
MATH 1210 Assignment 2 Solutions 17R-T2

This assignment is optional and does not need to be handed in. Attempt all questions,
write out nicely written solutions (showing all your work), and the solutions will be posted
on Fri, Feb 24, 2017, at which point you can mark your own work. If you have any questions
regarding differences between what you wrote and what the solution key says, please contact
your professor. At least one question from this assignment will be found on Quiz 2.

1. Simplify and express the complex numbers in Cartesian form

(a) 2ei
π
4 + 3ei

−π
4

Solution: 2ei
π
4 + 3ei

−π
4 = 2

[
cos(π

4
) + i sin(π

4
)
]

+ 3
[
cos(−π

4
) + i sin(−π

4
)
]

=

2
[

1√
2

+ i 1√
2

]
+ 3

[
1√
2
− i 1√

2

]
= 5√

2
− i√

2

(b)
(

(6−2i)4
(1+3i)4

)
Solution:

(
(6−2i)4
(1+3i)4

)
=
(
6−2i
1+3i

)4
=
(

(6−2i)(1−3i)
(1+3i)(1−3i)

)4
=
(
6−18i−2i−6

1+9

)4
=
(−20i

10

)4
=

24(i2)2 = 16 = 16

(c) (i−1)10
(i+1)13

Solution: (i−1)10
(i+1)13

=
(
√
2(− 1√

2
+ 1√

2
i))10

(
√
2( 1√

2
+i 1√

2
))13

= (
√
2ei3π/4)10

(
√
2eiπ/4)13

= 1
2
√
2
ei(30π/4−13π/4) =

1
2
√
2
ei(17π/4) = 1

2
√
2
ei(5π/4) = 1

2
√
2

[
−1√
2
− i 1√

2

]
= −1

4
− i

4

(d)
(
i
eiπ

)25
Solution:

(
i
eiπ

)25
=
(
i
−1

)25
= −i ((−i)2)12 = −i

2. Simplify and express the complex numbers in polar and exponential forms using the
principal value of the argument θ, θ ∈ (−π, π]

(a)
(√

3 + 3i
)2

(b) (−12 + i)3(−12− i)3

(c)
(1−

√
3i)10

(1 +
√

3i)10

Solution:



(a)
(√

3 + 3i
)2

=
(√

3− 3i
)2

=
(

2
√

3
( √

3
2
√
3
− i 3

2
√
3

))2
=
(

2
√

3
(

1
2
− i

√
3
2

))2
=(

2
√

3(cos(−π
3
) + i sin(−π

3
))
)2

= 12(cos(−2π/3) + i sin(−2π/3))

Polar form: 12(cos(−2π/3) + i sin(−2π/3))
Exponential form: 12e−i2π/3

(b) (−12 + i)3(−12− i)3 = ((−12 + i)(−12− i))3 = ((−12)2 + 12)3 = 1453

Polar form: 1453 (cos(0) + i sin(0))
Exponential form: 1453ei0

(c)

(1−
√

3i)10

(1 +
√

3i)10
=

(
1−
√

3i

1 +
√

3i

)10

=

(
(1−

√
3i)(1−

√
3i)

(1 +
√

3i)(1−
√

3i)

)10

=

(
−1

2
−
√

3

2
i

)10

= (cos(4π/3) + i sin(4π/3))10

= cos(40π/3) + i sin(40π/3) [DeMoivre’s Theorem]

= cos(40π/3− 12π) + i sin(40π/3− 12π)

= cos(4π/3) + i sin(4π/3)

Polar form: cos(−2π/3) + i sin(−2π/3)
Exponential form: e−i2π/3

3. Find all solutions of the equation

x6 + x3 + 1 = 0.

Solution: The polynomial is a polynomial of degree 6. From the Fundamental
Theorem of Algebra II, there are 6 solutions to this polynomial equation.

Consider u = x3. The polynomial equation

x6 + x3 + 1 = (x3)2 + (x3)1 + 1 = 0

can be rewritten as follows
u2 + u+ 1 = 0.

Roots of the quadratic equation are u1,2 = −1±i
√
3

2
.

Now, we have to find the cubic roots of −1±i
√
3

2
. Solve

x3 =
−1− i

√
3

2
,

and

x3 =
−1 + i

√
3

2
.



