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Abstract

Using both time-series and cross-sectional data, a linear model incorporating

autocorrelated random effects and sampling errors was previously proposed in

small area estimation. However, in practice there are many situations that we

have time-related counts or proportions in small area estimation; for example

monthly dataset on the number of incidences in small areas. The frequentist

analysis of these complex models is computationally difficult. On the other

hand, the advent of the Markov chain Monte Carlo algorithm has made the

Bayesian analysis of complex models computationally convenient. Recent

introduction of the method of data cloning has made frequentist analysis of

mixed models also equally computationally convenient. We use data cloning

to conduct frequentist analysis of small area estimation for Normal and non-

Normal data situations with incorporating cross-sectional and time-series

data. Another important feature of the proposed approach is to predict

small area parameters by providing prediction intervals. The performance of
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the proposed approach is evaluated through several simulation studies and

also by a real dataset.

Keywords: Autocorrelated errors; Bayesian computation; Hierarchical

model; Prediction interval and exponential family; Random effect

1. Introduction

Small area estimation has received a lot of attention in recent years due

to growing demand for reliable small area statistics. Rao (2003) has given a

comprehensive account of model-based small area estimation. In particular,

area level (Fay and Herriot, 1979) and nested error linear regression models

(Battese et al., 1988; Prasad and Rao, 1990) are often used in small area

estimation to obtain efficient model-based estimators of small area means.

Most of the research on small area estimation has focused on cross-

sectional data at a given point in time, and the research based on time series

in the context of small area estimation is limited. Scott and Smith (1974),

Jones (1980) among others used time-series methods to develop efficient es-

timates of aggregated parameters from repeated surveys. Tiller (1992) used

the idea of Kalman filter to combine a current-period state-wide estimate

from the U.S. Current Population Survey with past estimate for the same

state. However, non of them studied small area estimation by combining

cross-sectional and time-series data.

Pfeffermann and Burck (1990) and Singh et al. (1991) among others

studied cross-sectional and time-series models for small area estimation us-

ing Kalman filter by assuming specific models for the sampling errors over
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time. In a pioneering paper, Rao and Yu (1994) proposed a combined cross-

sectional and time-series model involving autocorrelated random effects and

sampling errors with an arbitrary covariance matrix over time. Datta et al.

(2002) applied same model as Rao-Yu model but replacing autoregressive

(AR) random effects with random walk model. Datta et al. (1999) con-

sidered a similar model but added extra terms to reflect seasonal variation

in their application. Torabi (2012) extended Datta et al. (1999) model to

account for spatial variation over regions.

The main purpose of this paper is to extend the Rao-Yu model for non-

Normal data using frequentist paradigm. There are many applications in

small area estimation where responses are time-related counts or proportions.

For example, we may be interested to analyze monthly dataset of number of

incidences in small areas. Indeed, these types of models fall in the class of

Generalized Additive Mixed Models (GAMMs). It is well known that the pa-

rameter estimation and prediction of small area statistics under the GAMM

are extremely difficult using the frequentist approach. The Bayesian ap-

proach, especially the non-informative Bayesian approach, has become quite

popular because of its computational convenience and the ability to provide

not just the point predictors but also the associated prediction intervals.

However, the implementation of non-informative Bayesian approach requires

substantial care. The inferences may also depend on the choice of prior.

Recently, Lele et al. (2007) introduced an alternative approach, called

data cloning (DC), to compute the maximum likelihood (ML) estimates and

their standard errors for general hierarchical models. Similar to the Bayesian
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approach, data cloning avoids high dimensional numerical integration and

requires neither maximization nor differentiation of a function. Extending

this work to Generalized Linear Mixed Model (GLMM) situation, Lele et al.

(2010) described an approach to compute prediction and prediction intervals

for the random effects. We use the idea of data cloning to extend the Rao-Yu

model with incorporating cross-sectional and time-series to non-Normal data

using the frequentist paradigm. Because these estimators are ML estimators,

unlike the Bayesian estimators, they are independent of the choice of priors

and non-estimable parameters are also flagged automatically.

