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Abstract

We propose an extension of the well-known Fay and Herriot [6] area level

model to sub-area level. Not only this model may be used to estimate small

area means by borrowing strength from related areas, but also by borrow-

ing strength from sub-areas to obtain more efficient sub-area estimators.

Model-based empirical best linear unbiased prediction (EBLUP) estimators

are obtained from the BLUP estimators by replacing the model parameters

by suitable estimators, using an iterative method based on weighted resid-

ual sum of squares. Second order approximations to the mean squared error

(MSE) of the EBLUP estimators are obtained and then used to drive MSE

estimators unbiased to second order. Results of simulation studies on the

performance of the proposed estimators are also provided.

Keywords: Best linear unbiased prediction; Fay-Herriot model; Linear

mixed models; Mean squared error; Variance components

Email address: torabi@cc.umanitoba.ca; Fax: +1-204-789-3905 (Mahmoud
Torabi )

Preprint submitted to Journal of Multivariate Analysis November 24, 2013



1. Introduction

Sample surveys are generally designed to provide estimates of totals and

means of items of interest for large subpopulations (or domains). Such es-

timates are “direct” in the sense of using only the domain-specific sample

data, and the domain sample sizes are large enough to support reliable di-

rect estimates that are “design based”. The associated inferences (standard

errors, confidence intervals, etc.) are based on the probability distribution

induced by the sampling design with the population item values held fixed.

Standard text books on sampling (e.g. Cochran [2], Thompson [19], Lohr

[15]) provide extensive accounts of design-based direct estimation.

In recent years, demand for reliable estimates for small domains (small

areas) has greatly increased worldwide due to their growing use in formu-

lating policies and programmes, allocation of government funds, regional

planning, marketing decisions at local level and other uses. Examples of

small domain estimation include poverty counts of school-age children at the

county level, income for small places, monthly unemployment rates for Cen-

sus Metropolitan Areas, health-related estimates for local areas and so on

(Rao [17], chapter 5). However, due to cost and operational considerations,

it is seldom possible to procure a large enough overall sample size to sup-

port direct estimates for all domains of interest. We use the term “small

area” to denote any domain for which direct estimates of adequate precision

cannot be produced due to small domain-specific sample size. It is often nec-

essary to employ “indirect” estimates for small areas that can increase the

“effective” domain sample size by “borrowing strength” from related areas

through linking models, using census and administrative data and other aux-
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iliary data associated with the small areas. Such small area models may be

classified into two broad types: (i) Area-level models that relate small area

direct estimates to area-specific covariates; such models are used if unit-level

data are not available. (ii) Unit-level models that relate the unit values of

a study variable to associated unit-level covariates with known area means

and area-specific covariates. A comprehensive account of model-based small

area estimation under area-level and unit-level models is given by Rao [17];

see also Jiang & Lahiri [12] and Datta [4] for recent overviews.

In this paper, we study model-based estimators for sub-areas nested

within areas. We introduce a sub-area level model that relates a sub-area

direct estimator to sub-area specific covariates, sub-area random effect and

associated area random effect. Such a model is useful if unit level auxiliary

variables are not available. The proposed model is a natural extension of the

well-known Fay and Herriot [6] area-level model to sub-area level. The sub-

area model is used to estimate small area means by borrowing strength from

related areas. In addition, it can borrow strength from sub-areas to obtain

more efficient sub-area estimators. Empirical best linear unbiased prediction

(EBLUP) estimators of sub-area level and area level means are obtained from

the BLUP estimators by the model parameters estimate using an iterative

method based on weighted residual sum of squares. We obtain second order

approximations to the mean squared error (MSE) of the EBLUP estimators

and then use them to derive MSE estimators unbiased to second order. Our

approximations to MSE and its estimator assume that the number of sam-

pled areas is large but the number of sampled sub-areas within a sampled

area can be small. Our paper extends the results of Datta et al. [5] for the
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area level model to the sub-area level model.

The paper is organized as follows: In Section 2, we introduce the sub-area

model and derive EBLUP estimators of area and sub-area means when the

variance components σ2
v and σ2

u, corresponding to areas and sub-areas, are

estimated iteratively based on a weighted residual sum of squares method.

In Section 3, we derive second order approximations to MSE of the EBLUP

estimators. In Section 4, estimation of MSEs, unbiased to second order, is

studied. Simulation studies, reported in Section 5, provide results on the

performance of the proposed estimators.

2. Empirical best linear unbiased prediction

In the context of linear mixed models, we propose the following linking

model for the sub-area means µij:

µij = x′
ijβ + vi + uij, i = 1, ...,m; j = 1, ..., Ni, (2.1)

where j denotes a sub-area within area i, xij is a p × 1 vector of sub-area

level auxiliary variables (m > p), β is a p×1 vector of regression parameters,

vi
i.i.d.∼ N(0, σ2

v) are area random effects, and uij
i.i.d.∼ N(0, σ2

u) are sub-area

random effects. We assume that ni sub-areas are sampled from the Ni sub-

areas in the i-th area.

On the other hand, the sampling model is given by

yij = µij + eij, (2.2)

where yij is a direct estimator of µij with sampling error eij, and eij|µij
ind∼

N(0, σ2
eij) with known sampling variances σ2

eij. Assuming no sample selection
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bias, the sampling model (2.2) combined for the level model with the linking

model (2.1) leads to the sub-area

yij = x′
ijβ + vi + uij + eij, i = 1, ...,m; j = 1, ..., ni. (2.3)

Model (2.3) accounts for the sub-area level effect uij as well as the area level

effect vi. It enables us to estimate both small area means, µi, and sub-area

means, µij, by borrowing strength from related areas as well as sub-areas,

where µij is given by (2.1) and µi =
∑Ni

j=1Nijµij/Ni+ = X̄ ′
iβ + vi + Ūi

is the mean of area i. Here, Ni+ =
∑Ni

j=1 Nij, X̄i =
∑Ni

j=1Nijxij/Ni+, Ūi =∑Ni

j=1Nijuij/Ni+ and Nij is the number of units in sub-area j of area i.

Fuller and Goyeneche [7] proposed a sub-area model, similar to our model

(2.3), in the context of Small Area Income and Poverty Estimation (SAIPE)

in the United States. In this application, county is the sub-area nested within

a state (area) and direct county estimates obtained from the Current Pop-

ulation Survey (CPS) data. County-level auxiliary variables are ascertained

from census and administrative records.

In matrix notation, the model (2.3) can be written as

yi = Xiβ + vi1ni
+ ui + ei, i = 1, ...,m,

where yi = (yi1, yi2, ..., yini
)′ is a ni×1 vector, Xi is a ni×p matrix with rows

x′
ij, (j = 1, ..., ni), ui = (ui1, ..., uini

)′ and ei = (ei1, ..., eini
)′. Equivalently, we

have

yi = Xiβ + Zibi + ei, i = 1, ...,m, (2.4)

where Zi = (1ni
|Ini

) with 1ni
as the vector of ones and Ini

as the identity

matrix with dimension ni, and bi = (vi, u
′
i)
′. Model (2.4) is a linear mixed
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model with a block diagonal covariance structure with blocks cov(yi) = Vi

with

Vi = σ2
vJni

+ diag(σ2
u + σ2

ei1, ..., σ
2
u + σ2

eini
), (2.5)

where Jni
= 1ni

1′ni
.

For a given δ = (σ2
v , σ

2
u)

′, the BLUP estimator of bi is given by

b̂i(δ) = GiZ
′
iV

−1
i {yi −Xiβ̃(δ)}, (2.6)

where β̃(δ) = (
∑m

i=1X
′
iV

−1
i Xi)

−1(
∑m

i=1X
′
iV

−1
i yi) is the weighted least squares

(WLS) estimator of β, and Vi = Ri + ZiGiZ
′
i with Ri = diag(σ2

ei1, ..., σ
2
eini

)

and

Gi =

 σ2
v 0

0 σ2
uIni

 .

For simplicity of notation, we let β̃(δ) = β̃. We employ the following lemma

1 to obtain V −1
i from (2.5).

LEMMA 1. Let A be a k×k nonsingular matrix and u and v be two k×1

vectors such that A+ uv′ is nonsingular. Then we have

(A+ uv′)−1 = A−1 − A−1uv′A−1(1 + v′A−1u)−1.

We have

V −1
i = diagj{(σ2

u + σ2
eij)

−1} − σ2
uγi
γi.

wiw
′
i, (2.7)

where γij = σ2
u/(σ

2
u + σ2

eij), γi. =
∑ni

j=1 γij, γi = σ2
v/(σ

2
v + σ2

u/γi.), wij =

(σ2
u + σ2

eij)
−1 and wi = (wi1, ..., wini

)′.

Using (2.7) in (2.6), we obtain, after simplification, the BLUP estimators

of vi and uij, for a given δ, as

ṽi(δ) = γi(ȳiγ − x̄′
iγβ̃) (2.8)
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and

ũij = γij(yij − x′
ijβ̃)− γiγij(ȳiγ − x̄′

iγβ̃), (2.9)

where ȳiγ = 1
γi.

∑ni

j=1 γijyij, x̄iγ = 1
γi.