First, we solve

x3 =
−1− i

√
3

2
= ei(−2π/3+2kπ) ⇒ (x3)1/3 = (ei(−2π/3+2kπ))1/3

with k = 0, 1, 2. We obtain 3 roots, equally spaced on the circle of radius 1, with an
angle 2π/3 between successive roots; the first root x0 has an argument −2π/9. The
roots are then

x0 =e−i2π/9,

x1 =ei4π/9,

x2 =ei10π/9 or with the principal value x2 = e−8π/9.

Second, we solve

x3 =
−1 + i

√
3

2
= ei(2π/3+2kπ) ⇒ (x3)1/3 = (ei(2π/3+2kπ))1/3

with k = 0, 1, 2. We obtain 3 roots, equally spaced on the circle of radius 1, with an
angle 2π/3 between successive roots; the first root x3 has an argument 2π/9. The
roots are then

x3 =ei2π/9,

x4 =ei8π/9,

x5 =ei14π/9 or with the principal value x5 = e−4π/9.

The 6 solutions are xi with i ∈ {0, 1, 2, 3, 4, 5}.

4. Find all solutions of the equation z8 = −1. Express your answers with the argument
between −π and π.

Solution: Find the 8th roots of -1:

z8 = −1 = ei(−π+2kπ) ⇒ (z8)1/8 = (ei(−π+2kπ))1/8 = ei(−π/8+kπ/4)

with k = 0, 1, 2, 3, 4, 5, 6, 7.

The 8 solutions are equally spaced on the circle of radius 1, with an angle π/4 between
successive roots; the first root has an argument −π/8. The solutions are

z0 =e−iπ/8,

z1 =eiπ/8,

z2 =ei3π/8,

z3 =ei5π/8,



z4 =ei7π/8,

z5 =ei9π/8, or with the principal value z5 = e−7π/8,

z6 =ei11π/8, or with the principal value z6 = e−5π/8,

z7 =ei13π/8 or with the principal value z7 = e−3π/8.

5. Find all solutions of the equation z4 = i.

Solution: The modulus of i is 1. Since i is on the positive imaginary axis, arg(i) =
π/2. Then,

z = i1/4 =
(
ei(

π
2
+2kπ)

)1/4
= ei

π+4kπ
8 , k = 0, 1, 2, 3

Thus, all the solutions of the given equation are:

z0 = ei
π
8

z1 = ei
π+4π

8 = ei
5π
8

z2 = ei
π+8π

8 = ei
9π
8

z3 = ei
π+12π

8 = ei
13π
8

6. Let z1 and z2 be 2 complex numbers. Show that

z1 + z2 = z1 + z2.

Solution: Define z1 = a1 + ib1 and z2 = a2 + ib2. Their sum is

z1 + z2 = a1 + a2 + i(b1 + b2).

Take the conjugate on both sides:

z1 + z2 = a1 + a2 + i(b1 + b2)

= a1 + a2 − i(b1 + b2)

= a1 − ib1 + a2 − ib2
= z1 + z2.

7. Let z be a complex number. Using mathematical induction prove that

zn = zn, for all n ≥ 1.



Solution: Preliminary result: Define two complex numbers z1 = r1e
iθ1 and z2 =

r2e
iθ2 ; multiply:

z1z2 = r1r2e
i(θ1+θ2).

Take the conjugate on both sides:

z1z2 = r1r2ei(θ1+θ2)

= r1r2e
−i(θ1+θ2) = r1r2e

−iθ1e−iθ2 = r1e
−iθ1r2e

−iθ2 = z1 z2.

Now, we want to prove that, for all n ≥ 1, zn = zn. Define the proposition Pn as

Pn : zn = zn.

Base case: When n = 1, we have z1 = z = z1. Therefore P1 is true.

Inductive step: For k ≥ 1, assume that Pk : zk = zk is true. It remains to show that
Pk+1 hold; that is, that

zk+1 = zk+1.

zk+1 = zkz

= zkz [z1z2 = z1 z2, z1, z2 ∈ C]

= zkz [zk = zk, use Pk]

= zk+1

Pk+1 holds. We have shown that Pk+1 is true if Pk is true.

Conclusion: By the Principle of Mathematical Induction, we can conclude that for
all n ≥ 1, Pn is a true proposition.

8. Consider the following polynomial P (x) = x5 − 2x4 + 4x3 + 2x2 − 5x.

(a) Verify that 1 + 2i is a root of P (x) = 0.

(b) Find all the roots of P (x) = 0.

