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Abstract

The generalized linear mixed models (GLMMs) for clustered data are stud-

ied when covariates are measured with error. The most conventional mea-

surement error models are based on either linear mixed models (LMMs) or

GLMMs. Even without the measurement error, the frequentist analysis of

LMM, and particularly of GLMM, is computationally difficult. On the other

hand, Bayesian analysis of LMM and GLMM is computationally convenient

in both cases without and with the measurement error. Recent introduction

of the method of data cloning has made frequentist analysis of mixed models

also equally computationally convenient. As an application of data cloning,

we conduct a frequentist analysis of GLMM with covariates subject to mea-

surement error model. The performance of the proposed approach which

yields to maximum likelihood estimation is evaluated by two important real

data types, Normal and logistic linear mixed measurement error models, and

also through simulation studies.
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1. Introduction

Generalized linear mixed models (GLMMs) have become very popular for

analyzing correlated and overdispersed data (Breslow and Clayton, 1993).

Depending on the data, either linear mixed models (LMMs) (Searle et al.,

1992; Torabi et al., 2009; Datta et al., 2010; Torabi, 2011, 2012a) or GLMMs

(McCulloch et al., 2008) are used. Parameters of the LMM can be estimated

using either maximum likelihood (ML) or restricted ML (REML), among

other approaches. A potential difficulty in making inference in GLMMs

is that a full-likelihood analysis is burdened by often intractable numeri-

cal integration (McCulloch, 1997). Parameter estimation under GLMM is

then extremely difficult using the frequentist approach. The Bayesian ap-

proach, especially the non-informative Bayesian approach, has become quite

popular because of its computational convenience. Implementation of the

non-informative Bayesian approach, however, requires substantial care. The

inferences may also depend on the choice of the prior.

A common problem for analyzing correlated data is also the presence of

covariate subject to measurement error (Carroll et al., 2006). The measure-

ment error with independent observations has been extensively reviewed in

the literature in the context of linear models (Fuller, 1987). The GLMMs and

non-linear models with covariates subject to measurement error have been

also studied in the literature (Carroll et al., 2006). In frequentist approach,

there are a few studies on the effects of measurement error to analyze the

clustered data which are mainly based on some approximation approaches
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such as regression calibration (RCA) and simulation based such as simulation

extrapolation (SIMEX) (Wang et al., 1998). However, likewise GLMMs, the

Bayesian approach especially the non-informative Bayesian approach, has

become also quite popular in generalized linear mixed measurement error

models (GLMMeMs) because of its computational convenience (Carroll et

al., 2006).

Recently, Lele et al. (2007) introduced an alternative approach, called

data cloning (DC), to compute the ML estimates and their standard errors for

general hierarchical models. Similar to the Bayesian approach, data cloning

avoids high dimensional numerical integration and requires neither maxi-

mization nor differentiation of a function. Extending this work to GLMM

situation, Lele et al. (2010) described an approach to compute prediction and

prediction intervals for the random effects. Torabi (2012b) also extended the

DC approach to the GLMM with two components of dispersion. The data

cloning approach was also extended to cross-sectional and time-series data

in the context of small area estimation (Torabi and Shokoohi, 2012).

The data cloning approach, thus, is well suited to offer a frequentist

approach in the context of measurement error. The advantages of DC are that

the model parameters estimate are independent of the choice of priors, non-

estimable parameters are flagged automatically and possibility of improper

posterior distribution is completely avoided.

In this paper, we use data cloning in the context of GLMMs with covari-

ates subject to measurement error. We first describe the measurement error

problem in general (Section 2). We, then, describe how data cloning can
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be used to analyze GLMMeMs (Section 3). In Section 4, we compare the

performance of data cloning which yields to maximum likelihood estimation

(MLE) with the non-informative Bayesian approach for two real datasets

when the responses are Normal and binary. In Section 5, the performance

of data cloning is also studied through two simulation studies. Finally, some

concluding remarks are given in Section 6.

