
ROOTS OF POLYNOMIAL EQUATIONS

In this unit we discuss polynomial equations. A polynomial in x of degree n, where n ≥ 0
is an integer, is an expression of the form

Pn(x) = anxn + an−1x
n−1 + · · · + a1x + a0 (1)

where an 6= 0, an−1, . . . , a0 are constants. When Pn(x) is set equal to zero, the resulting
equation

Pn(x) = anxn + an−1x
n−1 + · · · + a1x + a0 = 0 (2)

is called a polynomial equation of degree n. In this unit we are concerned with the
number of solutions of polynomial equations, the nature of these solutions (be they real or
complex, rational or irrational), and techniques for finding the solutions. We call values of
x that satisfy equation (2) roots or solutions of the equation. They are also called zeros
of the polynomial Pn(x).

When n = 1, equation (2) is called a linear equation (or equation of degree 1),

a1x + a0 = 0. (3)

Its only solution is x = −a0/a1.
Quadratic equations (equations of degree 2) are obtained when n = 2. It is customary

in this case to denote coefficients as follows

ax2 + bx + c = 0. (4)

They were solved in the material on Complex Numbers. In this unit we concentrate on
polynomials of degree three and higher.

The next simplest polynomial equation after linear and quadratic is the cubic,

ax3 + bx2 + cx + d = 0, (5)

and after that the quartic,

ax4 + bx3 + cx2 + dx + e = 0. (6)

There are procedures that give roots for both of these equations, but they are of so little
practical use in this day of the electronic calculator and personal computer, we relegate
them to the exercises at the end of this section (see Exercises 33 and 40). A more modern
approach is to use the analytic methods of this unit, if possible, or numerical methods. It is
interesting to note that no algebraic formulas can be given for roots of polynomial equations
that have degree greater than or equal to five. For such equations, it is usually necessary to
use numerical methods to find roots.

When an exact solution of a polynomial equation can be found, it can be removed from
the equation, yielding a simpler equation to solve for the remaining roots. The process by
which this is done is a result of the remainder and factor theorems.

Theorem 1 Remainder Theorem When a polynomial Pn(x) is divided by bx − a, the remainder is
Pn(a/b); that is, Pn(x) can be expressed in the form

Pn(x) = (bx − a)Qn−1(x) + Pn(a/b), (7)

where Qn−1(x) is a polynomial of degree n − 1.

Proof There is no question that when a polynomial of degree n is divided by bx− a, the
quotient is a polynomial of degree n − 1 and the remainder is a constant,
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Pn(x) = (bx − a)Qn−1(x) + R,

(long division tells us this). Substitution of x = a/b immediately yields R = Pn(a/b).

Example 1 Find the remainders when P (x) = x4 − 2x2 + x + 5 is divided by (a) x + 3 and (b) 2x + 3.

Solution (a) According to the remainder theorem,
the remainder is

P (−3) = (−3)4 − 2(−3)2 + (−3) + 5 = 65.
This is much easier than using the long division
to the right.
(b) Theorem 1 indicates that the remainder is

P (−3/2) = (−3/2)4 − 2(−3/2)2 + (−3/2) + 5 = 65/16.•

Polynomial Pn(x) and divisor bx − a in the remainder
theorem need not be real; they can be complex. We illustrate
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in the following example.

Example 2 Determine the remainder when P (x) = ix3 − 3x + 4 + i is divided by ix + 2.

Solution The remainder is

P (−2/i) = P (2i) = i(2i)3 − 3(2i) + 4 + i = 8 − 6i + 4 + i = 12 − 5i.•

An immediate consequence of the remainder theorem is the factor theorem.

Theorem 2 Factor Theorem bx − a is a factor of Pn(x) if and only if Pn(a/b) = 0.