(c) Factor P (x) into the product of real linear and irreducible real quadratic factors.

Solution:

(a) P (1 + 2i) = 0 therefore 1 + 2i is a root.

(b) P (x) is a polynomial of degree 5. By the Fundamental Theorem of Algebra II,
P has exactly 5 roots (counting multiplicities).

As P has real coefficients, if z is a complex root then z is also a root of P .
Therefore, as 1 + 2i is a root, 1− 2i is also a root of P .



Moreover, x can be factored as

P (x) = x(x4 − 2x3 + 4x2 + 2x− 5),

so 0 is also a root. So far, we have:

P (x) = x(x− 1− 2i)(x− 1 + 2i)Q2(x) = x(x2 − 2x+ 5)Q2(x)

where Q2(x) is a polynomial of degree 2. To find the last 2 roots, we first need
to find Q2(x). Performing for instance the long division of x4−2x3+4x2+2x−5
by x2 − 2x+ 5 gives

x4 − 2x3 + 4x2 + 2x− 5 = (x2 − 2x+ 5)(x2 − 1),

where Q2(x) = x2 − 1 = (x− 1)(x+ 1).

Otherwise, to find the last 2 roots, we could have noticed that P (1) = 0 and
P (−1) = 0.

Summing up, roots of P are 0, 1± 2i and ±1.

(c) So P (x) is factored into a product of real linear and irreducible real quadratic
factors as

P (x) = x(x− 1)(x+ 1)(x2 − 2x+ 5)

9. (a) Show that (x− i) and (x− 1) are linear factors of

x4 − 2(1 + i)x3 + 4ix2 + 2(1− i)x− 1 = 0.

(b) Factor the polynomial x4 − 2(1 + i)x3 + 4ix2 + 2(1− i)x− 1 in linear factors.

Solution:

(a) P (i) = i4−2(1 + i)i3 + 4ii2 + 2(1− i)i−1 = 1 + 2(1 + i)i−4i+ 2(1− i)i−1 = 0.
By the Factor Theorem, as P (i) = 0, (x− i) is a linear factor of P .
P (1) = 1−2(1+ i)+4i+2(1− i)−1 = 0. By the Factor Theorem, as P (1) = 0,
(x− 1) is a linear factor of P .

(b) Factor the polynomial: From (a)

P (x) = x4 − 2(1 + i)x3 + 4ix2 + 2(1− i)x− 1 = (x− i)(x− 1)Q2(x)

where Q2(x) is a polynomial of degree 2 that can be found by long division or
by identification.

By identification: Assume that Q2(x) = ax2 + bx+ c, then

P (x) = (x2 − (1 + i)x+ i)(ax2 + bx+ c)

where x2 − (1 + i)x+ i = (x− i)(x− 1). Expand

(x2 − (1 + i)x+ i)(ax2 + bx+ c)



and identify the coefficients of the terms of same degree:

P (x) =x4 − 2(1 + i)x3 + 4ix2 + 2(1− i)x− 1

=ax4 + bx3 + cx2 − a(1 + i)x3 − b(1 + i)x2 − c(1 + i)x+ aix2 + bix+ ci.

• Terms of degree n = 4: 1 = a.

• Terms of degree n = 3: −2(1 + i) = b− a(1 + i).

• Terms of degree n = 2: 4i = c− b(1 + i) + ai.

• Terms of degree n = 1: 2(1− i) = −c(1 + i) + bi.

• Terms of degree n = 0: −1 = ci.

We obtain c = i, a = 1 and b = −(1 + i). Finally,

P (x) = (x− i)(x− 1)(x2 − (1 + i)x+ i) = (x− i)(x− 1)(x− i)(x− 1).

So P (x) has 2 linear factors (x− i) and (x− 1) of multiplicity 2.

10. Consider the following polynomial

P (x) = x5 − 11x4 + 43x3 − 73x2 + 56x− 16.

(a) Show that P (x) can be rewritten as P (x) = Q(x)(x − 4) and P (x) = T (x)(x − 1)
where Q(x) and T (x) are polynomials in x. Give the degree of Q(x) and T (x).

(b) Show that 4 is a root of multiplicity 2 of P (x).

(c) Factor P (x).

Solution:

(a) P (4) = 0, so by the Factor Theorem, (x−4) is a linear factor of P (x). Therefore,
we can write P (x) = (x− 4)Q(x), where Q(x) is a polynomial of degree 4.