2. Generalized linear mixed measurement error model

The basic model in measurement error can be described as follows. Let yij

be the variable of interest for the jth unit within ith cluster (i = 1, ...,m; j =

1, ..., ni). The yij are assumed to be conditionally independent with exponen-

tial family p.d.f.

f(yij|θij, ϕij) = exp{(yijθij − c(θij))/ϕij + d(yij, ϕij)}, (2.1)

(i = 1, ...,m; j = 1, ..., ni). The density (2.1) is parameterized with respect

to the canonical parameters θij, known scale parameters ϕij and functions

c(·) and d(·). The exponential family (2.1) covers well-known distributions

including Normal, binomial and Poisson distributions. The GLMM of yij

given xij and zij is constructed by assuming that the conditional mean θij

is related to xij and zij through a generalized linear model,

g(θij) = β0 + x′
ijβx + z′

ijβz + ui (i = 1, ...,m; j = 1, ..., ni), (2.2)

where g(·) is a monotonic differentiable link function, xij(p1 × 1) are unob-

served true covariates, zij(p2×1) are observed covariates, β0,βx(p1×1), and

βz(p2 × 1) are vector of unknown regression coefficients, and ui are random
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effects with ui
i.i.d.∼ N(0, σ2

u). We also need to define the measurement error

structure. In general, there are two different modeling approaches that dif-

fer according to distributional assumptions made on error-prone covariates:

structural and functional approaches to modeling GLMMeMs. In structural

approach, the specific assumptions are made about the distributional struc-

ture of the unobserved covariates, while in functional approach nothing is

assumed about the unobserved covariates.

The most convenient structure is additive error, so that

X ij = xij + V ij, (2.3)

where V ij are independent N(0,Σvv) which are also independent of xij.

In this paper, we consider the structural approach to modeling GLMMeMs

which xij are not observed, butX ij are observed instead, with xij ∼ N(µx,Σxx).

When X and x are scalar, we write the measurement variance Σvv simply as

σ2
v . Define yi = (yi1, ..., yini

)T ,xi = (xi1, ...,xini
)T , and similarly for zi,X i,

and V i. The joint integrated likelihood in the ith cluster is

Li(yi,X i|zi) =

∫
Li(yi|xi, zi)Li(X i|xi, zi)Li(xi|zi)dxi,

where Li(xi|zi) is the likelihood function of xi and Li(X i|xi, zi) is the error

distribution, which is often assumed to be independent of zi as in (2.3). The

dependence of the likelihood on the within-cluster conditional distribution

of the unobserved x’s leads to issue of model robustness. In particular, the

problem of model misspecification may occur in most applications including

but not limited to LMM or GLMM and it involves not only the distribution

of the unknown x, but also a more general problem starting with linear model
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in y and involving all the components of the likelihood function (Roeder et

al., 1996; Carroll et al., 1999a, 1999b; Guolo, 2008a, 2008b).

It has been shown that ignoring the measurement error may result in

misspecifying the structure of both fixed and random effects. The cluster

size ni also plays an important role in the asymptotic bias in MLE under

a misspecified model as m → ∞ (Wang et al., 1998). Suppose that xij is

scalar, and define the vector xi = (xi1, ..., xini
)′, and zi,X i,V i are defined

similarly, and also assume that

xi = 1ni
η0 + ziηz + exi,

where 1ni
is an ni × 1 vector of ones and exi given zi is Normal variate with

mean 0 and variance-covariance Σxxi. We also define the reliability matrix by

Λi = Σxxi{Σxxi + cov(V i)}−1. Then

xi = (I i − Λi)(1ni
η0 + ziηz) + ΛiX i + 1ni

u∗
i ,

or

xij = α0j + η
′

zz
′

iαzj +X
′

iαwj + u∗
i ,

for some α0j,αzj,αwj, and u∗
i is independent of ui and X i (Wang et al.,

1998). It then follows from (2.2) that

g(θij) = β0 + (α0j +X ′
iαwj + η

′

zz
′

iαzj + u∗
i )βx + zijβz + ui. (2.4)