∑ni

j=1 γijxij. The corresponding BLUP

estimators of µij for the sampled sub-areas are given by

µ̃ij = µ̃ij(δ) = x′
ijβ̃(δ) + ṽi(δ) + ũij(δ), i = 1, ...,m; j = 1, ..., ni, (2.10)

where ṽi(δ) and ũij(δ) are obtained from (2.8) and (2.9). For the non-sampled

sub-areas, we use the pseudo-BLUP estimator

µ̃∗
ij = µ̃∗

ij(δ) = x′
ijβ̃(δ) + ṽi(δ), i = 1, ...,m; j = ni+1, ..., Ni. (2.11)

The BLUP estimator of area mean µi is given by

µ̃∗
i = µ̃∗

i (δ) =
{ ni∑

j=1

Nijµ̃ij(δ) +

Ni∑
j=ni+1

Nijµ̃
∗
ij(δ)

}
/Ni+. (2.12)

Note that the sub-area estimators automatically benchmark to the corre-

sponding area estimator.

If Ni is large, then Ūi ≈ 0 and we can approximate µi by

µi ≈ X̄ ′
iβ + vi,

and the BLUP µ̃∗
i (δ) by

µ̃i(δ) ≈ X̄ ′
iβ̃ + ṽi(δ), i = 1, ...,m, (2.13)

assuming that ni is small.
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2.1. Estimation of variance components

At this stage, we need to estimate the variance components σ2
v and σ2

u

to obtain the EBLUP estimators of µij and µi. We first extend the Fay and

Herriot [6] iterative moment method of estimating the variance component

in the Fay-Herriot area level model to the sub-area level model (2.3). Based

on weighted residual sum of squares, we have

E
{ m∑

i=1

(yi −Xiβ̃)
′V −1

i (yi −Xiβ̃)
}
= n− p.

The method of moments is then used to form the following estimating equa-

tion:
m∑
i=1

(yi −Xiβ̃)
′V −1

i (yi −Xiβ̃) = n− p. (2.14)

On the other hand, we take the average of model (2.3) over j to get

ȳi = x̄′
iβ + vi + ūi + ēi, i = 1, ...,m,

= x̄′
iβ + ϵi, (2.15)

where ȳi, x̄i, ūi and ēi are averages over j = 1, ..., ni and ϵi
ind∼ N{0, σ̃2

i =

n−1
i (niσ

2
v+σ2

u+σ2
ei)}.We then obtain the WLS estimator of β associated with

(2.15) as β̃∗ = (
∑m

i=1 x̄ix̄
′
i/σ̃

2
i )

−1(
∑m

i=1 x̄iȳi/σ̃
2
i ) and the associated weighted

residual sum of squares
∑m

i=1(ȳi− x̄′
iβ̃

∗)2/σ̃2
i with expectation equal to m−p.

We then use the method of moments to form the estimating equation

m∑
i=1

(ȳi − x̄′
iβ̃

∗)2/σ̃2
i = m− p. (2.16)

The estimators σ̃2
v and σ̃2

u are obtained by solving the two equations (2.14)

and (2.16) iteratively. Since σ̃2
v and σ̃2

u may take negative values, we define

σ̂2
v = max(0, σ̃2

v) and σ̂2
u = max(0, σ̃2

u).
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Substituting δ̂ = (σ̂2
v , σ̂

2
u)

′ for δ = (σ2
v , σ

2
u)

′ in (2.10) we get the EBLUP

estimator of µij for sampled sub-areas as µ̂ij = µ̃ij(δ̂). Similarly, for the non-

sampled sub-areas, a pseudo-EBLUP estimator of µij is obtained from (2.11)

as µ̂∗
ij = µ̃∗

ij(δ̂). The exact EBLUP of µi is obtained from (2.12) as µ̂∗
i = µ̃∗

i (δ̂)

and its approximation from (2.13) as µ̂i = µ̃i(δ̂). Note that the estimators

µ̂i, µ̂ij and µ̂∗
ij do not require normality assumption. However, in Section 3

we use normality of vi, uij and eij to derive a second order approximation to

the MSE of the estimators.

3. Mean squared error approximation

In this section, we obtain a second order approximation to the MSE of

the EBLUP estimators µ̂ij, µ̂
∗
ij and µ̂i, in the sense that the neglected terms

are of order o(m−1) for large m. We assume normality of vi, uij and eij.

3.1. Sub-area estimators

We first consider the EBLUP µ̂ij of sampled sub-area j nested within

area i. Under normality of the random effects vi, uij and eij, we can express

MSE(µ̂ij) = E(µ̂ij − µij)
2 as

MSE(µ̂ij) = MSE(µ̃ij) + E(µ̂ij − µ̃ij)
2, (3.1)

where MSE(µ̃ij) = E(µ̃ij − µij)
2. Further, an exact expression for MSE(µ̃ij)

is given by

MSE(µ̃ij) = g1ij(δ) + g2ij(δ), (3.2)

where

g1ij(δ) = (1− γij)
2{σ2

u + (1− γi)σ
2
v}+ γ2

ijσ
2
eij, (3.3)
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and

g2ij(δ) = (1− γij)
2(xij − γix̄iγ)

′Φ(xij − γix̄iγ),

with Φ = var(β̃) = (
∑m

i=1X
′
iV

−1
i Xi)

−1. It may be noted that (3.2) does not

require the normality assumption.

The second term g2ij(δ) in (3.2), due to estimating β, is of order O(m−1),

while the first term g1ij(δ), given by (3.3), is O(1). We can therefore interpret

g1ij(δ) as the MSE when all parameters are known, and g2ij(δ) as the inflation

to MSE due to estimating β. It can be shown that the leading term g1ij(δ) ≤

σ2
eij, where σ2

eij = E(yij − µij)
2 is the MSE of the direct estimator yij.

It remains to evaluate the last term E(µ̂ij − µ̃ij)
2 in (3.1). Following

Das, Jiang, and Rao [3], we propose the following approximation, based on

Taylor linearization:

E(µ̂ij − µ̃ij)
2 ≈ E(

dµ̃B
ij

dσ2
v

)2var(σ̃2
v) + E(

dµ̃B
ij

dσ2
u

)2var(σ̃2
u)

+2E{(
dµ̃B

ij

dσ2
v

)(
dµ̃B

ij

dσ2
u

)}cov(σ̃2
v , σ̃

2
u) ≡ g3ij(δ),

where

µ̃B
ij = x′

ijβ + γi(1− γij)(ȳiγ − x̄′
iγβ) + γij(yij − x′

ijβ).

After considerable simplification (see Torabi [20]), g3ij(δ) is obtained as

g3ij(δ) = (1−γij)
2

{
(
σ2
u

γi.
)2(

γi
σ2
v

)3var(σ̃2
v)+

σ2
v

γi

[ γi
σ2
uγi.

∑
j

γ2
ij(1−

γiσ
2
u

γi.σ2
v

)−γiγij
σ2
u

][
− γi
σ2
uγi.

.
∑
j

γ2
ij(1+

γiσ
2
u

γi.σ2
v

)+
γij
σ2
u

(2−γi)
]
+σ−4

u

[
γ2
ijσ

2
v+σ2

uγij+
γ2
i

γ2
i.

{σ2
u

∑
j

γ3
ij+σ2

v(
∑
j

γ2
ij)

2}

−2
γiγij
γi.

(σ2
v

∑
j

γ2
ij+σ2

uγij)
]
var(σ̃2

u)+2
γi

γi.σ2
v

[
γij(1−γi)−

γ2
i σ

2
u

γ2
i.σ

2
v

∑
j

γ2
ij

]
cov(σ̃2

v , σ̃
2
u)

}
.

(3.4)
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The term g3ij(δ) is of the same order as g2ij(δ). Combining (3.2) and (3.4),

we get a second order approximation to MSE(µ̂ij) as

MSE(µ̂ij) ≈ g1ij(δ) + g2ij(δ) + g3ij(δ). (3.5)

The proof that neglected terms in the approximation (3.5) are of lower order,

o(m−1), for large m, is omitted, for simplicity (see Torabi [20]). However,

var(σ̃2
v), var(σ̃

2
u) and cov(σ̃2

v , σ̃
2
u) are derived in Appendix A.

The MSE approximation of the non-sampled sub-area pseudo-EBLUP

µ̂∗
ij is similarly obtained (details omitted). We have MSE(µ̂∗

ij) = MSE(µ̃∗
ij)+

E(µ̂∗
ij − µ̃∗

ij)
2 and

MSE(µ̃∗
ij) = g∗1ij(δ) + g∗2ij(δ), (3.6)

where

g∗1ij(δ) = σ2
u{1 + γiγ

−1
i. (1− 2γi)}

and

g∗2ij(δ) = (xij − γix̄iγ)
′Φ(xij − γix̄iγ).

Further,

E(µ̂∗
ij − µ̃∗

ij)
2 ≈ g∗3ij(δ)

= γ2
i

{
[σ2

v + γ−1
i. (γi1σ

2
u + γi1e)]{(

1− γi
σ2
v

)2var(σ̃2
v)

+σ−4
u (γi − 1 + γi1)

2var(σ̃2
u) + [2(1− γi)(γi − 1 + γi1)σ

−2
u σ−2

v ]cov(σ̃2
v , σ̃

2
u)}

+σ−4
u [(σ2

v + σ2
u)γi2 + γi2e − 2γi1(γi − 1 + γi1)(σ

2
v + σ2

uγ
−1
i. )]var(σ̃2

u)

−2γi1(1− γi)(σ
2
v + γ−1

i. σ2
u)σ

−2
u σ−2

v cov(σ̃2
v , σ̃

2
u)
}
, (3.7)

where γi1 = γ−1
i.

∑ni

j=1 γ
2
ij, γi1e = γ−1

i.

∑ni

j=1 γ
2
ijσ

2
eij, γi2 = γ−2

i.