P (1) = 0, so by the Factor Theorem, (x−1) is a linear factor of P (x). Therefore,
we can write P (x) = (x− 1)T (x), where T (x) is a polynomial of degree 4.

(b) P (x) can be rewritten as

P (x) = (x− 1)(x− 4)Q3(x) = (x2 − 5x+ 4)Q3(x)

where Q3(x) is a polynomial of degree 3. To find Q3(x), perform long division
or identification of like parameters as in Question 8. We find

Q3(x) = x3 − 6x2 + 9x− 4.

As Q3(4) = 0, (x − 4) is a linear factor of Q3(x) and so (x − 4) appears for a
second time in the factorization of P (x):

P (x) = (x− 1)(x− 4)(x3 − 6x2 + 9x− 4) = (x− 1)(x− 4)(x− 4)Q2(x)



where Q2(x) is a polynomial of degree 2 that we can obtain by dividing Q3(x) =
x3 − 6x2 + 9x − 4 by (x − 4). The result of the long division of Q3(x) =
x3 − 6x2 + 9x− 4 by (x− 4) gives Q2(x) = x2 − 2x+ 1 = (x− 1)2. x− 4 is not
a factor of Q2(x). The factor (x − 4) appears only 2 times in the factorization
of P , therefore the root x = 4 has multiplicity 2.

(c) So P (x) factors as
P (x) = (x− 1)3(x− 4)2

11. For each of the following polynomials:

P5(x) = 6x5 + 7x4 − 13x3 − 85x2 − 50x

P9(x) = x9 + 3x8 + 3x7 + 3x6 + 6x5 + 6x4 + 4x3 + 6x2 + 6x+ 2

(a) Use Descartes’ rules of signs to state the number of possible positive and negative
zeros of the polynomial;

(b) use the bounds theorem to find bounds for zeros of the polynomial;

(c) use the rational root theorem to list all possible rational zeros of the polynomial;

(d) use this information to find all the zeros of the polynomial.

Solution: P5(x) = 6x5 + 7x4 − 13x3 − 85x2 − 50x

(a) There is one sign change in the sequence of coefficients, so P5(x) has exactly 1
positive real root. There are 3 sign changes in the sequence of coefficients of
P5(−x) = −6x5 + 7x4 + 13x3 − 85x2 + 50x, so P5(x) has 3 or 1 negative real
root.

(b) If x is a root of P5(x), then |x| < 85
6

+ 1 = 91
6

(c) We cannot use the rational root theorem right away, because the last coefficient
is 0. Notice that 0 is a root of P5(x), and P5(x) = x(6x4 + 7x3 − 13x2 −
85x − 50) = xQ(x). Then we can use the rational root theorem for Q(x) =
6x4 + 7x3 − 13x2 − 85x− 50.

If p
q

is a rational root of Q(x), then p divides 50 and q divides 6, so p
q
∈

±{1, 1/2, 1/3, 1/6, 2, 2/3, 5, 5/2, 5/3, 5/6, 10, 10/3, 25, 25/2, 25/3, 25/6, 50, 50/3}

(d) Using the bounds theorem, we can limit the possible candidates for rational
roots to ±{1, 1/2, 1/3, 1/6, 2, 2/3, 5, 5/2, 5/3, 5/6, 10, 10/3, 25, 25/2, 25/3, 25/6}.
By plugging first the different positive values in Q(x), we eventually get that
Q(5/2) = 0, so the only positive root is 5/2. Also, Q(x) is divisible by
(2x − 5). We obtain from the long division that Q(x) = (2x − 5)(3x3 +
11x2 + 21x + 10) = (2x − 5)R(x). R(x) can have rational roots from the
set ±{1, 2, 5, 10, 1/3, 2/3, 5/3, 10/3}. Since we know already the only positive
root, which is 5/2, we only try negative values from this set. By plugging dif-
ferent values in R(x), we eventually get that R(−2/3) = 0, so −2/3 is root



of R(x); and (3x + 2) is a linear factor of R(x). From the long division,
R(x) = 3x3 + 11x2 + 21x + 10 = (3x + 2)(x2 + 3x + 5). The quadratic fac-
tor (x2 + 3x + 5) has roots −3/2± i

√
11/2. Summing up, the 5 roots/zeros of

P5(x) are : 0, 5/2, −3/2, −3/2 + i
√

11/2 and −3/2− i
√

11/2

Solution: P9(x) = x9 + 3x8 + 3x7 + 3x6 + 6x5 + 6x4 + 4x3 + 6x2 + 6x+ 2

(a) There are no sign changes in the sequence of coefficients, so P9(x) has no positive
real roots. There are 9 sign changes in the sequence of coefficients of P9(−x) =
−x9 + 3x8 − 3x7 + 3x6 − 6x5 + 6x4 − 4x3 + 6x2 − 6x+ 2, so P9(x) has 9, 7, 5, 3
or 1 negative real roots.