It is clear by comparing (2.2) and (2.4) that the variance structure of the xij

plays an important role when properly handling a GLMMeM.
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3. Inference using data cloning

Let y = (y1, ...,ym)
′ be the observed data vector and, conditionally on

the random effects, b, assume that the elements of y are independent and

drawn from a distribution in exponential family with parameters α1. It is

also assumed that distribution for b depends on parameters α2 :

yi|b ∼ fyi|b
(yi|b,α1)

b ∼ gb(b|α2). (3.1)

The goal of the analysis is to estimate the model parameters α = (α1,α2)
′

and predict the random effects b or its function. The likelihood of yi given

α is given by

L(α;y) =

∫ m∏
i=1

fyi|b
(yi|b,α1)gb(b|α2)db.

To illustrate the DC approach, we start with standard Bayesian approach

to inference for hierarchical models. Denote π(α) as prior distribution on the

parameter space. The posterior distribution π(α|y) is given by

π(α|y) = L(α;y)π(α)

C(y)
, (3.2)

where C(y) =
∫
L(α;y)π(α)dα is the normalizing constant. There are com-

putational tools, Markov chain Monte Carlo (MCMC) algorithms, that fa-

cilitate generation of random variates from the posterior distribution π(α|y)

without computing the integrals in the numerator or the denominator of

(3.2)(Gilks et al., 1996; Spiegelhalter et al., 2004).

The DC method uses the Bayesian computational approach for frequen-

tist purposes. In DC, one pretends that the observations y are repeated
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independently by K different individuals and all these individuals obtain ex-

actly the same set of observations y called y(K) = (y,y, ...,y). The posterior

distribution of α conditional on the data y(K) is then given by

πK(α|y(K)) =
{L(α;y)}Kπ(α)

C(y(K))
, (3.3)

where C(y(K)) =
∫
{L(α;y)}Kπ(α)dα is the normalizing constant. The

expression {L(α;y)}K is the likelihood forK copies of the original data. Lele

et al. (2007, 2010) showed that, for K large enough, πK(α|y(K)) converges to

a multivariate Normal distribution with mean equal to the MLE of the model

parameters and variance-covariance matrix equal to 1/K times the inverse

of the Fisher information matrix for the MLE. Hence, this distribution is

nearly degenerated at the MLE α for large K. Moreover, the sample mean

vector of the generated random numbers from (3.3) provides the MLE of the

model parameters, and K times their sample variance-covariance matrix is

an estimate of the asymptotic variance-covariance matrix for the MLE α̂.

Lele et al. (2010) also provided various checks to determine the adequate

number of clones K. For instance, one may plot the largest eigenvalue of the

posterior variance as a function of the number of clones K to determine if the

posterior distribution has become nearly degenerate. As another criterion, it

is approximately true that with increasing number of clones, we have

(α− ᾱ)
′
V −1(α− ᾱ) ∼ χ2

p, (3.4)

where V is the variance of the posterior distribution and p is the dimension

of α. One may compute the following two statistics: a) ζ = 1
B

∑B
b=1(Ob −

Eb)
2, where Ob and Eb are observed and estimated quantiles for χ2

p random

variable, and b) r̃2 = 1 − ρ2, where ρ is the correlation between (Ob, Eb).
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If these statistics are close to zero, it indicates that the approximation (3.4)

is reasonable.

