11
TIME: 150 minutes

EXAMINERS: Chipalkatti, Kucera, Moghaddam

For rough work only; no work on this page will be marked.