In this paper, we use data cloning to propose a combined cross-sectional

and time-series model with AR(1) for Normal and non-Normal data. In the

next section, we describe the combined cross-sectional and time-series mod-

els. We then describe how data cloning can be used to obtain prediction

and prediction intervals for small area parameters. The performance of pro-

posed approach is reported through several simulation studies and also by

an application to a real dataset. Finally, some concluding remarks are given.

2. Cross-sectional and time-series models

The basic model for the combined cross-sectional and time-series data

can be described as follows. Let yit be the variable of interest for the ith

area in given time t(t = 1, ..., T ; i = 1, ...,m). The yit are assumed to be

conditionally independent with exponential family p.d.f.

f(yit|θit, ϕit) = exp[{yitθit − a(θit)}/ϕit + b(yit, ϕit)], (2.1)
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(t = 1, ..., T ; i = 1, ...,m). The density (2.1) is parameterized with respect to

the canonical parameters θit, known scale parameters ϕit and functions a(·)

and b(·). The exponential family (2.1) covers well-known distributions includ-

ing Normal, binomial and Poisson distributions. The natural parameters θit

are then modeled as

h(θit) = x′
itβ + vi + uit (t = 1, ..., T ; i = 1, ...,m),

where h is a strictly increasing function, the xit(p × 1) are known design

vectors, β(p× 1) is a vector unknown regression coefficient, vi
i.i.d.∼ N(0, σ2

v),

and uit’s are assumed to follow a common AR(1) process for each i, that is,

uit = ρui,t−1 + ϵit, |ρ| < 1,

with ϵit
i.i.d.∼ N(0, σ2

ϵ ).

As special case, under Normal distribution, h(θit) = θit, the Rao-Yu model

is given by

θ̂it = θit + eit(t = 1, ..., T ; i = 1, ...,m),

where eit’s are sampling errors normally distributed, given the θit’s, with

zeros means and a known block diagonal covariance matrix Ψ with blocks

Ψi. The errors (vi, ϵit, eit) are also assumed to be independent of each other.

For the case of an AR(1) model with ρ known, Rao and Yu (1994) esti-

mated σ2
ϵ and σ2

v by extending the simple transformation method of Fuller

and Battese (1973). Replacing σ2
ϵ and σ2

v by their estimators σ̂2
ϵ and σ̂2

v ,

they got the empirical best linear unbiased predictor (EBLUP) of θit, θ̂it(ρ),

under the AR(1) model with ρ known. Rao and Yu (1994) also obtained a

second-order approximation to estimator of mean squared prediction error
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(MSPE) of θ̂it(ρ) using Taylor expansion. For the case of ρ unknown, Rao

and Yu (1994) obtained a consistent estimator ρ̂ and pointed out that this

estimator often takes values outside the admissible range (-1,1), particularly

for small T or small σ2
ϵ relative to the sampling variation. To avoid this

difficulty, they proposed a naive estimator of ρ, ρ̂N , which is inconsistent and

underestimates ρ in the presence of sampling errors. Although, the resulting

EBLUP estimator θ̂it(ρ̂N) was unbiased, but the corresponding estimator of

MSPE was not correct to terms of order o(m−1).

3. Frequentist inference using data cloning

Let y = (y1, ...,ym)
′ be the observed data vector and, conditionally on

the random effects, w = (v1, ..., vm, u11, ..., umT )
′, assume that the elements

of y are independent and drawn from a distribution in the exponential family

with parameters β where yi = (yi1, ..., yiT ), (i = 1, ...,m). It is also assumed

that distribution for w depends on parameters (ρ, σ2
v , σ

2
ϵ ). The goal of the

analysis is to estimate the model parameters α = (β, ρ, σ2
v , σ

2
ϵ )

′ and predict

the small area parameters θ = (θ11, ..., θmT )
′.

To illustrate the DC approach, we start with standard Bayesian approach

to inference for our hierarchical model. Denote L(α|y) as likelihood of α

given y and π(α) as prior distribution on the parameter space. The posterior

distribution π(α|y) is given by

π(α|y) = L(α|y)π(α)

C(y)
, (3.1)

where C(y) =
∫
L(α|y)π(α)dα is the normalizing constant. There are com-

putational tools, Markov chain Monte Carlo (MCMC) algorithms, that fa-
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cilitate generation of random variates from the posterior distribution π(α|y)

without computing the integrals in the numerator or the denominator of (3.1)

(Gilks et al., 1996; Spiegelhalter et al., 2004).