∑ni

j=1 γ
4
ij, and

γi2e = γ−2
i.

∑ni

j=1 γ
4
ijσ

2
eij. The term g∗3ij(δ) is of the same order as g∗2ij(δ).
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Considering (3.6) and (3.7), we get a second order approximation to MSE(µ̂∗
ij)

as

MSE(µ̂∗
ij) ≈ g∗1ij(δ) + g∗2ij(δ) + g∗3ij(δ). (3.8)

3.2. Area estimators

Similar to Section 3.1, we follow Das, Jiang, and Rao [3] to obtain a

second order approximation to MSE of the area EBLUP µ̂i, assuming that

Ni is large. We have

MSE(µ̂i) = MSE(µ̃i) + E(µ̂i − µ̃i)
2,

where

MSE(µ̃i) = g1i(δ) + g2i(δ), (3.9)

with

g1i(δ) =
γi
γi.

σ2
u,

g2i(δ) = (X̄i − γix̄iγ)
′Φ(X̄i − γix̄iγ).

The terms g1i(δ) and g2i(δ) are of order O(1) and O(m−1) respectively.

Further, by Taylor linearization, E(µ̂i − µ̃i)
2 is approximated as

E(µ̂i − µ̃i)
2 ≈ E(

dµ̃B
i

dσ2
v

)2var(σ̃2
v) + E(

dµ̃B
i

dσ2
u

)2var(σ̃2
u)

+2E{(dµ̃
B
i

dσ2
v

)(
dµ̃B

i

dσ2
u

)}cov(σ̃2
v , σ̃

2
u) ≈ g3i(δ),

where

µ̃B
i = X̄ ′

iβ + γi(ȳiγ − x̄′
iγβ).

12



After some calculation we obtain

g3i(δ) = (
γi
γi.

)2
[
σ4
uγi
σ6
v

var(σ̃2
v)+σ−4

u

∑
j

γ4
ij

{
(1−γi)σ

2
v+σ2

u(1−2
γi
γi.

)+σ2
eij

}
var(σ̃2

u)

+2σ−4
v γi

∑
j

γ2
ij

{
(γi − 1)σ2

v +
σ2
u

γi.
(γi − γij)−

γij
γi.

σ2
eij

}
cov(σ̃2

v , σ̃
2
u)

]
, (3.10)

where g3i(δ) is of order O(m−1). Combining (3.9) and (3.10), we obtain a

second order approximation to MSE(µ̂i) as follows

MSE(µ̂i) ≈ g1i(δ) + g2i(δ) + g3i(δ). (3.11)

The neglected terms in the approximation (3.11) are o(m−1) for large m,

similar to Section 3.1, but the proof is omitted (see Torabi [20]).

We now turn to the MSE of the exact EBLUP µ̂∗
i of µi. We can express

MSE(µ̂∗
i ) in terms of the approximation MSE(µ̂i) as follows:

MSE(µ̂∗
i ) = MSE(µ̂i) +

Ni∑
j=ni+1

w2
ijσ

2
u + E{

ni∑
j=1

wij(ûij − uij)}2

+2E{(X̄ ′
iβ̂ + v̂i)− (X̄ ′

iβ + vi)}{
ni∑
j=1

wij(ûij − uij)}, (3.12)

where MSE(µ̂i) is given by (3.11). Details of the evaluation of the last two

terms in (3.12) are available from the authors. Derivation of second-order

unbiased estimator of MSE(µ̂∗
i ) is also available. In this paper, for simplicity,

we confine ourselves to the approximation pseudo-EBLUP µ̂i of the area

mean µi.
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4. Estimation of mean squared error

Using the second order MSE approximations (3.5), (3.8) and (3.11), we

now obtain MSE estimators that are second-order unbiased in the sense

that E[mse(µ̂ij)] − MSE(µ̂ij) = o(m−1), E[mse(µ̂∗
ij)] − MSE(µ̂∗

ij) = o(m−1),

and E[mse(µ̂i)] − MSE(µ̂i) = o(m−1). Since g2ij(δ) and g3ij(δ) are of order

O(m−1), it follows that

E[g2ij(δ̂)] = g2ij(δ) + o(m−1),

E[g3ij(δ̂)] = g3ij(δ) + o(m−1).

However, g1ij(δ) is of order O(1), so g1ij(δ̂) is not a second-order correct

estimator of g1ij(δ), since its bias is of order O(m−1). Thus, the bias in

g1ij(δ) must be estimated to the correct order. Following Das, Jiang, and

Rao [3] and Datta et al. [5], we can write

E[g1ij(δ̂) + (δ̂ − δ)′∇g1ij(δ)|δ=δ̂ + g3ij(δ̂)] = g1ij(δ) + o(m−1).

Therefore, combining the above results, a second order unbiased estimator

of MSE(µ̂ij) is given by

mse(µ̂ij) = g1ij(δ̂) + g2ij(δ̂) + 2g3ij(δ̂)−
dg1ij(δ)

dσ2
v

|δ=δ̂ b̂(σ̂
2
v)−

dg1ij(δ)

dσ2
u

|δ=δ̂ b̂(σ̂
2
u),

(4.1)

where b̂(σ̂2
v) and b̂(σ̂2

u) are estimators of biases b(σ̂2
v) = E(σ̂2

v − σ2
v) and

b(σ̂2
u) = E(σ̂2

u − σ2
u), respectively. Expressions for b̂(σ̂2

v) and b̂(σ̂2
u) are given

in Appendix B.

Similarly,

mse(µ̂∗
ij) = g∗1ij(δ̂) + g∗2ij(δ̂) + 2g∗3ij(δ̂)−

dg∗1ij(δ)

dσ2
v

|δ=δ̂ b̂(σ̂
2
v)−

dg∗1ij(δ)

dσ2
u

|δ=δ̂ b̂(σ̂
2
u),

(4.2)

14



and

mse(µ̂i) = g1i(δ̂)+g2i(δ̂)+2g3i(δ̂)−
dg1i(δ)

dσ2
v

|δ=δ̂ b̂(σ̂
2
v)−

dg1i(δ)

dσ2
u

|δ=δ̂ b̂(σ̂
2
u). (4.3)

We now find
dg1ij(δ)

dσ2
v

and
dg1ij(δ)

dσ2
u

in (4.1). Recalling that g1ij(δ) = (1 −

γij)
2[σ2

u + σ2
v(1− γi)] + γ2

ijσ
2
eij, we obtain

dg1ij(δ)

dσ2
v

= (1− γij)
2(1− γi −

γ2
i σ

2
u

γi.σ2
v

),

and

dg1ij(δ)

dσ2
u

= (1−γij)
{−2γij(1− γij)

σ2
u

[σ2
u+(1−γi)σ

2
v ]+(1−γij)(1+

γ2
i

∑ni

j=1 γ
2
ij

γ2
i.

)+
2γ2

ijσ
2
eij

σ2
u

}
.

Combining the above results, we obtain mse(µ̂ij) from (4.1).

THEOREM 1. A second order unbiased estimator of the MSE(µ̂ij) is

given by mse(µ̂ij) with the property E[mse(µ̂ij)] = MSE(µ̂ij) + o(m−1).

Proof of Theorem 1 is given in Appendix C.

We now need to find
dg∗1ij(δ)

dσ2
v

and
dg∗1ij(δ)

dσ2
u

in (4.2). Recalling that g∗1ij(δ) =

σ2
u[1 + γiγ

−1
i. (1− 2γij)], we obtain

dg∗1ij(δ)

dσ2
v

= γiγ
−1
i. (1− γi)(1− 2γij)σ

2
uσ

−2
v ,

and

dg∗1ij(δ)

dσ2
u

= γiγ
−1
i.

{
(1− 2γij)[γi + γi1 − (1 + 2γij)]− 2γ2

ij + γ−1
i γi.

}
.

Combining the above results, we obtain mse(µ̂∗
ij) from (4.2).

THEOREM 2. A second order unbiased estimator of the MSE(µ̂∗
ij) is

given by mse(µ̂∗
ij) with the property E[mse(µ̂∗

ij)] = MSE(µ̂∗
ij) + o(m−1).

Proof of Theorem 2 is similar to Theorem 1 and omitted for simplicity.
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We now turn tomse(µ̂i).We need to obtain dg1i(δ)
dσ2

v
and dg1i(δ)

dσ2
u

in (4.3). Re-

calling that g1i(δ) = γi
σ2
u

γi.
, we obtain dg1i(δ)

dσ2
v

=
γ2
i σ

4
u

γ2
i.σ

4
v
and dg1i(δ)

dσ2
u

= ( γi
γi.
)2
∑ni

j=1 γ
2
ij.

Combining the above results, we obtain mse(µ̂i).

THEOREM 3. A second order unbiased estimator of the MSE of µ̂i is

given by mse(µ̂i) with the property E[mse(µ̂i)] = MSE(µ̂i) + o(m−1).

Proof of Theorem 3 follows along the lines of Appendix C and hence omitted.

5. Simulation study

5.1. Model-based simulation study

A model-based simulation study was undertaken in order to investigate

the performance of the proposed sub-area model. For simplicity, we consid-

ered the simple balanced sub-area model with a common mean and error

variances σ2
eij = σ2

ei for each sub-area. It is given by

yij = µ+ vi + uij + eij, j = 1, ..., n̄; i = 1, ...,m. (5.1)

Model (5.1) is a special case of the sub-area level small area model (2.3) with

xij = 1, β = µ, p = 1, ni = n̄.