The factor theorem is very useful in solving polynomial equations. It does not find
solutions, however. What it does do is simplify the problem each time a solution is found.
To illustrate, consider the quartic equation

P (x) = x4 + 2x3 + x2 − 2x − 2 = 0. (8a)

A moment’s reflection indicates that x = 1 satisfies the equation. The factor theorem then
implies that x− 1 is a factor of the quartic. The remaining cubic factor can be obtained by
long division or synthetic division (if you have learned it). The division can also be done
mentally. The result is

P (x) = x4 + 2x3 + x2 − 2x − 2 = (x − 1)(x3 + 3x2 + 4x + 2).

What this means is that equation (8a) can be replaced by

P (x) = (x − 1)(x3 + 3x2 + 4x + 2) = 0. (8b)

To find further solutions of quartic equation (8a), we need only examine the cubic x3 +3x2+
4x + 2 in (8b) for its zeros. Once we notice that a zero is x = −1, we may factor x + 1 from
the cubic and replace (8b) with

P (x) = (x − 1)(x + 1)(x2 + 2x + 2) = 0. (8c)

The remaining two solutions are given by the quadratic formula,

x =
−2±

√
4 − 8

2
=

−2 ±
√
−4

2
=

−2± 2i

2
= −1 ± i.

Thus quartic equation (8a) has two real solutions x = ±1 and two complex solutions x =
−1 ± i.

A solution of the equation 2x3 − x2 + x − 6 = 0 is x = 3/2 (we show how we found it
shortly). We therefore factor 2x − 3 from the cubic,
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(2x − 3)(x2 + x + 2) = 0.

The remaining two solutions are complex

x =
−1±

√
12 − 4(1)(2)
2

=
−1±

√
7i

2
.

The factor theorem enables us to remove a known solution from a polynomial equation,
thereby replacing the original polynomial with a polynomial of lower degree. This presup-
poses two things. First that the equation has a solution, and secondly that we can find it.
The following theorem addresses the first question.

Theorem 3 Fundamental Theorem of Algebra 1 Every polynomial of degree n ≥ 1 has exactly
n linear factors (which may not all be different).

For example, the quartic polynomial in (8a) has four different linear factors

x4 + 2x3 + x2 − 2x − 2 = (x − 1)(x + 1)(x + 1 + i)(x + 1 − i); (9)

the cubic polynomial x3 − 3x2 + 3x − 1 has three linear factors all the same,

x3 − 3x2 + 3x − 1 = (x − 1)3; (10)

and the following eighth degree polynomial has three distinct linear factors, but a total of
eight factors,

x8 + 7x7 − 86x5 − 95x4 + 363x3 + 486x2 − 540x − 648 = (x + 3)4(x − 2)3(x + 1). (11)

Each linear factor in (9), (10), or (11) leads to a zero of the polynomial. For (9), the
zeros are ±1 and −1 ± i; for (10), they are 1, 1, 1; and for (11), they are −3, −3, −3, −3,
2, 2, 2, −1. In the case of (10) and (11), there are repetitions. We say that x = 1 is a zero
of multiplicity 3 for the polynomial in (10); the multiplicity corresponds to the number of
times the factor x− 1 appears in the factorization. Each of the zeros in (9) is of multiplicity
1. In (11), x = −3 has multiplicity 4, the zero x = 2 has multiplicity 3, and x = −1 has
multiplicity 1. These examples suggest that the sum of the multiplicities of the zeros of
a polynomial is equal to the degree of the polynomial. This is confirmed in the following
alternative version of the Fundamental Theorem of Algebra.

Theorem 4 Fundamental Theorem of Algebra 2 Every polynomial of degree n ≥ 1 has exactly
n zeros (counting multiplicities).

Our discussions will be confined to polynomials with real coefficients, but Theorems 3
and 4 are valid even when coefficients are complex numbers. What is difficult to prove in
Theorem 4 is the existence of one zero. (This is usually done with material from a course
on complex function theory.) Once existence of one zero is established, the factor theorem
immediately implies that there are precisely n zeros, and that the polynomial can be factored
into n linear factors.

