
EXPERIMENT 1.2

C File System File Functions

Propose of the experiment

 Continue from previous experiment to be
familiar with CCS environment

 Write a C language file input / output (CIO)
program to read in a data file and write out a
data file

 Understand how binary data will be handled
by CCS differently than the ASCII text data

 The CIO feature introduced in this experiment
will be used in future experiments

Start CCS
(Example: Code Composer Studio Version 5)

Create workspace
(Example: C:\User\DSP_Experiment\Ch1\Exp1.2)

Go to CCS

Create a new project
(File -> New -> CCS Project)

Create a new project name
(Example: fileIO)

Select C5500 as the new project

Go to next
(We do not need any additional settings)

Set up the project
(Executable output, Device C5505, Library rts55x.lib)

Project: fileIO

Copy files to workspace

 Copy the following files cam with the book to workspace (folder fileIO)
 lnk.cmd

 fileIO.c

 tistdtypes.h

 C55DSPUSBStickAudioTest.pcm

 Create a folder under Exp1.2 and name the folder “output”

CCS project
(The fileIO.c and lnk.cmd are included in the project)

Setup build environment

 Right click on fileIO then select Property

 Select and expand C/C++ Build option

 Select Settings, then Runtime Options

 Set type size to 16 and memory model to
large

Set target configuration

 Right click on Project->New->Target
Configuration File

 Create a target configuration file name,
fileIO.ccxml

 Select Texas Instruments XDS100v2 USB
Emulator

 Check the box for USBSTK5505

 Save the configuration

Launch target

 From Target Configuration window

 Open Project and right click on fileIO.ccxml

 Select Launch target configuration

 In Debug window, right click on Texas
Instruments XDS100v2 USB
Emulator_0/C55xx

 Select Connect Target to launch the target

 You shall see target reset and configured
automatically

Build the project
(Project->Build All)

Load program fileIO.out

 From CCS Run->Load->Load Program

 Blows and select the executable file
fileiO.out from
C:\Users\DSP_Experiments\Ch1\Exp1.2\fileI
O\fileIO.out

 Click Open and then OK to load the program

Once the program is loaded
(Program counter is at entry point of function main())

Use Resume Run the program
(CCS console displays experiment messages)

Verify the program result

 After running the experiment, your program
shall create a WAV file named as
“C55DSPUSBStickAudioTest.wav” in the
output folder that you have created

 Play this WAV file using a player such as
Windows Media Player. You shall hear the
male voice saying: “C55 DSP USB Stick Audio
Test”.

New experiment assignments

 Write a C program that will
 Read the input data file, C55DSPUSBStickAudioTest.pcm, as Exp1.2
 Open a file to write the data in ASCII integer, the name of the output file can be

“C55DSPUSBStickAudioTest.xls”
 hint: use fprintf() function to replace fwrite()
 Convert every two -byte input data values into an integer (16-bit) number as:
 o = ch[j] | (ch[j+1]<<8); // where j = 0, 2, ….
 and write input data in ASCII integer to output file
 Build and run the program to generate your output file
 using Microsoft Excel to open the output file, select the data column to plot the

data to view the waveform of “C55DSPUSBStickAudioTest”, see next page

 Write a C program that will
 Read the input file “C55DSPUSBStickAudioTest.xls” created in above experiment

and generated a WAV file output
 Play the WAV file on a computer and listen to the audio.

Q1: Does it sound the same as the WAV file output obtained from the experiment given
in section 1.5.2 (Exp1.2)?

The new experiment result
(The waveform of the audio C55 DSP USB Stick Audio Test)

Programming quick review 1

 This experiment used a few more C file IO functions, such as fopen(), fread(),
fwrite (), and fclose(). These functions are defined in the header file stdio.h.

 The fopen() and fclose() are used to open and close the files used in the
experiment. The fread() and fwrite() are used to read data and write data from
and to the input and output devices.

 The fopen() function has two arguments, the first argument is a character string
for the name of the file and the second argument is also a character string telling
the function how to use the file opened. The second argument “rb” and “wb”
used in the fileIO experiment are for reading binary data in and writing binary
data out.

 For any file opened, it must be properly closed after the operation. This can be
done by the fclose() function.

 The fread() and fwrite() functions have 4 arguments. The fread reads from
stream (4th argument) into the array (1st argument), the number of data (3rd
argument) with the size of (2nd argument). The fwrite writes data in the array (1st
argument) to the stream (4th argument), the number of data (3rd argument) with
the size of (2nd argument).

 The fseek() and rewind() functions are used to set the starting point of the files
for writing the output data. These functions help manage the file access.

Programming quick review 2

 C language has many different data types.

 To improve portability of the programs written for one type of computer
devices to another, we use a unique type define header file, tistdtypes.h,
to specify the data type to avoid any ambiguity.

 The following data types are used in this experiment
 Uint8 (unsigned 8-bit integer data, unsigned char)
 Uint32 (unsigned 32-bit integer data, unsigned long)
 FILE * (file pointer)

 Special notice: fread() and fwrite() functions in CCS these functions will
only read or write byte size (8-bit) binary data during memory access.
When the fread() function reads a 16-bit data into a data memory
location, for example 0x1234, it reads ox34 first then 0x12, and place
them into memory ch[0]=0x34 and ch[1]=0x12. When fwrite() function
writes data 0x1234. It only writes 0x34 but not write 0x12. So it is
important to convert each 16-bit data into two 8-bit data and read or
write two bytes for experiment.

References

 C Programming Language (2nd Edition), by
Brian Kernighan and Dennis Ritchie, Prentice
Hall