In our simulation study, we used n̄ = 3 sample sub-areas in each area,

m = 30 small areas and consequently n = 90 sub-areas in each sample.

Without loss of generality, we set µ = 0. However, to account for the es-

timation of unknown regression parameters that arise in application, we

still need to estimate this zero mean. We fixed σ2
v = σ2

u = 300, while

we considered three patterns for σ2
ei, variance of sampling error; (a) σ2

ei =

16



(260, 280, 300, 320, 340, 360); (b) σ2
ei = (230, 280, 300, 320, 365, 650) and (c)

σ2
ei = (100, 280, 300, 380, 750, 2000), which are similar to those in Datta et

al. [5]. There are six groups A1, ..., A6 and five small areas in each group

with three small sub-areas in each area. The sampling variances σ2
ei are the

same within the same group. Pattern (c) has the largest variability in the

σ2
ei-values, while pattern (a) is the least variable and pattern (b) has inter-

mediate variability.

Following Lahiri and Rao [14] and Datta et al. [5], we considered three

different distributions for vi’s and uij’s, namely normal, double-exponential

and location-exponential to evaluate the robustness of second-order unbi-

asedness of MSE estimators under nonnormality of the random effects vi and

uij assuming that the sampling errors eij are normal. For each pattern, we

proceeded along the following steps. We generated B = 5, 000 independent

sets of random variables {vi; i = 1, ..., 30} and {uij; j = 1, 2, 3; i = 1, ..., 30}

from normal, double-exponential and location-exponential distributions hav-

ing means zero and specified variances σ2
v and σ2

u, and we also generated ran-

dom variables {eij; j = 1, 2, 3; i = 1, ..., 30} from normal having mean zero

and variance σ2
ei. From those generated datasets the observations {yij; j =

1, 2, 3; i = 1, ..., 30} were obtained using the model yij = vi + uij + eij. By

using the generated samples y
(b)
ij , (b=1,...,B=5,000), we calculated σ̂

2(b)
v and

σ̂
2(b)
u by WLS iteratively as described in section 2. In addition, we estimated

the variance components σ2
v and σ2

u by using the methods of maximum like-

lihood (ML) and restricted maximum likelihood (REML) under normality.

For each generated sample, we calculated

µ
(b)
ij = v

(b)
i + u

(b)
ij , j = 1, 2, 3; i = 1, ..., 30; b = 1, ..., B,

17



µ
(b)
i = v

(b)
i , i = 1, ..., 30; b = 1, ..., B.

We computed the EBLUP estimates µ̂
(b)
ij and µ̂

(b)
i for each generated sample

b.

We now turn to the percent relative bias of the second-order correct MSE

estimator of sub-area mean over sub-areas and the second-order correct MSE

estimator of area mean as

RBi = 100
[
n̄−1

∑
j

RBij

]
(i = 1, ...,m)

and

RBi = 100[B−1

B∑
b=1

mse
(b)
i /EMSEi − 1] (i = 1, ...,m)

where

RBij = B−1

B∑
b=1

mse
(b)
ij /EMSEij − 1,

EMSEij = B−1

B∑
b=1

(µ̂
(b)
ij − µ

(b)
ij )

2,

EMSEi = B−1

B∑
b=1

(µ̂
(b)
i − µ

(b)
i )2,

and mseij and msei are given by (4.1) and (4.3). We then averaged RBi and

RBi over areas within the same group.

We report the results in Tables 1 and 2. As shown, all three methods,

ML, REML and EFH, perform equally well. More specifically, using the EFH

method, RB(%) of the second-order correct estimator of MSEi of sub-area

ranges from −3.9% to 1.6% for all three patterns and three distributions,

suggesting near unbiasedness. For the EFH method, patterns (a) and (b)
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Table 1

Percent average relative bias of sub-area MSE estimator over areas and sub-

areas within the same group.

Pattern (a) Pattern (b) Pattern (c)

ML REML EFH ML REML EFH ML REML EFH

Normal

A1 -0.9 -0.6 -0.5 -0.8 -0.5 -0.5 -0.3 -0.4 -3.9

A2 0.2 0.6 0.6 0.2 0.6 0.6 0.1 0.5 -0.7

A3 -0.5 -0.0 0.0 -0.5 -0.0 0.0 -0.6 -0.2 -1.2

A4 -0.5 -0.1 0.0 -0.5 -0.1 0.0 -0.9 -0.4 -1.1

A5 0.1 0.6 0.7 0.1 0.6 0.6 -0.9 0.1 -0.3

A6 -1.0 -0.4 -0.4 -1.5 -0.7 -0.7 -2.7 -0.9 -1.5

Double-exponential

A1 0.3 0.7 0.7 0.5 0.8 0.8 1.0 0.9 -2.5

A2 1.1 1.5 1.6 1.1 1.5 1.6 0.3 0.6 0.2

A3 0.1 0.6 0.6 0.1 0.5 0.7 -0.8 -0.3 -0.7

A4 -0.1 0.3 0.4 -0.2 0.3 0.4 -1.4 -0.9 -0.8

A5 -1.0 -0.5 -0.4 -1.3 -0.7 -0.4 -3.5 -2.4 -1.7

A6 -0.9 -0.4 -0.2 -2.0 -1.2 -0.7 -4.4 -2.6 -1.8

Location-exponential

A1 0.7 1.1 1.0 1.1 1.5 1.2 2.0 1.9 -1.8

A2 0.6 1.0 1.1 0.6 1.1 1.1 -0.5 -0.1 -0.3

A3 0.1 0.6 0.6 0.2 0.6 0.7 -0.9 -0.5 -0.6

A4 -0.6 -0.1 0.0 -0.5 -0.1 0.1 -2.1 -1.6 -1.2

A5 -0.5 0.0 0.2 -0.6 -0.1 0.2 -3.2 -2.2 -1.0

A6 -1.3 -0.8 -0.6 -2.6 -1.7 -1.2 -5.0 -3.2 -2.1
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with least and intermediate variability in σ2
ei have better performance than

pattern (c) which has the largest variability in σ2
ei for all three distributions.

On the other hand, it is clear from Table 2 that msei for the EFH method

leads to overestimation for all three distributions with RB(%) ranging from

1.3 to 5.4 for pattern (a), 0.3 to 6.1 for pattern (b), and −2.5 to 13.8 for

pattern (c). The RB(%) for the ML method range from −1.7 to 2.1 for

pattern (a), −4.1 to 2.9 for pattern (b), and −9.0 to 8.6 for pattern (c),

and results for REML range from 0.9 to 4.9 for pattern (a), −0.8 to 5.4 for

pattern (b), and −4.5 to 11.1 for pattern (c). Also, the variability of RB(%)

for pattern (c) is larger than for patterns (a) and (b) for all three methods

and three distributions. For pattern (c) with the largest variability in σ2
ei,

RB(%) for group A1 with the smallest σ2
ei is significantly larger than the

RB(%) for the other groups A2, ..., A6 with larger σ2
ei.

Furthermore, to evaluate the efficiency of sub-area and area EBLUP esti-

mators relative to direct estimators, we computed the percent average relative

efficiency (EFF) of sub-area EBLUP estimator over sub-area direct estimator

yij and area EBLUP estimator over area direct estimator ȳi = n−1
i

∑
j yij as

EFF1i = 100(EMSEi.dir/EMSEi)
1/2 , EFF2i = 100(EMSEi.dir/EMSEi)

1/2

respectively, where EMSEi.dir = n̄−1
∑

j EMSEij.dir, EMSEij.dir = B−1
∑B

b=1

(y
(b)
ij − µ

(b)
ij )

2, EMSEi.dir = B−1
∑B

b=1(ȳ
(b)
i − µ

(b)
i )2 with ȳ

(b)
i = n−1

i

∑
j y

(b)
ij .

The values of relative efficiency of sub-area EBLUP estimator over sub-area

direct estimator averaged over areas within the same group are reported in

Table 3. All three methods produced nearly identical results in terms of

efficiency of sub-area EBLUP estimator over sub-area direct estimator for
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Table 2

Percent average relative bias of area MSE estimator over areas within the

same group.

Pattern (a) Pattern (b) Pattern (c)

ML REML EFH ML REML EFH ML REML EFH

Normal

A1 -0.1 2.4 2.9 0.8 3.3 3.9 4.9 7.2 9.9

A2 1.2 3.8 4.3 1.5 4.1 4.8 1.1 4.0 5.8

A3 -1.7 0.9 1.3 -1.5 1.0 1.7 -1.8 1.0 2.5

A4 1.1 3.7 4.3 1.2 3.9 4.6 -0.1 3.1 4.6

A5 -0.7 2.0 2.5 -0.8 1.9 2.6 -3.7 -0.1 1.0

A6 -1.3 1.4 1.9 -3.2 -0.0 0.6 -6.0 -1.5 -1.2

Double-exponential

A1 1.7 4.3 4.8 2.9 5.4 6.0 8.1 10.4 13.4

A2 2.1 4.9 5.4 2.5 5.3 6.1 1.8 4.8 7.6

A3 -1.4 1.2 1.8 -1.0 1.6 2.3 -1.4 1.5 3.6

A4 1.0 3.6 4.2 1.3 4.1 4.8 -0.1 3.0 5.2

A5 -0.4 2.3 2.9 -0.6 2.1 3.0 -4.9 -1.3 0.6

A6 -1.2 1.5 2.2 -4.0 -0.8 0.3 -8.0 -3.6 -2.2

Location-exponential

A1 1.3 4.1 4.5 2.8 5.4 5.9 8.6 11.1 13.8

A2 1.0 3.8 4.3 1.5 4.3 5.0 1.1 4.1 6.7

A3 0.5 3.1 3.7 1.0 3.7 4.4 0.5 3.4 6.1

A4 -1.6 1.2 1.8 -1.1 1.7 2.5 -2.8 0.4 2.8

A5 -0.8 1.9 2.6 -0.8 2.1 3.0 -5.9 -2.1 0.4

A6 -0.8 2.1 2.8 -4.1 -0.8 0.5 -9.0 -4.5 -2.5
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all three distributions and relative efficiency for all three methods and three

distributions ranges from 124% to 132% for pattern (a); 121% to 151% for

pattern (b) and 110% to 213% for pattern (c). Moreover, EFF1i increases

with increasing σ2
ei for all three patterns and three distributions, and the

variability of efficiency for pattern (c) is larger than for patterns (a) and (b)

due to large variability in σ2
ei. As a result, for a large σ2

ei, using the sub-area

direct estimator leads to significant loss in efficiency. We have similar results

on efficiency for area EBLUP estimator over area direct estimator (EFF2i)

averaged over areas within the same group, which are reported in Table 4.