When coefficients of a polynomial are real, complex zeros must occur in complex con-
jugate pairs. This is proved in the next theorem.

Theorem 5 If z is a complex zero of a polynomial with real coefficients, then so also is z.

Proof Suppose z is a zero of P (x) = anxn + · · · + a1x + a0, where coefficients an, . . . , a0

are real. Then,

anzn + · · · + a1z + a0 = 0.

We show that P (z) = 0. If we take complex conjugates of both sides of this equation, and
use the results of Exercise 37 in the Complex Numbers unit,
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0 = anzn + · · · + a1z + a0

= anzn + · · · + a1z + a0 (part (a) of the exercise)
= anzn + · · · + a1z + a0 (part (c) of the exercise)
= anzn + · · · + a1z + a0 (part (e) of the exercise)
= P (z).

We have seen a number of examples of this result. The quartic equation (8) has two real
solutions x = ±1 and two complex conjugate solutions x = −1 ± i. The quartic equation
x4 + 5x2 + 4 = (x2 + 1)(x2 + 4) = 0 has two pairs of complex conjugate roots, x = ±i and
x = ±2i.

When a real polynomial P (x) has a pair of complex zeros, say x = a ± bi, then two
linear factors of P (x) are x − a − bi and x − a + bi; that is, P (x) can be expressed in the
form

P (x) = (x − a − bi)(x − a + bi)Q(x), (12a)

where Q(x) is a polynomial of degree two less that P (x). If the complex factors are multiplied
together the result is

P (x) = [x2 − 2ax + (a2 + b2)]Q(x), (12b)

where −2a and a2 + b2 are real. In other words, the pair of complex linear factors in (12a)
is equivalent to the real quadratic factor in (12b). Since this can be done for each and every
pair of complex conjugate roots, we have the following result.

Theorem 6 Every real polynomial can be factored into the product of real linear and irreducible real
quadratic factors.

What we mean by irreducible is that the quadratic factor cannot be factored into real
linear factors. For instance, x2 + 7 is an irreducible quadratic, x2 − 7 is not.

EXERCISES

In Exercises 1–4, what is the remainder when the first polynomial is divided by the second?
1. x4 + 3x3 − 2x + 1, x − 2 2. x3 − 2x2 + 4x + 5, x + 1
3. x4 − 3x3 + 2x2 + x + 10, 3x + 4 4. x3 + 3x2 − 2x + 2, 3x − 1

In Exercises 5–8, find a polynomial with as low a degree as possible with the given zeros. Assume each zero
has multiplicity 1 unless otherwise specified.
5. 3, −2, 4 6. 2 (multiplicity 2), −3, 4 (multiplicity 3)
7. −1 (multiplicity 3), 4 8. 1, −1, 3, −2 (multiplicity 2)

9. Can x4 + 5x2 + 2 have a real zero?

10. If −2 + 3i is a zero of the polynomial x3 + 7x2 + 25x + 39, find its other zeros.

11. If 1 + i is a zero of the polynomial x4 + x3 + 3x2 − 8x + 14, find its other zeros.

∗12. Prove that a polynomial of odd degreee with real coefficients must have at least one real zero. Is this also
true for complex polynomials?

∗13. Prove that if P (x) is a polynomial having only even powers of x, and P (a) = 0, then P (x) is divisible by
x2 − a2.
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In Exercises 14–18, find k in order that the first polynomial be a factor of the second.
∗14. x − 2, x3 + kx2 + 5x − 10 ∗15. x + 1, x3 + 4x2 + kx + 9
∗16. x + 3, x4 + 7x3 + kx2 − 21x − 36 ∗17. 2x − 3, 2x4 + kx3 − 6x2 − 8x − 15

∗18. 2x + 1, 6x4 + x3 + 53x2 + kx − 9

∗19. Find the remainder when x999 + 2x998 + x2 − 1 is divided by x + 1.