The DC method uses the Bayesian computational approach for frequen-

tist purposes. In DC, the observations y is repeated independently by K

different individuals and all these individuals obtain exactly the same set of

observations y called y(K) = (y,y, ...,y). The posterior distribution of α

conditional on the data y(K) is then given by

πK(α|y(K)) =
{L(α|y)}Kπ(α)

C(y(K))
, (3.2)

where C(y(K)) =
∫
{L(α|y)}Kπ(α)dα is the normalizing constant. The

expression {L(α|y)}K is the likelihood for K copies of the original data.

Lele et al. (2007) and Lele et al. (2010) showed that, for K large enough,

πK(α|y(K)) converges to a multivariate Normal distribution with mean equal

to the MLE of the model parameters and variance-covariance matrix equal

to 1/K times the inverse of the Fisher information matrix for the MLE.

This factor of 1/K adjusts for the fact that the cloned dataset has K times

more information than the original dataset. Hence, this distribution is nearly

degenerated at the MLE α for large K (Walker, 1969). Moreover, the sample

mean vector of the generated random numbers provides the MLE of the

model parameters, and K times their sample variance-covariance matrix is

an estimate of the asymptotic variance-covariance matrix for the MLE α̂.

Lele et al. (2010) also provided various checks to determine the adequate

number of clones. For instance, one may plot the largest eigenvalue of the

posterior variance as a function of the number of clones K to determine if the
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posterior distribution has become nearly degenerate. As another criterion, it

is approximately true that as we increase the number of clones,

(α− ᾱ)
′
V −1(α− ᾱ) ∼ χ2

p, (3.3)

where V is the variance of the posterior distribution and p is the dimension

of α. One may also compute the following two statistics: a) ζ = 1
B

∑B
b=1(Ob−

Eb)
2, where Ob and Eb are observed and quantiles for χ2

p random variable, and

b) r̃2 = 1−ρ2, where ρ is the correlation between (Ob, Eb). If these statistics

are close to zero, it indicates that the approximation (3.3) is reasonable.

3.1. Prediction of small area parameters

Prediction of small area parameters (random effects), particularly from

the frequentist viewpoint, is somewhat of a thorny issue. If the parameters

α are known, then one can clearly use the conditional distribution of θ, the

latent variables, given the observed data. That is, one can use π(θ|y,α∗)

where α∗ is the true value of the parameter. A naive approach, when α

is estimated using the data, is to use π(θ|y, α̂). However, this approach

does not take into account the variability introduced by the model parame-

ters estimate. An approach that has been suggested in the literature (e.g.,

Hamilton, 1986) to take into account the variation of the estimator is to use

the density:

π(θ|y) =
∫
f(y|θ, β)g(θ|ρ, σ2

v , σ
2
ϵ )ϕ(α, α̂, I−1(α̂))dα

C(y)
, (3.4)

where ϕ(., µ, σ2) denotes Normal density with mean µ and variance equal to

the inverse of the Fisher information matrix. Harris (1989) argues for the use
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of bootstrap estimate of the sampling distribution instead of the asymptotic

Normal distribution. In this paper, we obtain prediction intervals for small

area parameters θ using the density in equation (3.4) along with MCMC

sampling.

4. Simulation study

4.1. Linear mixed model

We conduct a simulation study to evaluate the performance of the pro-

posed approach in the linear mixed model set up. Following simulation set

up in Rao and Yu (1994), we have:

yit = vi + uit + eit(t = 1, ..., T ; i = 1, ...,m),

uit = ρui,t−1 + ϵit, |ρ| < 1,

with ρ = 0.2 and 0.4, eit
i.i.d.∼ N(0, 1), vi

i.i.d.∼ N(0, σ2
v) and ϵit

i.i.d.∼ N(0, σ2
ϵ ). We

set m = 40 small areas and for T = 5, we generate R = 5000 independent

samples {y(r)it ; t = 1, ..., T ; i = 1, ...,m; r = 1, ..., R} for each selected pair

(σ2
v , σ

2
ϵ ), and keep Ψi as an identity matrix. For each simulated sample, we

apply the method of data cloning to get the MLE of the model parameters

estimate as well as the estimator of MSPE of θit = vi + uit.