If we take σ2
v = 0, our model (2.3) reduces to the Fay-Herriot model. To

investigate the loss of efficiency by using the Fay-Herriot model incorrectly,

we computed the percent average relative efficiency of sub-area EBLUP es-

timator over the Fay-Herriot estimator as EFF3i = 100(EMSEi.FH/

EMSEi)
1/2 where EMSEi.FH = n̄−1

∑
j EMSEij.FH , EMSEij.FH = B−1

∑B
b=1

(µ̂
(b)
ij.FH − µ

(b)
ij )

2 with µ̂
(b)
ij.FH denoting the Fay-Herriot estimator for the b-

th simulated sample. We then averaged EFF3i over areas within the same

group. As shown in Table 5, the sub-area EBLUP estimator is more efficient

than the Fay-Herriot estimator for all the three methods and patterns over

all the three distributions. Similar to EFF of the sub-area EBLUP estimator

over the direct estimator, efficiency of the sub-area EBLUP estimator over

the Fay-Herriot estimator is nearly identical for all the three methods ML,

REML, and EFH and three distributions normal, double-exponential, and

location-exponential. Over all the three distributions, EFF(%) ranges from

104% to 106% for pattern (a), from 104% to 106% for pattern (b), and from
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Table 3

Percent average relative efficiency of sub-area EBLUP over sub-area direct

estimator averaged over areas within the same group.

Pattern (a) Pattern (b) Pattern (c)

ML REML EFH ML REML EFH ML REML EFH

Normal

A1 124 124 124 121 122 121 110 110 110

A2 125 125 125 125 125 125 125 125 125

A3 127 127 127 127 127 127 127 127 127

A4 129 129 129 129 129 129 133 133 133

A5 130 130 130 132 132 132 156 156 155

A6 131 131 131 149 150 150 212 212 211

Double-exponential

A1 125 125 125 122 122 122 111 111 110

A2 126 126 126 126 126 126 126 126 126

A3 128 128 128 128 128 128 128 128 128

A4 129 129 129 129 129 129 133 133 133

A5 131 131 131 133 133 133 157 157 157

A6 132 132 132 150 150 151 213 213 213

Location-exponential

A1 125 125 125 123 123 122 111 111 110

A2 127 127 127 127 127 127 126 127 126

A3 128 128 128 128 128 128 128 128 128

A4 129 129 129 129 129 129 133 133 133

A5 131 131 131 133 133 133 157 157 157

A6 132 132 132 151 151 151 212 213 213
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102% to 105% for pattern (c). An advantage of our sub-area model is that it

provides EBLUP estimator for both area means and sub-area means simul-

taneously.

An advantage of the proposed sub-area level model is that the associate

pseudo-EBLUP, µ̂∗
ij, for a non-sampled subarea (i, j) can lead to signifi-

cant efficiency gains over the corresponding regression synthetic estimator,

x′
ijβ̂FH , under the Fay-Herriot model yij = x′

ijβ + uij + eij that ignores area

effect, where uij
i.i.d.∼ N(0, σ2

u) and β̂FH is the WLS estimator of β under this

model. The efficiency gains (not reported here) are significantly larger than

those for the sampled areas reported in Table 5.

5.2. Design-based simulation study

We consider the following two-fold model for a design-based simulation

study:

yijk = µ+ vi + uij + eijk, i = 1, ...,m; j = 1, ..., Ni; k = 1, ..., Nij,

where vi ∼ N(0, σ2
v), uij ∼ N(0, σ2

u) and eijk ∼ N(0, σ2
ei). We first generated

a fixed finite population {yijk} using the two-fold model with m = 30 small

areas and Ni = 18 sub-areas and Nij = 300 elements in each sub-area. Our

population area and sub-area means are defined as follows:

Ȳi =
1

NiNij

Ni∑
j=1

Nij∑
k=1

yijk, Ȳij = N−1
ij

Nij∑
k=1

yijk.

We then draw a two-stage simple random sample from each area using ni = 10

and nij = 3. We have ȳij = µ + vi + uij + ēij where ēij ∼ N(0, σ2
ei/nij). We
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Table 4

Percent relative efficiency of area EBLUP over area direct estimator averaged

over areas within the same group.

Pattern (a) Pattern (b) Pattern (c)

ML REML EFH ML REML EFH ML REML EFH

Normal

A1 121 122 122 120 120 120 113 114 113

A2 122 122 122 122 122 122 121 122 121

A3 123 123 123 122 123 123 122 122 122

A4 124 124 124 124 124 124 125 126 126

A5 125 125 125 126 126 126 139 140 140

A6 125 126 126 136 136 137 179 179 179

Double-exponential

A1 122 123 123 121 121 121 115 116 115

A2 123 123 123 123 123 123 122 123 122

A3 124 125 125 124 124 124 124 124 124

A4 125 125 125 125 125 125 127 127 127

A5 126 127 127 127 127 127 141 141 142

A6 127 127 127 137 138 138 180 180 181

Location-exponential

A1 123 123 123 122 122 122 117 117 116

A2 124 124 124 124 124 124 124 124 123

A3 126 126 126 126 126 126 125 125 125

A4 126 126 126 126 126 126 128 128 128

A5 127 127 128 128 128 128 141 142 142

A6 128 128 128 138 138 139 180 180 181
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Table 5

Percent average relative efficiency of sub-area EBLUP over the Fay-Herriot

estimator averaged over areas within the same group.

Pattern (a) Pattern (b) Pattern (c)

ML REML EFH ML REML EFH ML REML EFH

Normal

A1 104 104 104 104 104 104 102 102 102

A2 104 104 104 104 104 104 104 104 104

A3 104 104 104 104 104 104 104 104 104

A4 105 105 105 105 105 105 105 105 105

A5 105 105 105 105 105 105 105 105 105

A6 105 105 105 105 105 106 104 104 104

Double-exponential

A1 105 105 105 105 105 105 103 103 103

A2 104 105 104 105 105 105 105 105 105

A3 104 104 104 104 104 104 104 104 104

A4 106 106 106 106 106 106 104 104 104

A5 105 105 105 105 105 105 105 105 105

A6 105 105 105 105 105 105 104 104 104

Location-exponential

A1 105 105 105 105 105 105 104 104 104

A2 105 105 105 105 105 105 105 105 105

A3 105 105 105 106 106 106 104 104 104

A4 105 105 105 106 106 106 105 105 104

A5 105 105 105 106 106 106 105 105 105

A6 105 105 105 106 106 106 104 104 104
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set the model parameters as in our model-based simulation study (section

5.1). For simplicity, we only considered the pattern (b) with the random

effects generated from normal distribution. In particular, we set µ = 0, σ2
v =

σ2
u = 300, and σ2

ei/nij = (230, 280, 300, 320, 365, 650). We selected B = 5000

two-stage samples from the fixed finite population.

We calculate our design-based area EBLUP using (2.13), EBLUP for a

sampled sub-area using (2.10), and EBLUP for a non-sampled sub-area using

(2.11), with replacing variance components with its estimators.

Similar to Pfefferman and Sverchkov [16], we report the EMSE separately

for sampled and non-sampled sub-areas. In the case of sampled sub-areas,

we have

EMSEij,s =
B∑
b=1

d
(b)
ij (µ̂

(b)
ij − Ȳij)

2/

B∑
b=1

d
(b)
ij ,

where d
(b)
ij is 1 if the sub-area j in area i selected in the b−th sample and it

is zero otherwise. In the case of non-sampled sub-areas, we have

EMSEij,ns =
B∑
b=1

(1− d
(b)
ij )(µ̂

∗(b)
ij − Ȳij)

2/

B∑
b=1

(1− d
(b)
ij ).

The EMSE for area EBLUP is given by

EMSEi = B−1

B∑
b=1

(µ̂
(b)
i − Ȳi)

2.

The EMSE values averaged over areas and sampled and non-sampled sub-

areas within each group were reported in Figure 1. For the moderate bal-

anced pattern (b) in the case of Normal distribution of the vi’s and uij’s, the

variability of the EMSEi values over groups A1, ..., A6 for sampled sub-areas

is comparable with the corresponding values in our model-based simulation
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(Table 1) and smaller than the corresponding values for the non-sampled

sub-areas. Moreover, all three methods, ML, REML and EFH, produced

identical results in terms of EMSEi for both sampled and non-sampled sub-

areas. We have similar results for EMSE of area EBLUP (EMSEi) averaged

over areas within same group, which were reported in Figure 2.