3.1. Prediction of random effects

Prediction of random effects, particularly from the frequentist viewpoint,

is usually problematic. If the parameters α are known, then one can clearly

use the conditional distribution of b, the latent variables, given the observed

data. That is, one can use π(b|y,α∗) where α∗ is the true value of the

parameter. A naive approach, when α is estimated using the data, is to use

π(b|y, α̂). However, this approach does not take into account the variability

introduced by the model parameter estimates. An approach that has been

suggested in the literature (e.g., Hamilton, 1986; Lele et al., 2010) to take

into account the variation of the estimator is to use the density:

π(b|y) =
∫
f(y|b,α1)g(b|α2)ϕ(α, α̂, I−1(α̂))dα

C(y)
, (3.5)

where ϕ(., µ, σ2) denotes Normal density with mean µ and variance σ2, which

are equal to the MLE and the inverse of the Fisher information matrix here.

In this paper, we obtain the prediction of b using the density in equation

(3.5) along with MCMC sampling.

In this paper, the performance of DC and hierarchical Bayes (HB) is eval-

uated through data analysis and simulation studies. In general, the vague,

but proper, priors are used for regression effects and variance components.

In particular, the independent Normal distribution is assigned for regression

coefficient with zero mean and variance 106, and gamma distribution for the

inverse of variance component with shape and scale parameter 0.001. To
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monitor the convergence of the model parameters, we use several diagnostic

methods implemented in the Bayesian output analysis (BOA) program (Smith,

2007), a freely available package created for R. We also use diagnostic meth-

ods described in Section 3, implemented in dclone package (Sólymos, 2010)

in R, to monitor the convergence of the model parameters in terms of number

of clones (K).

4. Data analysis

4.1. OPEN study

We study the performance of data cloning approach by applying to a real

dataset from the National Cancer Institute’s OPEN Study, which is one of

the largest biomarker studies ever done (Subar et al., 2001, 2003; Kipnis et

al., 2003). In the National Cancer Institute’s OPEN Study, one interest is to

measure the logarithm of dietary protein intake. However, true long-term log-

intake x can not be observed in practice. Instead, a biomarker of log-protein

intake X, namely urinary nitrogen, is measured. In this study, m = 223

subjects had replicated urinary nitrogen measurements. There is evidence

from feeding studies that the protein biomarker captures true protein intake

with added variability. Then, the classical measurement error model (2.3)

holds in this context. Let xi be the true log-protein intake for individual i,

and let Xij be the jth biomarker log-protein measurement for individual i.

The classical measurement error model is given by

Xij = xi + Vij. (4.1)
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Each individual completed up to two (ni = 2) food frequency questionnaires

(FFQ) which measured reported protein intake, and also up to two biomark-

ers for protein intake. Let yij denotes the logarithm of FFQ, the model is

then given by

yij = β0 + β1xi + ui + ϵij, (i = 1, ...,m; j = 1, ..., ni), (4.2)

where ui ∼ N(0, σ2
u), ϵij ∼ N(0, σ2

ϵ ), Vij ∼ N(0, σ2
v), xi ∼ N(µxi

, σ2
x) with

µxi
= α0 + α1Agei + α2BMIi where Agei and BMIi are age and body mass

index (bmi) of individual i.

Table 1 shows the estimates of the model parameters by employing MLE

and HB approaches. It seems that for some model parameters the MLE

provides better results than HB in terms of efficiency, noting that the MLE

results do not also depend on the choice of priors unlike the HB approach. In

particular, the relative efficiency of MLE compared to HB, var(α̂HB)/var(α̂MLE),

ranges from %100 to %291. For this specific application, we used K = 40

to obtain MLE, and the number of iterations for convergence of the model

parameters was 15, 000.

4.2. Framingham Heart Study

We also study the performance of data cloning by applying to a real

dataset (Framingham Heart Study) which has been studied by Kannel et al.

(1986), among others. Note that the Framingham Heart Study is a logistic

measurement error model without random effects, as indicated later in this

section, which falls in the class of generalized linear measurement error model.

However, since this study is very popular in the context of measurement error,
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Table 1: The estimates (and standard errors) of the model parameters in

OPEN Study for MLE and HB methods.