In this paper, for the data cloning analysis, the proper priors are used for

variance components. In particular, the proper gamma distribution was used

for the inverse of variance components with shape and scale parameter 0.001.

Since the data cloning is invariant to the priors, one may use different priors.
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To monitor the convergence of the model parameters, we used several diag-

nostic methods implemented in the Bayesian output analysis (BOA) program

(Smith, 2007), a freely available package created for R. We also used diagnos-

tic methods implemented in the dclone package (Sólymos, 2010) to monitor

the convergence of the model parameters in terms of number of clones K. For

this simulation set up, the average number of clones was K = 10 to obtain

MLE, and the average number of iterations for convergence of the model

parameters was about 15,000.

Similar to Rao and Yu (1994), we report the estimator of MSPE for only

θ̂1T . The empirical MSPE (EMSPE) of θ̂1T and relative bias (RB) of an

estimator of the MSPE, say mspe, are given by

EMSPE(θ̂1T ) =
1

R

R∑
r=1

{θ̂(r)1T − θ
(r)
1T }

2,

and

RB{mspe(θ̂1T )} =
{ 1

R

R∑
r=1

mspe(r)(θ̂1T )− EMSPE(θ̂1T )
}
/EMSPE(θ̂1T ),

where θ̂
(r)
1T , θ

(r)
1T , and mspe(r)(θ̂1T ) are the values of θ̂1T , θ1T , and mspe(θ̂1T ) for

the rth simulation study, respectively. Note that mspe(θ̂1T ) is the posterior

variance of θ̂1T .

For the case of ρ known, the results of RB of mspe(θ̂1T ) are reported in

Tables 1 and 2 for ρ = 0.2 and 0.4 respectively with different pair of (σ2
v , σ

2
ϵ );

noting that the results of Rao-Yu approach are adopted from Rao and Yu

(1994). As shown in Tables 1 and 2, the estimator of MSPE performs well

via data cloning approach, leading to slight underestimation for both ρ = 0.2
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Table 1 Percent relative bias of estimators of MSPE for ρ known using

data cloning (DC) and Rao-Yu (RY) approaches in the case of true value of

ρ = 0.2, linear mixed model.

σ2
v σ2

ϵ = 0.25 0.5 1.0 2.0

DC RY DC RY DC RY DC RY

0.25 -6.6 2.4 -3.6 1.7 -1.9 1.8 -1.3 1.6

0.50 -6.0 2.5 -3.4 1.8 -1.7 1.7 -1.2 1.4

1.0 -5.8 2.7 -3.4 1.9 -1.7 1.7 -1.1 1.3

2.0 -6.0 2.7 -3.6 1.9 -1.9 1.7 -1.2 1.2

and 0.4. The RB is indeed decreased with increasing between-time variation.

Note that Rao-Yu approach also performs well in terms of RB and even

slightly better than data cloning when σ2
ϵ = 0.25 for both ρ = 0.2 and 0.4.

We also study the performance of the prediction intervals resulted from

data cloning approach. To this end, for each simulation run r, we can cal-

culate θ
(r)
it = v

(r)
i + u

(r)
it and compute appropriate quantiles α and (1 − α)

of the posterior means θ̂
(r)
it . In particular, the coverage probabilities of the

θ̂1T is the proportion of the times (over R = 5000) that θ
(r)
1T falls within

(θ̂
(r)(α)
1T , θ̂

(r)(1−α)
1T ). Tables 3 and 4 show the coverage probabilities of the es-

timates of θ1T for ρ = 0.2 and 0.4, respectively. The data cloning method

performs very well in terms of coverage probabilities of the θ̂1T for different

confidence coefficients for both ρ = 0.2 and 0.4.

For the case of ρ unknown, the RB of the mspe(θ̂1T ) is also calculated

for ρ = 0.2 and 0.4. Similar to the case of ρ known, the estimator of MSPE

performs well leading to slight underestimation for both ρ = 0.2 and 0.4
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Table 2 Percent relative bias of estimators of MSPE for ρ known using

data cloning (DC) and Rao-Yu (RY) approaches in the case of true value of

ρ = 0.4, linear mixed model.