We also take the Fay-Herriot sampled sub-area estimator as follows:

µ̂FH
ij = x′

ijβ̂ + ũij(β̂, σ̂2
u), (5.2)

where ũij(β, σ
2
u) = γij(yij − x′

ijβ̃), β and σ2
u were estimated based on the

model (5.2). For the non-sampled sub-area, we used the regression synthetic

estimator

µ̂∗FH
ij = x′

ijβ̂.

The values of relative efficiency of sub-area EBLUP estimator over Fay-

Herriot sub-area estimator averaged over areas within the same group were

reported for both sampled and non-sampled sub-areas in Figure 3. All three

methods produced nearly identical results in terms of efficiency of sub-area

EBLUP estimator over Fay-Herriot sub-area estimator, and relative efficiency

for all three methods ranges from 103% to 124% for sampled sub-areas, and

from 99% to 173% for non-sampled sub-areas. We have similar results on

efficiency for area EBLUP estimator over area direct estimator averaged over

areas within the same group, which were reported in Figure 4.

6. Discussion

Our simulation results indicate that the three methods of estimating

model parameters (ML, REML and EFH) perform similarly in terms of MSE
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Fig. 1 Empirical mean squared error (EMSE) of sub-area EBLUP over

areas and sampled and non-sampled sub-areas within the same group,

pattern (b) with normal distribution for random effects, noting that the

EMSE values are identical for the methods ML, REML, and EFH for both

sampled and non-sampled sub-area.
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Fig. 2 Empirical mean squared error of area EBLUP over areas within the

same group; pattern (b) with normal distribution for random effects.
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Fig. 3 Percent average relative efficiency (RE) of sub-area EBLUP over the

Fay-Herriot estimator averaged over areas and sampled and non-sampled

sub-areas within the same group, pattern (b) with normal distribution for

random effects, noting that the RE values are identical for the methods

ML, REML, and EFH for both sampled and non-sampled sub-area.
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Fig. 4 Percent relative efficiency of area EBLUP over area direct estimator

averaged over areas within the same group; pattern (b) with normal

distribution for random effects.
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of the associated EBLUP estimators of area means and sub-area means and

the RB of the associated MSE estimators. Non-normality of the random

effects vi and uij has not affected MSE and its estimator significantly, even

though the MSE estimator is derived under normality.

It is possible to use a jackknife method or a parametric double-bootstrap

method along the lines of Jiang, Lahiri and Wan [13] and Hall and Maiti [9] to

estimate the MSE of the EBLUP estimators but the methods are computer

intensive and the resulting MSE estimators are less stable than the second-

order correct MSE estimators and they may take negative values. Those

resampling methods are suitable for cases where second-order correct MSE

estimators are not tractable or difficult to derive.

A natural alternative to the EBLUP approach, proposed in this paper,

is to use a hierarchical Bayes (HB) approach (Rao [17], Chapter 10). The

HB approach leads to “exact” inferences, unlike the EBLUP or the empirical

Bayes (EB) approach, but it requires the specification of prior distributions

on the model parameters. A referee noted that within the HB approach,

auxiliary information from misaligned sub-areas can also be included (see

e.g., Gotway et al. [8]).

We have studied sub-area level models but unit level can also be used (Rao

[17], Chapter 7). A referee suggested a unit level model of the form yijk =

x′
ijβ1+ z′ijkβ2 + vi +uij + eijk that includes both area level covariates xij and

unit level covariates zijk. Inference under this model requires data (yijk, zijk)

at the unit level, whereas our sub-area (say county) model requires only

sub-area level data (yij, xij). Our sub-area level model also accommodates
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the sampling design within sub-areas through the direct estimators yij of

sub-area means unlike the above unit level model.
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Appendix A. Derivation of variances and covariance of σ̃2
v and σ̃2

u

We express the moment equation (2.14) as

y′A1(δ)y = n− p (A. 1)

where y = col1≤i≤m(yi) and

A1(δ) = V −1(δ)− V −1(δ)X[X ′V −1(δ)X]−1X ′V −1(δ),

with V (δ) = diag1≤i≤m(Vi) and X = col1≤i≤m(Xi). Similarly, the moment

equation (2.16) is expressed as

ȳ′A2(δ)ȳ = m− p, (A. 2)

where ȳ = col1≤i≤m(ȳi) and

A2(δ) = Ṽ −1(δ)− Ṽ −1(δ)x̄(x̄′Ṽ −1x̄)−1x̄′Ṽ −1(δ),

with Ṽ (δ) = diag1≤i≤m(σ̃
2
i ) and x̄ = col1≤i≤m(x̄

′
i).

34



Then by a Taylor series expansion, we have from (A. 1) and (A. 2) 1

1

 =

 y′A1(δ̃)y/(n− p)

ȳ′A2(δ̃)ȳ/(m− p)

 =

 y′A1(δ)y/(n− p)

ȳ′A2(δ)ȳ/(m− p)



+

 y′A1
1(δ)y/(n− p) y′A2

1(δ)y/(n− p)

ȳ′A1
2(δ)ȳ/(m− p) ȳ′A2

2(δ)ȳ/(m− p)

 σ̃2
v − σ2

v

σ̃2
u − σ2

u

+[O(|| δ̃−δ ||2)]2×1.

Hence, σ̃2
v − σ2

v

σ̃2
u − σ2

u

 =

 y′A1
1(δ)y/(n− p) y′A2

1(δ)y/(n− p)

ȳ′A1
2(δ)ȳ/(m− p) ȳ′A2

2(δ)ȳ/(m− p)

−1 1− y′A1(δ)y
n−p

1− ȳ′A2(δ)ȳ
m−p


+[O(|| δ̃ − δ ||2)]2×1, (A. 3)

where Aj
i (δ) =

dAi(δ)
dδj

; i, j = 1, 2.

On the other hand, (n−p)−1y′A1(δ)y = (n−p)−1E[y′A1(δ)y]+Op(m
−1/2) =

1 + Op(m
−1/2), since var[(n − p)−1y′A1(δ)y] = O(m−1), (Bishop et al. [1]).

Similarly, (m − p)−1ȳ′A2(δ)ȳ = (m − p)−1E(ȳ′A2(δ)ȳ) + Op(m
−1/2) = 1 +

Op(m
−1/2), since var[(m − p)−1ȳ′A2(δ)ȳ] = O(m−1). That means, (n −

p)−1y′A1(δ)y− 1 and (m− p)−1ȳ′A2(δ)ȳ− 1 are of order Op(m
−1/2).

Moreover, noting that Vi = var(yi) = σ2
vJni

+ σ2
uIni

+ Ri and V =

diag(V1, V2, ..., Vm), we get dV
dσ2

v
= diag(Jn1 , ..., Jnm) ≡ J̃n, where Jni

is a ma-

trix of ones with dimension ni × ni and
dV
dσ2

u
= diag(In1 , ..., Inm) = In. Hence,

we obtainA1
1(δ) ≡ ∂A1(δ)/∂σ

2
v = −A1J̃nA1 and y′A1

1(δ)y = −y′A1(δ)J̃nA1(δ)y.

Therefore,

E(y′A1
1(δ)y) = −tr[J̃nE{(A1y)(A1y)

′}],
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where E{(A1y)(A1y)
′} = var(A1y)+E(A1y)E(A1y)

′ with var(A1y) = A1V A1 =

A1 and E(A1y) = E(V −1y − V −1Xβ̃) = V −1Xβ − V −1Xβ = 0. Hence,

E[(A1y)(A1y)
′] = A1.

We may further write E(y′A1
1(δ)y) = −tr(J̃nA1) ≈ −tr(J̃nV

−1) = O(m)

for large m, so that

(n− p)−1y′A1
1(δ)y = −(n− p)−1tr(J̃nV

−1) +Op(m
−1/2), (A. 4)

It follows that (n − p)−1y′A1
1(δ)y = Op(1), since var{(n − p)−1y′A1

1(δ)y} =

O(m−1).

Similarly, E[y′A2
1(δ)y] ≡ E(y′ ∂A1(δ)

∂σ2
u
y) ≈ −tr(V −1) = O(m), so that

(n− p)−1y′A2
1(δ)y = −(n− p)−1tr(V −1) +Op(m

−1/2), (A. 5)

and, since var[(n−p)−1y′A2
1(δ)y] = O(m−1), it follows that (n−p)−1y′A2

1(δ)y =

Op(1).

Moreover, noting that σ̃2
i = σ2

v +
σ2
u

ni
+

σ2
ei

ni
, and Ṽ = diag1≤i≤m(σ̃

2
i ) such

that dṼ
dσ2

v
= Im and dṼ

dσ2
u
= diag(n−1

1 , ..., n−1
m ) ≡ Ñ−1. As before, we may write

E(ȳ′A1
2(δ)ȳ) ≡ E(ȳ′ ∂A2(δ)

∂σ2
v
ȳ) ≈ −tr(V −1) = O(m), so that

(m− p)−1ȳ′A1
2(δ)ȳ = −(m− p)−1tr(Ṽ −1) +Op(m

−1/2). (A. 6)

Since var[(m− p)−1ȳ′A1
2(δ)ȳ] = O(m−1), it follows that (m− p)−1ȳ′A1

2(δ)ȳ =

Op(1).