Parameter MLE HB

β0 2.45(0.867) 1.57(1.472)

β1 0.48(0.166) 0.65(0.283)

α0 5.72(0.367) 5.69(0.367)

α1 -0.01(0.006) -0.01(0.006)

α2 -0.003(0.008) -0.002(0.008)

σ2
x 0.27(0.052) 0.23(0.058)

σ2
u 0.33(0.088) 0.22(0.110)

σ2
ϵ 0.87(0.083) 0.93(0.100)

σ2
v 0.46(0.044) 0.50(0.056)

we decided to analyze it using the data cloning approach; noting that more

complex models (GLMMeMs) will be studied with an extensive simulation

study in Section 5.2.

The Framingham Study is a large study following individuals for the

development of coronary heart disease (CHD). It consists of a series of exams

taken over two years. We use exam number 3 as the baseline. There are

m = 1615 men aged between 31 to 65 in this dataset, with the outcome,

y, indicating the occurrence of CHD within an eight-year period following

exam 3; there were 128 cases of CHD. Predictors employed in this example

are the patient’s age at exam 2, smoking status at exam 1, serum cholesterol

at exam 3, and systolic blood pressure (SBP), the last is the average of
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two measurements taken by different examiners during the same visit. In

this analysis, the error-free covariates z, are age, smoking status, and serum

cholesterol. The analysis uses the replicate SBP measurements from exams 2

and 3 for all study participants. The main surrogate X is the measurement of

log(SBP − 50). In particular, the transformed data are Xij, where i denotes

the individual and j = 1, 2 refers to the transformed SBP at exams 2 and 3,

respectively. The overall surrogate is the sample mean for each individual.

The model is then given by

logit(pi) = β1Agei + β2Smokei + β3Choli + β4xi,

Xij = xi + Vij,

where pi = Pr(yi = 1|xi, zi), xi ∼ N(µx, σ
2
x) and Xij|xi ∼ N(xi, σ

2
v). The

model parameters in this case are α = (β1, β2, β3, β4, σ
2
x, σ

2
v)

′
. We then es-

timate the model parameters and corresponding standard errors by MLE

through data cloning as well as HB method. For this specific application,

the number of clones was K = 20 to obtain MLE with number of iterations

100, 000 for the convergence of the model parameters. We also adopt the

results of RCA and SIMEX for this dataset from Carroll et al. (2006). In

the following, we briefly describe the procedures of RCA and SIMEX.

The basis of RCA, which was initially suggested by Carroll and Stefanski

(1990) and Gleser (1990), is the replacement of x by the regression of x on

(z,X). One can then perform a standard analysis. Obviously, the simplicity

of this algorithm masks its power. Although, RCA tends to be most useful

for GLMMs, however, this approach can be rather poor for highly nonlinear

models.
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The SIMEX, which was initially proposed by Cook and Stefanski (1994),

is indeed a simulation-based method of estimating and reducing bias due to

measurement error. In this approach, the estimates are obtained by adding

additional measurement error to the data in a resampling-like stage, then

establishing a trend of measurement error-induced bias versus the variance

of the added measurement error, and then extrapolating this trend back to

the case of no measurement error. The SIMEX is ideally suited to problems

with additive measurement error.

Table 2 shows the inference results for MLE, RCA, SIMEX, and HB

methods. It seems that the results in four methods agree reasonably closely

on most parameters except the estimate of variance component σ2
x which is

0.002 for the MLE compared to 0.013 for for the HB method. Note that also

using data cloning, we get the unique MLE based on the likelihood, while

RCA is based on an approximate approach and SIMEX is a simulation-

based method. Also, note that in HB approach one may get different results

than MLE with using different priors, while the inferences in MLE method

are invariant to the choice of priors. To show this fact, we also considered

uniform distribution U(0, 1000) for σx in HB approach and observed that

the estimate of variance component σ2
x is 0.003 while this value for gamma

distribution is 0.013 as shown in Table 2. Note that Carroll et al. (2006) did

not estimate the variance component σ2
x due to large degrees of freedom for

estimating σ2
v , and also they were not interested in estimating the standard

error of σ̂2
v for RCA and SIMEX methods.