σ2
v σ2

ϵ = 0.25 0.5 1.0 2.0

DC RY DC RY DC RY DC RY

0.25 -7.1 2.9 -3.5 1.3 -1.2 1.6 -0.2 1.7

0.50 -6.6 2.8 -3.7 1.2 -1.5 1.4 -0.5 1.4

1.0 -6.0 2.9 -3.6 1.3 -1.6 1.4 -0.6 1.2

2.0 -5.9 2.9 -3.6 1.3 -1.8 1.4 -0.9 1.2

(Tables 5 and 6). Note that the Rao-Yu approach also performs well in terms

of RB of mspe(θ̂1T ). The data cloning method also performs very well in

terms of coverage probabilities of the θ̂1T for different confidence coefficients

for both ρ = 0.2 and 0.4 (Tables 7 and 8).

We should point out that in Rao-Yu approach, we need to analytically

drive tedious algebra to get mspe(θ̂1T ), while in data cloning approach, not

only we can easily get mspe(θ̂1T ), but also we can get the prediction interval

for θ̂1T through MCMC. Furthermore, although the Rao-Yu method performs

very well in terms of RB, this method is not applicable in GLMM.

4.2. Binomial mixed model

We also conduct a simulation study to evaluate the performance of the

proposed approach in the binomial mixed model set up. To that end, we first

generate R = 5000 independent samples:

y
(r)
it,s ∼ Binomial(nit, p

(r)
it ) (4.1)
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Table 3 Coverage probabilities of the θ̂1T for ρ known using data cloning

with different confidence coefficients in the case of true value of ρ = 0.2,

linear mixed model.

σ2
v σ2

ϵ Confidence coefficient

0.90 0.95 0.98 0.99

0.25 0.25 0.868 0.929 0.965 0.981

0.5 0.885 0.941 0.974 0.985

1.0 0.895 0.944 0.978 0.988

2.0 0.897 0.948 0.979 0.988

0.5 0.25 0.874 0.932 0.968 0.981

0.50 0.889 0.940 0.975 0.987

1.0 0.895 0.943 0.977 0.987

2.0 0.895 0.945 0.979 0.987

1.0 0.25 0.876 0.932 0.969 0.984

0.50 0.890 0.940 0.976 0.986

1.0 0.894 0.943 0.976 0.987

2.0 0.897 0.946 0.978 0.987

2.0 0.25 0.876 0.933 0.969 0.983

0.50 0.887 0.940 0.974 0.988

1.0 0.893 0.945 0.976 0.987

2.0 0.896 0.947 0.978 0.988
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Table 4 Coverage probabilities of the θ̂1T for ρ known using data cloning

with different confidence coefficients in the case of true value of ρ = 0.4,

linear mixed model.

σ2
v σ2

ϵ Confidence coefficient

0.90 0.95 0.98 0.99

0.25 0.25 0.868 0.928 0.966 0.978

0.50 0.889 0.942 0.976 0.987

1.0 0.894 0.950 0.980 0.990

2.0 0.899 0.950 0.979 0.990

0.50 0.25 0.873 0.931 0.968 0.980

0.50 0.886 0.940 0.976 0.987

1.0 0.896 0.946 0.978 0.990

2.0 0.899 0.950 0.980 0.990

1.0 0.25 0.876 0.935 0.970 0.982

0.50 0.891 0.940 0.976 0.986

1.0 0.897 0.945 0.980 0.990

2.0 0.900 0.950 0.980 0.989

2.0 0.25 0.878 0.934 0.968 0.982

0.50 0.892 0.941 0.975 0.986

1.0 0.898 0.946 0.980 0.989

2.0 0.901 0.950 0.979 0.989
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Table 5 Percent relative bias of estimators of MSPE for ρ unknown using

data cloning (DC) and Rao-Yu (RY) approaches in the case of true value of

ρ = 0.2, linear mixed model.