∗20. For what value(s) of k will the polynomial 5x5 +4x4 + kx3 +2x2 +x+1 have remainder 15 when divided
by x − 1.

∗21. Find the value(s) of k so that k is the remainder when x3 − kx2 − 14x + 15k is divided by x − 5.

∗22. Find the value(s) of k so that k2 is the remainder when 2x3 − x2 + (k + 1)x + 10 is divided by x + 1.

In Exercises 23–25, find h and k in order that the first two polynomials be factors of the third.

∗23. x + 4, x − 6, x4 + hx3 − 44x2 + kx + 576

∗24. x − 2, x − 5, x5 − 15x4 + hx3 + kx2 + 274x− 120

∗25. x + 3, x − 3, x6 + 16x4 + hx3 + kx2 − 1296

∗26. Show that when α1, α2 and α3 are the zeros of a cubic polynomial ax3 + bx2 + cx + d, then:

(a) α1 + α2 + α3 = − b

a

(b) α1α2 + α1α3 + α2α3 =
c

a

(c) α1α2α3 = −
d

a

∗27. (a) What are the equations in Exercise 26 for the cubic polynomial P (x) = x3 + 3x2 + 2x + 5.
(b) The equations in (a) represent three equations in the three zeros of P (x). If we solve them, we find

the three zeros. Eliminate two of the zeros to find a single equation in the remaining zero. How do
you like the equation?

∗28. This exercise generalizes the results of Exercise 26. Suppose that the zeros of a polynomial anxn + · · ·+
a1x + a0 are α1, α2,. . ., αn (where some of the αj may be repeated).
Show that:
(a) α1 + α2 + · · · + αn = −an−1

an

(b) α1α2 · · ·αn = (−1)n a0

an

(c) the sum of the products of the roots in pairs is an−2/an; that is,
(
α1α2 + · · · + α1αn

)
+

(
a2α3 + · · · + α2αn

)

+ · · · +
(
αn−2αn−1 + αn−2αn

)
+ αn−1αn =

an−2

an
.

∗29. Show that the only way anxn + an−1x
n−1 + · · · + a1x + a0 = 0 can have n + 1 distinct zeros is for all

coefficients to be zero.

∗30. Suppose that P1(x) and P2(x) are polynomials of degree n. Use the result of Exercise 29 to show that if
P1(x) = P2(x) at n + 1 distinct points, then P1(x) = P2(x) for all x.

∗31. Give a formal definition of what it means for x = a to be a zero of multiplicity k for a polynomial P (x).

∗32. Suppose n ≥ 2 points are chosen on the circumference of a circle. Each point is joined to every other
point. This divides the interior of the circle into various parts. Let N(n) be the maximum number of
parts so formed. Drawings indicate that N(1) = 1, N(2) = 2, N(3) = 4, N(4) = 8, and N(5) = 16. One
might be led to believe that N(n) = 2n−1. This is however incorrect since N(6) = 31. It is known that
the formula for N(n) is a quartic polynomial. Find it. What is N(7)?
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∗33. In this exercise we develop a procedure for solving cubic equations. Such equations can always be
expressed in the form

x3 + bx2 + cx + d = 0.

(a) Show that the change of variable y = x + b/3 replaces the cubic in x with the following equation in y

y3 + py + q = 0, where p = c − b2

3
, q = d − bc

3
+

2b3

27
.

This equation is called the reduced cubic (reduced in the sense that there is no y2 term).
(b) Show that the change of variable y = z − p/(3z) replaces the reduced cubic in y with

z6 + qz3 −
p3

27
= 0,

a quadratic equation in z3. Once this equation is solved for the two values of z3, cube roots yield values
for z, and the transformation x = z − p/(3z) − b/3 gives solutions of the original cubic. At most three
distinct values result. Should values of z3 be complex, it would be necessary to take cube roots of complex
numbers. Although we learned how to do this in Unit ‘Complex Numbers’, the cubics in Exercises 34-39
are specially chosen so that z3 is real.