As indicated in Section 3, one of the main features of data cloning is the

ability to predict the random effects. We provided the 95% prediction bands
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Table 2: The estimates (and standard errors) of the model parameters

in Framingham Heart Study for MLE, HB, RCA, and SIMEX methods.

Parameter MLE HB RCA SIMEX

β1 0.067(0.011) 0.067(0.012) 0.053(0.010) 0.053(0.010)

β2 0.537(0.245) 0.506(0.252) 0.600(0.250) 0.600(0.240)

β3 0.008(0.002) 0.008(0.002) 0.008(0.002) 0.008(0.002)

β4 1.838(0.196) 1.790(0.199) 2.000(0.460) 1.930(0.440)

σ2
v 0.043(0.002) 0.033(0.004) 0.012 0.006

σ2
x 0.002(0.002) 0.013(0.003)
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Figure 1: The 95% prediction bands for the first 100 CHD rates in Framing-

ham Heart Study for the MLE approach. The bullet represents prediction

rates with corresponding lower and upper prediction bands.
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for the first 100 CHD rates (Fig. 1) while the remaining predictions show

similar pattern; noting that the CHD rates are predicted not estimated since

they are random effects.

5. Simulation study

5.1. Simulation study based on linear mixed measurement error model

We conduct a simulation study on the performance of model parameters

estimate for the MLE approach via data cloning. We use a real dataset given

in OPEN Study to simulate samples from models (4.1)-(4.2).

We first obtain the estimates of model parameters from the dataset, using

for example MLE approach, and then treat them as known for the simula-

tion study. In particular, m = 223, ni = 2, and we choose β0 = 2.45, β1 =

0.48, α0 = 5.72, α1 = −0.01, α2 = −0.003, σ2
x = 0.27, σ2

u = 0.33, σ2
ϵ = 0.87,

and σ2
v = 0.46. Using those parameter values, estimates are obtained us-

ing MLE and HB analyses of R=1,000 datasets {(y(r)ij , X
(r)
ij ,Agei,BMIi), r =

1, ..., R} generated from models (4.1)-(4.2). For this simulation set up, the

average number of clones was K = 50 to obtain MLE, and the average num-

ber of iterations for convergence of the model parameters was about 20, 000.

Table 3 presents the mean values and variances of the fixed parameters

and variance component parameters, as well as corresponding simulated vari-

ances of the model parameters estimate for two methods MLE and HB. It

seems that the MLE approach produces estimates with small bias for the

model parameters, and their variances are comparable with corresponding
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Table 3: Mean values and variances (VAR), and sim-

ulated VAR of the estimates based on 1,000 simulated

datasets in OPEN Study for MLE and HB methods.

MLE HB

Parameter Mean VAR Simulated VAR Mean VAR Simulated VAR

β0 = 2.45 2.432 0.620 0.644 1.860 0.764 1.442

β1 = 0.48 0.483 0.024 0.024 0.596 0.029 0.055

α0 = 5.72 5.746 0.143 0.148 5.726 0.128 0.150

α1 = −0.01 -0.010 0.00003 0.00003 -0.010 0.00003 0.00003

α2 = −0.003 -0.004 0.0001 0.0001 -0.003 0.0001 0.0001

σ2
x = 0.27 0.266 0.003 0.002 0.236 0.002 0.003

σ2
u = 0.33 0.311 0.008 0.008 0.215 0.008 0.011

σ2
ϵ = 0.87 0.876 0.007 0.007 0.927 0.009 0.010

σ2
v = 0.46 0.458 0.002 0.002 0.484 0.002 0.002

simulated variances. On the other hand, the bias for the model parameters

in HB method is relatively large with also underestimating variances of some

model parameters estimate. Overall, it seems that MLE approach provides

reasonable point estimates and corresponding variances for this set up, and

its performance is much better than HB method.

