Introduction to Electric Circuits

System of Units:

The International System of Units, Systeme International des Unites (SI unites), is used when analyzing electric circuits.

tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
milli	m	10^{-3}
micro	m	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
fempto	f	10^{-15}

Electric Charge

Atoms possess:

- electrons --> negative charge
- protons --> positive charge
- neutrons --> no charge

Charge is measured in coulombs (C)

Properties:

1. Charge is conserved, and is never created or destroyed.
2. Charge is quantized.

The smallest unit charges are those possessed by electrons and protons. electron $->q_{e}=-1.602 \times 10^{-19} \mathrm{C}$ proton $->q_{p}=+1.602 \times 10^{-19} \mathrm{C}$

Note: Their charges are equal in magnitude but opposite in sign.

Taking the inverse, we see that 1 C is the charge on 6.2×1018 electrons. Thus, 1 C is a very large amount of charge.

Electric Force

$F=k \frac{q_{1} q_{2}}{d^{2}}$
where q_{1} and q_{2} are the charges on the bodies,
d is the distance separating the bodies, and k is the Coulomb constant.
$k=9.9875 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \quad k=\frac{1}{4 \pi \varepsilon_{0}}$
where ε_{0} is the permittivity of free space ($\varepsilon_{0}=8.8542 \times 10^{-12}$ $\mathrm{C}^{2} / \mathrm{Nm}^{2}$).
Like charges repel and opposite charges attract

Example: What is the force of attraction between an electron and a proton which are 1 meter apart?
$F=k \frac{q_{1} q_{2}}{d^{2}}=8.9875 \times 10^{9} \frac{N 2 h^{2}}{\ell^{2}} \times \frac{\left(-1.602 \times 10-{ }^{19} \ell\right)\left(1.602 \times 10-{ }^{19} \ell\right)}{\frac{(1 m)^{2}}{(19}}$
$=2.307 \times 10^{-28} \mathrm{~N}$

Example: What is the force on a 1 C charge by another 1 C charge separated by 1 m .?
$F=k \frac{q_{1} q_{2}}{d^{2}}=9 \times 10^{9} \frac{N m^{2}}{C^{2}} \times \frac{(1 C)(1 C)}{(1 m)^{2}}=9 \times 10^{9} N$

Electric Field and Voltage:

A charge can be said to produce an "electric field" which causes forces on other charges.
The electric field due to a charge Q:

$$
|\vec{E}|=k \frac{Q}{r^{2}} \quad \vec{F}=q \vec{E}
$$

If the charge q moves due to the force F, work is done on it. Voltage is a measure of the work done on a charge q when it moves in an electric field between 2 points
(say a and b).
$V_{a b}=\frac{W_{a b}}{q}$
The voltage difference between two points A and B is 1 V if 1 J of work is required to move 1 C of charge from A to B . Thus, $V_{a b}=1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}=$ Work / Charge
The unit of voltage is the volt (V)

In a circuit, voltage is the potential for doing work, and is the force which moves electric charge.
Higher voltages will push/pull more electrons.
Voltage is always measured between two points.
Sometimes one of the points is assumed to be a standard location (i.e. earth).
When people say voltage at point X is 5 V , they mean that the voltage between X and earth is 5 V .
Note: Electrons are attracted to and want to flow towards high potential energies, i.e. more positivevoltages.
The current vector is drawn from the more positive voltage towards the more negative voltage, i.e. opposite to the electron flow.

Voltage is a vector and so has magnitude and direction. Voltage is not a fixed quantity, but it is a relative quantity. i.e. an object's voltage is always in reference to another object's voltage.

Equivalent to

Examples of Electric Voltage:

107-10 $\mathrm{V} \quad$ Lightning bolt
10 $0^{5}-10^{6} \quad V$ High voltage transmission line
$10^{4} \mathrm{~V} \quad$ Voltage on a TV picture tube
220 V Household wiring in Europe
120 V
Household wiring in North America