(b) If x is a root of P9(x), then |x| < 6
1

+ 1 = 7.

(c) If p
q

is a rational root of P9(x), then p divides 2 and q divides 1, so p
q
∈ ±{1, 2}.

(d) Since P9(x) has no positive real roots, the only possible rational roots are 1 and 2.
We have P9(−2) 6= 0 and P9(1) = 0; from the long division of P9(x) by (x+1), we
obtain P9(x) = (x+1)(x8+2x7+x6+2x5+4x4+2x3+2x2+4x+2) = (x+1)Q8(x).
We get Q8(−1) = 0 and then from the long division of Q8(x) by (x + 1), we
obtain Q8(x) = (x + 1)(x7 + x6 + 2x4 + 2x3 + 2x + 2) = (x + 1)Q7(x). Again,
we get Q7(−1) = 0, and from the long division of Q7(x) by (x + 1), we obtain
Q7(x) = (x + 1)(x6 + 2x3 + 2). We verify (−1)6 + 2(−1)3 + 2 6= 0. Therefore,
−1 is a root of multiplicity 3 of P9(x). So, P9(x) = (x + 1)3(x6 + 2x3 + 2) and
x6 + 2x3 + 2 has no rational roots.

To find roots of x6 + 2x3 + 2, we substitute y = x3 to obtain y2 + 2y + 2 = 0.
The 2 roots of the quadratic equation are y1,2 = −1± i.

If x3 = y1 = −1 + i =
√

2ei(
3π
4
+2kπ), then x = 6

√
2ei(

π
4
+ 2kπ

3 ) with k = 0, 1, 2. We

have 3 roots: x1 = 6
√

2ei(
π
4 ), x2 = 6

√
2ei(

π
4
+ 2π

3 ) = 6
√

2ei(
11π
12 ), x3 = 6

√
2ei(

π
4
+ 4π

3 ) =
6
√

2ei(−
5π
12 ).

If x3 = y2 = −1 − i =
√

2ei(
5π
4
+2kπ), then x = 6

√
2ei(

5π
12

+ 2kπ
3 ) with k = 0, 1, 2.

We have 3 roots: x4 = 6
√

2ei(
5π
12 ), x5 = 6

√
2ei(

5π
12

+ 2π
3 ) = 6

√
2ei(−

11π
12 ), x6 =

6
√

2ei(
5π
12

+ 4π
3 ) = 6

√
2ei(−

π
4 ).

Summing up, the 9 roots/zeros of P9(x) are: -1 (with multiplicity 3), 6
√

2ei(
π
4 ),

6
√

2ei(
11π
12 ), 6
√

2ei(−
5π
12 ), 6
√

2ei(
5π
12 ), 6
√

2ei(−
11π
12 ), 6
√

2ei(−
π
4 ).

12. Let

A =

 4 0
−1 2
2 1

 , B =

[
3 −1
0 2

]
, C =

[
1 5 2
3 1 5

]
, D =

−1 5 2
1 0 1
3 2 4

 , E =

 6 1 3
−1 1 2
5 1 3

 .
Evaluate each of the following expressions or explain why it is undefined.

(a) (2DT − E)A



(b) (4B)C + 3B

(c) DT (4ET )− 4(ED)T

Solution:

(a)

(2DT − E)A =

2

−1 1 3
5 0 2
2 1 4

−
 6 1 3
−1 1 2
5 1 3

 4 0
−1 2
2 1


=

−8 1 3
11 −1 2
−1 1 5

 4 0
−1 2
2 1


=

−27 5
49 0
5 7


(b) Undefined, since (4B)C is a 2× 3 matrix, which cannot be added to the 2× 2

matrix 3B.

(c) Since (ED)T = DTET , we have

DT (4ET )− 4(ED)T = 4DTET − 4DTET = 0.