5.2. Simulation study based on logistic mixed measurement error model

We also conduct a simulation study to evaluate the performance of the

proposed MLE approach in the context of logistic mixed measurement er-

ror model. Binary observations yij are generated within each cluster with
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conditional success probabilities satisfying the following logit model

logit{Pr(yij|xi, zij, ui)} = β0 + β1xi + β2zij + ui, (5.1)

Xij = xi + Vij, (i = 1, ...,m; j = 1, ..., n), (5.2)

where xi ∼ N(µx, σ
2
x), ui ∼ N(0, σ2

u), Vij ∼ N(0, σ2
v). We set m = 50 and

n = 3 which is a common sample size in longitudinal studies, for example.

The exactly measured covariate z is generated independently from a stan-

dard Normal distribution. Other parameters used to specify y|x and X|x

models are β0 = 0, β1 = 2, β2 = 1, µx = 0, σ2
x = 1, and σ2

u = 0.5. We consider

different values of σ2
v = 0.5, 1.0, 2.0, and also generate xi from different distri-

butions: Normal distribution with mean µx and variance σ2
x, and chi-square

distribution with one degree of freedom. We generate 1,000 simulations from

models (5.1)-(5.2). The results for Normal and chi-square distributions, for

different values of σ2
v , are displayed in Tables 4 and 5, respectively. In gen-

eral, in the case of Normal distribution, for different values of σ2
v , the MLE

method performs well with very small bias for regression coefficients and

variance components, and also their variances are estimated very well and

are comparable with the corresponding simulated variances (Table 4). On

the other hand, the HB approach performs poorly with relatively large bias

particulary for variance component σ2
u, and also the variances of model pa-

rameters estimates are generally underestimated. The variances of model

parameters estimates are also increased with increasing the values of σ2
v for

both DC and HB methods. We are also interested to check the robustness

of the DC approach in terms of misspecification of the measurement error x.

Table 5 reports means, variances, and simulated variances of model param-

eters estimates for both DC and HB methods when the measurement error
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x are generated from chi-square distribution with one degree of freedom but

normal specification of x in the likelihood approach would be appreciated.

It seems that we have relatively large bias for µx and σ2
x for both MLE and

HB methods, however, in the case of MLE approach the bias terms for other

model parameters estimates are reasonably small and the variances of the

model parameters estimates are also estimated well. Similarly, the variances

of the model parameters estimates are increased with increasing the values

of σ2
v . Note that for this simulation set up, the average number of clones was

K = 50 to obtain MLE, and the average number of iterations for convergence

of the model parameters was about 20, 000.

6. Concluding remarks

There are many situations where responses are proportions or counts and

covariates are measured with error. Often, for fitting complex models in mea-

surement error context, approximate methods such as RCA or simulation-

based approaches such as SIMEX are used in the frequentist paradigm; a po-

tential difficulty in making inference based on MLE is that a full-likelihood

analysis is burdened by often intractable numerical integration. However,

Bayesian methods are advocated because they are computationally more

convenient than ML method. Analysis based on data cloning overcomes the

computational difficulties of the ML method. Under the Normal and logistic

mixed models, the data cloning, which yields to the MLE, may also lead to

better inferential solutions to the model parameters, compared to existing

frequentist approaches such as RCA and SIMEX, where the covariates are
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Table 4: Mean values and variances (VAR), and simulated VAR of the es-

timates for different measurement error variances based on 1,000 simulated

datasets in logistic mixed measurement error model for MLE and HB meth-

ods.