σ2
v σ2

ϵ = 0.25 0.5 1.0 2.0

DC RY DC RY DC RY DC RY

0.25 -8.1 -1.0 -6.0 -0.7 -3.4 0.3 -2.1 0.7

0.50 -7.3 -0.8 -5.7 -0.7 -3.4 0.1 -2.1 0.5

1.0 -6.4 -0.6 -5.5 -0.6 -3.3 0.0 -2.1 0.4

2.0 -6.1 -0.4 -5.4 -0.5 -3.3 0.0 -2.1 0.3

Table 6 Percent relative bias of estimators of MSPE for ρ unknown using

data cloning (DC) and Rao-Yu (RY) approaches in the case of true value of

ρ = 0.4, linear mixed model.

σ2
v σ2

ϵ = 0.25 0.5 1.0 2.0

DC RY DC RY DC RY DC RY

0.25 -7.6 -4.0 -4.0 -3.8 -1.8 -1.8 -0.5 -0.3

0.50 -6.9 -4.0 -4.7 -3.9 -2.2 -2.1 -0.9 -0.5

1.0 -6.4 -3.9 -4.6 -4.0 -2.4 -2.3 -1.0 -0.7

2.0 -5.9 -3.7 -4.5 -4.0 -2.4 -2.4 -1.2 -0.9
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Table 7 Coverage probabilities of the θ̂1T for ρ unknown using data cloning

with different confidence coefficients in the case of true value of ρ = 0.2,

linear mixed model.

σ2
v σ2

ϵ Confidence coefficient

0.90 0.95 0.98 0.99

0.25 0.25 0.868 0.927 0.966 0.981

0.50 0.884 0.935 0.974 0.983

1.0 0.893 0.942 0.977 0.987

2.0 0.895 0.947 0.978 0.987

0.50 0.25 0.875 0.931 0.968 0.982

0.50 0.886 0.934 0.974 0.985

1.0 0.893 0.942 0.976 0.987

2.0 0.897 0.947 0.978 0.987

1.0 0.25 0.880 0.932 0.969 0.984

0.50 0.887 0.938 0.973 0.985

1.0 0.891 0.941 0.977 0.987

2.0 0.896 0.947 0.977 0.987

2.0 0.25 0.882 0.934 0.970 0.984

0.50 0.886 0.937 0.973 0.985

1.0 0.889 0.942 0.976 0.988

2.0 0.896 0.946 0.977 0.987
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Table 8 Coverage probabilities of the θ̂1T for ρ unknown using data cloning

with different confidence coefficients in the case of true value of ρ = 0.4,

linear mixed model.

σ2
v σ2

ϵ Confidence coefficient

0.90 0.95 0.98 0.99

0.25 0.25 0.875 0.928 0.967 0.978

0.50 0.886 0.941 0.976 0.987

1.0 0.893 0.947 0.979 0.990

2.0 0.898 0.950 0.978 0.990

0.50 0.25 0.873 0.936 0.970 0.981

0.50 0.885 0.938 0.973 0.985

1.0 0.894 0.945 0.979 0.990

2.0 0.897 0.951 0.978 0.989

1.0 0.25 0.879 0.936 0.970 0.981

0.50 0.889 0.940 0.974 0.986

1.0 0.896 0.943 0.979 0.990

2.0 0.897 0.949 0.978 0.990

2.0 0.25 0.882 0.937 0.972 0.982

0.50 0.891 0.940 0.976 0.987

1.0 0.898 0.944 0.979 0.990

2.0 0.896 0.949 0.979 0.990
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log(
p
(r)
it

1− p
(r)
it

) = v
(r)
i + u

(r)
it (t = 1, ..., T ; i = 1, ...,m),

where nit is sample size of ith area at time t, v
(r)
i

i.i.d.∼ N(0, σ2
v), and u

(r)
it

is generated from AR(1) with known (ρ, σ2
ϵ ). We also generate R = 5000

independent non-samples:

y
(r)
it,ns ∼ Binomial(Nit − nit, p

(r)
it ), (4.2)

where Nit is the corresponding population size for the ith area at time t;

noting that the true small area proportions for each simulation run r is

P
(r)
it = N−1

it (y
(r)
it,s + y

(r)
it,ns). We set Nit = 100, nit = 5,m = 40, ρ = 0.4, and

consider T = 5 for each selected pair (σ2
v , σ

2
ϵ ). Using the simulated datasets

{y(r)it,s; t = 1, ..., T ; i = 1, ...,m; r = 1, ..., R}, we apply the method of data

cloning to get the MLE of model parameters estimate, and also compute

the small area proportions p̂it from (4.1), for each simulation run r, called

p̂
(r)
it . For this simulation set up, the average number of clones was K = 30

to obtain MLE, and the average number of iterations for convergence of the

model parameters was about 30,000.