In Exercises 34–39, use the procedure in Exercise 33 (and the suggestions) to find solutions for the cubic
equation.

∗34. x3−6x2+11x−6 = 0 (In this exercise, it is not necessary to proceed past the substitution y = x+b/3.)

∗35. x3 + 12x2 + 48x + 64 = 0

∗36. x3 − 6x2 + 24x + 31 = 0

∗37. x3 + 4x2 + 12x + 9 = 0

∗∗38. x3 − 2x2 + 5x − 10 = 0 Show that the equation in z is 729z6 − 5292z3 − 1331 = 0, and that both real
solutions for z3 lead to x = 2. Now factor x − 2 from the cubic.

∗39. x3 − 23x2 − 21x− 72 = 0 Show that the equation in z is 729z6 − 826 875z3 + 207 474 688 = 0, and that
both real solutions for z3 lead to x = 24. Now factor x − 24 from the cubic.

∗40. In this exercise we develop a procedure for solving quartic equations. Such equations can always be
expressed in the form

x4 + bx3 + cx2 + dx + e = 0.

(a) Show that this equation can be rewritten
(

x2 +
bx

2

)2

=
(

b2

4
− c

)
x2 − dx − e.

(b) Verify that when (x2 + bx/2)y +y2/4 is added to both sides of the equation in (a), it can be expressed
as

(
x2 +

bx

2
+

y

2

)2

=
(

b2

4
− c + y

)
x2 +

(
by

2
− d

)
x +

(
y2

4
− e

)
.

(c) The right side of the equation in (b) is quadratic in x, and can always be factored. But because the
left side is a perfect square, these factors must be identical. It follows that the discriminant must
vanish. Show that this requires y to satisfy the cubic equation

y3 − cy2 + (bd − 4e)y + (4ce − b2e − d2) = 0,

called the resolvent equation. When y is a solution of the resolvent equation, corresponding values for
x can be obtained by substituting into the equation in (b) and taking square roots. It can be shown that
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all three solutions for y lead to the same four solutions of the quartic. Usually we would choose a real
solution for y.

In Exercises 41–45, use the procedure of Exercise 40 to solve the quartic equation.

∗41. x4 − 16 = 0 (This is a very simple example.)

∗42. x4 − 5x2 + 4 = 0

∗43. x4 + 4x3 + 2x2 − 4x + 1 = 0

∗44. x4 + 7x3 + 9x2 − 21x− 36 = 0 (y = 9 is a solution of the resolvent equation.)

∗45. x4 − 3x3 − 3x2 + 11x− 6 = 0

Answers
1. 37 2. −2 3. 486 4. 46/27 5. (x − 3)(x + 2)(x − 4)
6. (x − 2)2(x + 3)(x − 4)2 7. (x + 1)3(x − 4) 8. (x − 1)(x + 1)(x − 3)(x + 2)2

9. No 10. −2− 3i, −3 11. 1− i, (−3/2)± (
√

19/2)i 12. No
14. −2 15. 12 16. 9 17. 9 18. 9 19. 1 20. 2 21. 5
22. 2, −3 23. −4, 96 24. 85, −225 25. 0, −81 27. (b) β3 + 3β2 + 2β + 5 = 0
31. P (x) = (x − a)kQ(x) where Q(a) 6= 0
32. (n4 − 6n3 + 23n2 − 18n + 24)/24 34. 1, 2, 3 35. −4 of multiplicity 3
36. −1, (7/2) ± (5

√
3/2)i 37. −1, (−3/2) ± (3

√
3/2)i 38. 2, ±

√
5i

39. 24, (−1/2)± (
√

11/2)i 41. ±2, ±2i 42. ±1, ±2
43. −1±

√
2 both of muliplicity 2 44. −3, −4, ±

√
3

45. 1 of multiplicity 2, −2, 3
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