Similarly, E(ȳ′A2
2(δ)ȳ) ≡ E(ȳ′ ∂A2(δ)

∂σ2
u
ȳ) ≈ −tr(Ñ−1Ṽ −1) = O(m), so that

(m− p)−1ȳ′A2
2(δ)ȳ = −(m− p)−1tr(Ñ−1Ṽ −1) +Op(m

−1/2). (A. 7)
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Noting that var[(m− p)−1ȳ′A2
2(δ)ȳ] = O(m−1), we get (m− p)−1ȳ′A2

2(δ)ȳ =

Op(1).

Hence, it follows from (A. 3) that σ̃2
v − σ2

v = Op(m
−1/2) and σ̃2

u − σ2
u =

Op(m
−1/2). Therefore, by (A. 4)-(A. 7), we may write (A. 3) as σ̃2

v − σ2
v

σ̃2
u − σ2

u

 = −

 tr(J̃nV
−1)/(n− p) tr(V −1)/(n− p)

tr(Ṽ −1)/(m− p) tr(Ñ−1Ṽ −1)/(m− p)

−1

.

 1− y′A1(δ)y
n−p

1− ȳ′A2(δ)ȳ
m−p

+ [Op(m
−1)]2×1. (A. 8)

Then, the asymptotic variance-covariance of δ̃ is given by var(σ̃2
v) cov(σ̃2

v , σ̃
2
u)

cov(σ̃2
v , σ̃

2
u) var(σ̃2

u)

 =

 tr(J̃nV −1)
n−p

tr(V −1)
n−p

tr(Ṽ −1)
m−p

tr(Ñ−1Ṽ −1)
m−p

−1

.

 var(
y′A1(δ)y

n−p
) cov(

y′A1(δ)y
n−p

,
ȳ′A2(δ)ȳ

m−p
)

cov(
y′A1(δ)y

n−p
,
ȳ′A2(δ)ȳ

m−p
) var(

ȳ′A2(δ)ȳ
m−p

)

 tr(J̃nV −1)
n−p

tr(V −1)
n−p

tr(Ṽ −1)
m−p

tr(Ñ−1Ṽ −1)
m−p

−T

,

where

var[y′A1(δ)y/(n− p)] = 2(n− p)−1, (A. 9)

var[ȳ′A2(δ)ȳ/(m− p)] = 2(m− p)−1, (A. 10)

cov[y′A1(δ)y, ȳ
′A2(δ)ȳ] = cov[y′A1(δ)y, y

′Ñ−T
1 A2(δ)Ñ

−1
1 y]

= 2tr[A1(δ)V Ñ−T
1 A2(δ)Ñ

−1
1 V ], (A. 11)

and Ñ−1
1 y = ȳ with

Ñ−1
1 =


n−1
1 1n1 01n1 . . . 01n1

01n2 n−1
2 1n2 . . . 01n2

...
...

. . .
...

01nm 01nm . . . n−1
m 1nm



′

.
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In fact, to get (A. 9)- (A. 11) we used the following Lemma.

LEMMA 2 (Searle [18]): If x ∼ N(µ, V ) where x is a vector, x′Px and

x′Qx are two quadratic forms such that P and Q are square matrices, then

we have that

cov(x′Px, x′Qx) = 2tr(PV QV ) + 4µ′PV Qµ.

Hence, combining (A. 9)-(A. 11), the asymptotic variance-covariance of δ̃

is well-defined. To further simplify, we first note that

V −1
i = diagj[(σ

2
u + σ2

eij)
−1]− σ2

vσ
2
u

σ2
u + σ2

vγi.
wiw

′
i.

Hence,

tr(V −1) =
1

σ2
u

m∑
i=1

{γi. −
γi
γi.

ni∑
j=1

γ2
ij}, (A. 12)

tr(J̃nV
−1) =

1

σ2
u

m∑
i=1

γi.(1− γi). (A. 13)

Furthermore, we have that

tr(Ṽ −1) =
m∑
i=1

ni(niσ
2
v + σ2

u + σ2
ei)

−1, (A. 14)

tr(Ñ−1Ṽ −1) =
m∑
i=1

(niσ
2
v + σ2

u + σ2
ei)

−1. (A. 15)

Therefore, we may write the variances and the covariance of σ̃2
v and σ̃2

u as

var(σ̃2
v) = 2[tr(J̃nV

−1)tr(Ñ−1Ṽ −1)− tr(Ṽ −1)tr(V −1)]−2{n[tr(Ñ−1Ṽ −1)]2

+m[tr(V −1)]2 − 2tr(V −1)tr(Ñ−1Ṽ −1)tr(A1V Ñ−T
1 A2Ñ

−1
1 V )}+ o(m−1),

var(σ̃2
u) = 2[tr(J̃nV

−1)tr(Ñ−1Ṽ −1)− tr(Ṽ −1)tr(V −1)]−2{n[tr(Ṽ −1)]2
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+m[tr(J̃nV
−1)]2 − 2tr(Ṽ −1)tr(J̃nV

−1)tr(A1V Ñ−T
1 A2Ñ

−1
1 V )}+ o(m−1),

cov(σ̃2
v , σ̃

2
u) = 2

[
tr(J̃nV

−1)tr(Ñ−1Ṽ −1)− tr(Ṽ −1)tr(V −1)
]−2{

− ntr(Ṽ −1)

.tr(Ñ−1Ṽ −1)−mtr(V −1)tr(J̃nV
−1)+

[
tr(V −1)tr(Ṽ −1)+tr(Ñ−1Ṽ −1)tr(J̃nV

−1)
]

.tr(A1V Ñ−T
1 A2Ñ

−1
1 V )

}
+ o(m−1),

where tr(V −1), tr(J̃nV
−1), tr(Ṽ −1) and tr(Ñ−1Ṽ −1) are given by (A. 12)-(A.

15) respectively.

Appendix B. Derivation of bias of σ̂2
v and σ̂2

u

We now find expressions for bias terms b(σ̂2
v) and b(σ̂2

u). We have b(δ̂i) =

E(δ̂i−δi) = E(δ̃i−δi)+E(δ̂i− δ̃i) for i = 1, 2, where E(δ̂i− δ̃i) = −E[δ̃iI(δ̃i ≤

0)] ≤ [E(δ̃2i )]
1/2[Pr(δ̃i ≤ 0)]1/2 = O(m−2). To get E(δ̃i−δi) = b(δ̃i), E(σ̃2

v−σ2
v)

and E(σ̃2
u−σ2

u), we follow Datta et al. [5] to derive the bias of σ̃2
v and σ̃2

u. By

(A. 3), letting Ak(δ) = Ak, A
1
k(δ) = A1

k and A2
k(δ) = A2

k for k = 1, 2, we have

1

n− p

{
y′A1y−(n−p)+[y′A1

1y+tr(J̃nA1)](σ̃
2
v−σ2

v)+[y′A2
1y+tr(A1)](σ̃

2
u−σ2

u)

−(σ̃2
v−σ2

v)tr(J̃nA1)−(σ̃2
u−σ2

u)tr(A1)+
1

2
tr(V A11

1 )(σ̃2
v−σ2

v)
2+

1

2
tr(V A22

1 )(σ̃2
u−σ2

u)
2

+tr(V A12
1 )(σ̃2

v − σ2
v)(σ̃

2
u − σ2

u)
}
+ op(m

−1) = 0 (A. 16)

and

1

m− p

{
ȳ′A2ȳ−(m−p)+[ȳ′A1

2ȳ+tr(A2)](σ̃
2
v−σ2

v)+[ȳ′A2
2ȳ+tr(Ñ−1A2)](σ̃

2
u−σ2

u)

−(σ̃2
v−σ2

v)tr(A2)−(σ̃2
u−σ2

u)tr(Ñ
−1A2)+

1

2
tr(Ṽ A11

2 )(σ̃2
v−σ2

v)
2+

1

2
tr(Ṽ A22

2 )(σ̃2
u−σ2

u)
2

+tr(Ṽ A12
2 )(σ̃2

v − σ2
v)(σ̃

2
u − σ2

u)
}
+ op(m

−1) = 0, (A. 17)
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where Aij
k (δ) =

d2Ak(δ)
dδidδj

, (k = 1, 2). We then take expectations of (A. 16) and

(A. 17) to get

1

n− p

{
cov(y′A1

1y, σ̃
2
v) + cov(y′A2

1y, σ̃
2
u)− tr(J̃nA1)b(σ̃

2
v)− tr(A1)b(σ̃

2
u)

+
1

2
tr(V A11

1 )var(σ̃2
v)+

1

2
tr(V A22

1 )var(σ̃2
u)+tr(V A12

1 )cov(σ̃2
v , σ̃

2
u)
}
+o(m−1) = 0

(A. 18)

and

1

m− p

{
cov(ȳ′A1

2ȳ, σ̃
2
v) + cov(ȳ′A2

2ȳ, σ̃
2
u)− tr(A2)b(σ̃

2
v)− tr(Ñ−1A2)b(σ̃

2
u)

+
1

2
tr(Ṽ A11

2 )var(σ̃2
v)+

1

2
tr(Ṽ A22

2 )var(σ̃2
u)+tr(Ṽ A12

2 )cov(σ̃2
v , σ̃

2
u)
}
+o(m−1) = 0.