The EMSPE of p̂it and RB of mspe(p̂it) are then given by

EMSPE(p̂it) = R−1

R∑
r=1

(p̂
(r)
it − P

(r)
it )2(t = 1, ..., T ; i = 1, ...,m),

RB{mspe(p̂it)} =
{ 1

R

R∑
r=1

mspe(p̂
(r)
it )− EMSPE(p̂it)

}
/EMSPE(p̂it).

Similar to linear mixed model, we also study the coverage probabilities of

p̂it. We evaluate the performance of data cloning approach for both ρ known

and unknown.
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Table 9 Empirical MSPE of p̂1T for ρ known using data cloning approach,

binomial mixed model.

σ2
v σ2

ϵ = 1.0 2.0

1.0 0.020 0.021

2.0 0.018 0.020

Table 10 Percent relative bias of estimators of MSPE for ρ known using

data cloning approach, binomial mixed model.

σ2
v σ2

ϵ = 1.0 2.0

1.0 -2.6 1.3

2.0 -4.5 -0.6

For the case of ρ known, we report the EMSPE for only p̂1T (similar to

linear mixed model set up). As shown in Table 9, the EMSPE values are

slightly decreased with increasing the variance of area random effects. The

RB of mspe(p̂1T ) is reported in Table 10. Similar to linear mixed model, the

data cloning performs very well in terms of RB (|RB|(%) ≤ 4.5). The results

of the coverage probabilities and average lengths of confidence intervals of

the p̂1T and different coefficients are given in Table 11. The data cloning also

performs very well in terms of coverage probabilities and average lengths of

the p̂1T for different confidence coefficients.

For the case of ρ unknown, we also report the EMSPE of p̂1T in Table 12

and the RB of mspe(p̂1T ) in Table 13. The data cloning approach performs

very well in terms of RB, leading to slight underestimation (|RB|(%) ≤ 6.1).

The data cloning also performs very well in terms of coverage probabilities
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Table 11 Coverage probabilities (and average lengths) of the p̂1T for ρ

known with different confidence coefficients using data cloning approach,

binomial mixed model.

σ2
v σ2

ϵ Confidence coefficient (average lengths)

0.90 0.95 0.98 0.99

1.0 1.0 0.883(0.445) 0.933(0.518) 0.965(0.595) 0.977(0.643)

2.0 0.871(0.434) 0.921(0.508) 0.954(0.589) 0.964(0.639)

2.0 1.0 0.887(0.458) 0.935(0.533) 0.966(0.614) 0.975(0.663)

2.0 0.872(0.415) 0.925(0.485) 0.957(0.561) 0.965(0.609)

Table 12 Empirical MSPE of p̂1T for ρ unknown using data cloning

approach, binomial mixed model.

σ2
v σ2

ϵ = 1.0 2.0

1.0 0.020 0.021

2.0 0.019 0.020

and average lengths of the p̂1T for different confidence coefficients (Table 14).

5. Application

The performance of the data cloning is also evaluated by using a real

dataset of binomial mixed model. We use a yearly dataset of childhood (age

≤ 20 years) asthma visits to hospital in the Canadian province of Manitoba

during the 2000-2010 fiscal years. The population of Manitoba was stable

during the study period from 1.15 million in 2000 to 1.20 million in 2010, with
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Table 13 Percent relative bias of estimators of MSPE for ρ unknown using

data cloning approach, binomial mixed model.

σ2
v σ2

ϵ = 1.0 2.0

1.0 -4.0 -0.8

2.0 -6.1 -1.6

Table 14 Coverage probabilities (and average lengths) of the p̂1T for ρ

unknown with different confidence coefficients using data cloning approach,

binomial mixed model.