MLE HB

Parameter Mean VAR Simulated VAR Mean VAR Simulated VAR

β0 = 0 -0.012 0.086 0.092 -0.014 0.084 0.104

β1 = 2 2.119 0.253 0.320 2.376 0.342 0.534

β2 = 1 1.049 0.103 0.116 1.072 0.099 0.124

µx = 0 0.002 0.022 0.023 0.002 0.020 0.023

σ2
x = 1 0.969 0.052 0.062 0.865 0.043 0.056

σ2
u = 0.5 0.570 0.512 0.620 0.052 0.002 0.0001

σ2
v = 0.5 0.497 0.005 0.008 0.502 0.005 0.008

β0 = 0 -0.010 0.104 0.110 -0.012 0.143 0.161

β1 = 2 2.131 0.319 0.292 2.809 0.788 0.808

β2 = 1 1.042 0.105 0.102 1.116 0.117 0.129

µx = 0 0.008 0.026 0.026 0.008 0.022 0.026

σ2
x = 1 0.974 0.070 0.068 0.788 0.055 0.068

σ2
u = 0.5 0.519 0.506 0.614 0.050 0.002 0.00002

σ2
v = 1.0 0.996 0.019 0.019 1.032 0.022 0.023

β0 = 0 -0.026 0.128 0.132 -0.035 0.341 0.310

β1 = 2 2.013 0.360 0.305 3.470 2.413 1.316

β2 = 1 1.015 0.105 0.101 1.120 0.126 0.138

µx = 0 0.004 0.034 0.032 0.004 0.027 0.032

σ2
x = 1 1.054 0.118 0.081 0.678 0.085 0.087

σ2
u = 0.5 0.408 0.375 0.509 0.049 0.002 0.00001

σ2
v=2.0 1.943 0.069 0.062 2.074 0.086 0.080
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Table 5: Mean values and variances (VAR), and simulated VAR of the es-

timates for different measurement error variances based on 1,000 simulated

datasets in logistic mixed misspecified measurement error model for MLE

and HB methods.

MLE HB

Parameter Mean VAR Simulated VAR Mean VAR Simulated VAR

β0 = 0 0.238 0.132 0.142 0.079 0.127 0.165

β1 = 2 1.554 0.259 0.220 1.815 0.352 0.420

β2 = 1 1.057 0.106 0.105 1.059 0.097 0.106

µx = 0 1.003 0.040 0.039 1.003 0.038 0.039

σ2
x = 1 1.949 0.180 0.778 1.797 0.152 0.071

σ2
u = 0.5 0.662 0.574 0.707 0.052 0.002 0.0001

σ2
v = 0.5 0.498 0.005 0.005 0.496 0.005 0.005

β0 = 0 0.322 0.147 0.149 0.053 0.188 0.243

β1 = 2 1.366 0.222 0.192 1.785 0.426 0.568

β2 = 1 1.058 0.108 0.103 1.084 0.106 0.114

µx = 0 0.999 0.043 0.043 0.999 0.039 0.043

σ2
x = 1 1.904 0.202 0.773 1.686 0.167 0.719

σ2
u = 0.5 0.701 0.658 0.782 0.052 0.002 0.00003

σ2
v = 1.0 0.996 0.020 0.019 1.011 0.022 0.022

β0 = 0 0.395 0.167 0.173 -0.236 0.575 0.804

β1 = 2 1.180 0.194 0.178 2.032 0.909 1.307

β2 = 1 1.043 0.107 0.104 1.104 0.116 0.125

µx = 0 1.010 0.051 0.046 1.010 0.043 0.046

σ2
x = 1 1.950 0.282 0.752 1.527 0.226 0.802

σ2
u = 0.5 0.673 0.674 0.772 0.050 0.002 0.00001

σ2
v = 2.0 1.992 0.078 0.079 2.113 0.103 0.124
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measured with error. Under the GLMMeM, data cloning can also provide

prediction intervals similar to Bayesian approach with added advantages that

the answers are invariant to the choice of prior.

Although, in this paper our focus was on a classical, additive, unbiased

and non-differential measurement error model, the data cloning approach

can be also easily extended to different situations such as heteroscedastic,

Berkson or differential measurement error structures (Carroll et al., 2006).

We have planned to develop these models.
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