(A. 19)

Therefore, we can find approximations to b(σ̃2
v) and b(σ̃2

u) from (A. 18) and

(A. 19) as

b(σ̃2
v) =

[tr(A1)tr(A2)

tr(Ñ−1A2)
− tr(J̃nA1)

]−1{
− cov(y′A1

1y, σ̃
2
v)− cov(y′A2

1y, σ̃
2
u)

−tr(A1J̃nA1J̃n)var(σ̃
2
v)− tr(A1A1)var(σ̃

2
u)− 2tr(A1A1J̃n)cov(σ̃

2
v , σ̃

2
u)

+
tr(A1)

tr(Ñ−1A2)
[cov(ȳ′A1

2ȳ, σ̃
2
v) + tr(A2A2)var(σ̃

2
v) + cov(ȳ′A2

2ȳ, σ̃
2
u)

+tr(A2Ñ
−1A2Ñ

−1)var(σ̃2
u) + 2tr(A2A2Ñ

−1)cov(σ̃2
v , σ̃

2
u)]

}
(A. 20)

and

b(σ̃2
u) =

[tr(A1)tr(A2)

tr(J̃nA1)
− tr(Ñ−1A2)

]−1{
− cov(ȳ′A1

2ȳ, σ̃
2
v)− cov(ȳ′A2

2ȳ, σ̃
2
u)

−tr(A2A2)var(σ̃
2
v)− tr(A2Ñ

−1A2Ñ
−1)var(σ̃2

u)− 2tr(A2A2Ñ
−1)cov(σ̃2

v , σ̃
2
u)

+
tr(A2)

tr(J̃nA1)
[cov(y′A1

1y, σ̃
2
v) + tr(A1J̃nA1J̃n)var(σ̃

2
v) + cov(y′A2

1y, σ̃
2
u)
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+tr(A1A1)var(σ̃
2
u) + 2tr(A1A1J̃n)cov(σ̃

2
v , σ̃

2
u)]

}
, (A. 21)

where cov(y′A1
1y, σ̃

2
v), cov(y

′A2
1y, σ̃

2
u), cov(ȳ

′A1
2ȳ, σ̃

2
v) and cov(ȳ′A2

2ȳ, σ̃
2
u) are cal-

culated below.

By (A. 8), we may write

σ̃2
v−σ2

v =
tr(Ñ−1Ṽ −1)[y′A1y− (n− p)]− tr(V −1)[ȳ′A2ȳ− (m− p)]

tr(J̃nV −1)tr(Ñ−1Ṽ −1)− tr(V −1)tr(Ṽ −1)
+Op(m

−1).

Now using Lemma 2, we get

cov(y′A1
1y, σ̃

2
v) = 2

[
tr(J̃nV

−1)tr(Ñ−1Ṽ −1)− tr(V −1)tr(Ṽ −1)
]−1

.
[
− tr(Ñ−1Ṽ −1)tr(A1J̃n)− tr(V −1)tr(A1

1V Ñ−T
1 A2Ñ

−1
1 V )

]
+ o(m−1)

and

cov(ȳ′A1
2ȳ, σ̃

2
v) = 2[tr(J̃nV

−1)tr(Ñ−1Ṽ −1)− tr(V −1)tr(Ṽ −1)]−1
[
tr(Ñ−1Ṽ −1)

.tr(Ñ−T
1 A1

2Ñ
−1
1 V A1V )− tr(V −1)tr(Ñ−T

1 A1
2Ñ

−1
1 V Ñ−T

1 A2Ñ
−1
1 V )

]
+ o(m−1).

Similarly, from (A. 8) we have

σ̃2
u−σ2

u =
−tr(Ṽ −1)[y′A1y− (n− p)] + tr(J̃nV

−1)[ȳ′A2ȳ− (m− p)]

tr(J̃nV −1)tr(Ñ−1Ṽ −1)− tr(V −1)tr(Ṽ −1)
+Op(m

−1).

Again using Lemma 2, we have

cov(y′A2
1y, σ̃

2
u) = 2

[
tr(J̃nV

−1)tr(Ñ−1V ∗−1)− tr(V −1)tr(V ∗−1)
]−1

.
[
tr(V ∗−1)tr(A1) + tr(J̃nV

−1)tr(A2
1V Ñ−T

1 A2Ñ
−1
1 V )

]
+ o(m−1)

and

cov(ȳ′A2
2ȳ, σ̃

2
u) = 2

[
tr(J̃nV

−1)tr(Ñ−1Ṽ −1)− tr(V −1)tr(Ṽ −1)
]−1[

− tr(Ṽ −1)
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.tr(Ñ−T
1 A2

2Ñ
−1
1 V A1V )+tr(J̃nV

−1)tr(Ñ−T
1 A2

2Ñ
−1
1 V Ñ−T

1 A2Ñ
−1
1 V )

]
+o(m−1).

Finally, combining above results, we obtain bias approximations b(σ̃2
v) and

b(σ̃2
u) from (A. 20) and (A. 21) respectively.

Appendix C. Proof of Theorem 1

We must show that mse(µ̂ij) is correct to Op(m
−1). By Taylor expansion,

g1ij(δ̂) = g1ij(δ) + (δ̂ − δ)′∇g1ij(δ) +
1

2
(δ̂ − δ)′∇2g1ij(δ)(δ̂ − δ) + op(m

−1).

Now taking expectation of the above equation,

E[g1ij(δ̂)] = g1ij(δ)+E[(δ̂−δ)′∇g1ij(δ)]+
1

2
E[(δ̂−δ)′∇2g1ij(δ)(δ̂−δ)]+o(m−1),

where

E[(δ̂ − δ)′∇g1ij(δ)] = b(σ̂2
v)
dg1ij
dσ2

v

+ b(σ̂2
u)
dg1ij
dσ2

u

.

In addition, we have

E[(δ̂ − δ)′∇2g1ij(δ)(δ̂ − δ)] =
2∑

k=1

2∑
l=1

∇2g1ijkl(δ)E[(δ̂k − δk)(δ̂l − δl)]

=
2∑

k=1

2∑
l=1

∇2g1ijkl(δ)E
[
(δ̂k − δ̃k + δ̃k − δk)(δ̂l − δ̃l + δ̃l − δl)

]

=
2∑

k=1

2∑
l=1

∇2g1ijkl(δ)E
[
(δ̃k−δk)(δ̃l−δl)

]
+

2∑
k=1

2∑
l=1

∇2g1ijkl(δ)E
[
(δ̂k−δ̃k)(δ̂l−δ̃l)

]

+
2∑

k=1

2∑
l=1

∇2g1ijkl(δ)E
[
(δ̂k−δ̃k)(δ̃l−δl)

]
+

2∑
k=1

2∑
l=1

∇2g1ijkl(δ)E
[
(δ̃k−δk)(δ̂l−δ̃l)

]

=
2∑

k=1

2∑
l=1

∇2g1ijkl(δ)E
[
(δ̃k − δk)(δ̃l − δl)

]
+ o(m−1)
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= tr
[
var(δ̃)∇2g1ij(δ)

]
+ o(m−1),

since by applying Holder’s inequality

E[(δ̂k − δ̃k)(δ̂l − δ̃l)] ≤ (E|δ̂k − δ̃k|2)1/2.(E|δ̂l − δ̃l|2)1/2 = o(m−1),

and noting that ∇2g1ijkl(δ) = O(1), E|δ̂l − δ̃l|2 = O(m−2) and E|δ̂k − δ̃k|2 =

O(m−2) by the following argument:

E|δ̂k − δ̃k|2 = E
[
|δ̃k|2I(δ̃k ≤ 0)

]
≤ (E|δ̃k|4)1/2.{E[I(δ̃k ≤ 0)]2}1/2 = O(m−2),

by Holder’s inequality, since {E[I(δ̃k ≤ 0)]2}1/2 = [Pr(δ̃k ≤ 0)]1/2 = O(m−2)

and

E|δ̃k − δk + δk|4 = E
[
(δ̃k − δk)

2 + δ2k + 2δk|δ̃k − δk|
]2

≤ 2
{
E[(δ̃k − δk)

2 + δ2k]
2 + 4E[δ2k(δ̃k − δk)]

2
}

= 2
[
E(δ̃k − δk)

4 + δ4k + 2δ2kE(δ̃k − δk)
2 + 4δ2kE(δ̃k − δk)

2
]
= O(1).

Similarly, E[(δ̂k− δ̃k)(δ̃l− δl)] ≤ (E|δ̂k− δ̃k|2)1/2.(E|δ̃l− δl|2)1/2 = o(m−1),

by noting that E|δ̃l − δl|2 = var(δ̃l) = o(m−1) and E|δ̂k − δ̃k|2 = o(m−1). By

a similar argument, E[(δ̃k − δk)(δ̂l− δ̃l)] = o(m−1). Combining above results,

we have

E[g1ij(δ̂)] = g1ij(δ)+b(σ̂2
v)
dg1ij(δ)

dσ2
v

+b(σ̂2
u)
dg1ij(δ)

dσ2
u

+
1

2
tr[var(δ̃)∇2g1ij(δ)]+o(m−1).

It is easy to show that 1
2
tr[var(δ̃)∇2g1ij(δ)] = −g3ij(δ).

Hence,

E[g1ij(δ̂)] = g1ij(δ) + b(σ̂2
v)
dg1ij
dσ2

v

+ b(σ̂2
u)
dg1ij
dσ2

u

− g3ij(δ) + o(m−1).
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Now, since g2ij(δ) and g3ij(δ) are of order O(m−1), it follows that

E[g2ij(δ̂)] = g2ij(δ) + o(m−1),

and

E[g3ij(δ̂)] = g3ij(δ) + o(m−1).

Therefore, g2ij(δ̂) and g3ij(δ̂) are the correct estimators of g2ij(δ) and

g3ij(δ) respectively, each with bias o(m−1). Combining above results, we

have that

E[mse(µ̂ij)] = MSE(µ̂ij) + o(m−1).
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