σ2
v σ2

ϵ Confidence coefficient (average lengths)

0.90 0.95 0.98 0.99

1.0 1.0 0.880(0.444) 0.930(0.516) 0.963(0.594) 0.976(0.642)

2.0 0.882(0.458) 0.932 (0.534) 0.959(0.614) 0.970(0.664)

2.0 1.0 0.867(0.413) 0.921(0.483) 0.953(0.559) 0.962(0.607)

2.0 0.871(0.433) 0.921(0.507) 0.954(0.587) 0.964(0.637)

21



an average population of children of around 335,000. The province consisted

of eleven Regional Health Authorities that were responsible for the delivery

of health care services. These eleven regions were further sub-divided into 56

Regional Health Authorities Districts (RHAD) and these RHAD are used as

area in our model. The number of children asthma visits totaled 14,690 over

the study period with mean and median number of yearly cases per region

of 26 and 17 (range 3 to 422), respectively. The region children population

sizes varied from 290 to 175,300, with mean and median numbers of 5,998 and

2,488, respectively. We ignore the variation of geographical regions in this

data analysis, and our focus is to apply our time-series and cross-sectional

binomial mixed model to this dataset. The sample sizes for some regions are

not large enough (even 0 in some regions) to produce the reliable estimates.

In particular, we consider the following model

log(
pit

1− pit
) = α + vi + uit(t = 1, ..., 10; i = 1, ..., 56)

where α is overall mean over area and time, vi
i.i.d.∼ N(0, σ2

v), and uit =

ρui,t−1 + ϵit, with |ρ| < 1 and ϵit
i.i.d.∼ N(0, σ2

ϵ ); noting that yit, children

asthma visits to hospital in the ith area at time t, has binomial distribution

with parameters pit and nit where nit is the corresponding population size.

We first consider the estimates of model parameters by applying DC method.

The estimates of the model parameters and associated standard errors are

reported in Table 15. For this specific application, the number of clones was

K = 10 to obtain MLE with number of iterations 50,000 for the convergence

of the model parameters. One of the main features of the DC method is

the ability to provide the prediction and prediction interval of small area

parameters. We also provide 95% prediction interval of the rates of children
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Table 15 Parameter estimates and standard errors (SE) of yearly children

asthma visits to hospital 2000-2010 using data cloning approach, binomial

mixed model.

Parameter α σ2
v ρ σ2

ϵ

Estimate -5.089 0.237 0.881 0.067

SE 0.029 0.094 0.033 0.003

asthma visits to hospital for different areas in 2010 (Figure 1).

6. Concluding remarks

In small area estimation, there are many situations where observations

are time-related counts or proportions. Often, for fitting complex models

in small area estimation, Bayesian methods are advocated because they are

computationally more convenient than the likelihood-based methods. Analy-

sis based on data cloning overcomes the computational difficulties of the ML

method. Torabi, Lele, and Prasad (2012; Unpublished work) applied the data

cloning approach in the context of small area estimation with cross-sectional

data in the class of GLMMs.

Using data cloning, we have proposed a generalized model involving au-

tocorrelated random effects and sampling errors for small area estimation

with utilizing both time-series and cross-sectional data. Under the linear

mixed models, the data cloning approach leads to similar inferential solu-

tions to small area parameters as Rao and Yu (1994) approach. Note that

Rao and Yu (1994) had difficulties associated with the frequentist approach
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Figure 1: The 95% prediction interval of the rate of children asthma visits to hospital in

2010 using DC approach, binomial mixed model; black line is point estimate, blue and red

lines are lower and upper bounds of prediction interval, respectively.
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in estimating ρ, while this estimation was easily obtained via data cloning

approach. Also, note that the method of Rao and Yu (1994) is not applicable

for non-Normal data. Under the GLMM, our simulation results have shown

that data cloning does very well in terms of relative bias of estimators of

MSPE of small area parameters. The data cloning based prediction inter-

vals also provided very good coverage probabilities and average lengths of

the small area parameters. We also applied our proposed approach to a real

dataset to evaluate the performance of data cloning in the binomial mixed

model. The other advantage of data cloning compared to other approaches

is that the non-estimable parameters are flagged automatically.
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