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In spatial epidemiology, detecting areas with high ratio of disease is important as it may lead
to identifying risk factors associated with disease. This in turn may lead to further epidemi-
ological investigations into the nature of disease. Disease mapping studies have been widely
performed with considering only one disease in the estimated models. Simultaneous modeling
of different diseases can also be a valuable tool both from the epidemiological and also from
the statistical point of view. In particular, when we have several measurements recorded at
each spatial location, one can consider multivariate models in order to handle the depen-
dence among the multivariate components and the spatial dependence between locations. In
this paper, spatial models that use multivariate conditionally autoregressive smoothing across
the spatial dimension are considered. We study the patterns of incidence ratios and identify
areas with consistently high ratio estimates as areas for further investigation. A hierarchical
Bayesian approach using Markov chain Monte Carlo techniques is employed to simultaneously
examine spatial trends of asthma visits by children and adults to hospital in the province of
Manitoba, Canada, during 2000–2010.

Keywords: Conditional autoregressive (CAR) model; disease mapping; geographic
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1. Introduction

Asthma is the most widespread chronic respiratory disease in Canada. It is a disease
that inflames and narrows the airways in response to a trigger. A trigger can be
an allergen or an irritant. An allergen may be animal dander, pollen, mould, dust
mites and cockroaches and an irritant may be exercise, cold air, tobacco smoke,
respiratory viral infections, and certain chemicals. Symptoms of asthma include,
but are not limited to coughing, wheezing, shortness of breath and a tight feeling
in the chest. The main risk factors for developing asthma are a family history of
asthma or an allergy such as eczema or allergic rhinitis; infants being exposed to
high levels of a trigger such as dust mites; and high levels of exposure to tobacco
smoke or chemical triggers in a workplace environment [13].

According to the World Health Organization, approximately 235 million people
worldwide suffer from asthma [25] and approximately 10% of the people living
in Canada are diagnosed as having asthma [13]. According to Statistics Canada,
Asthma is most common during childhood and at least 13% of Canadian children
are affected by asthma [4]. As well, the major reason for hospitalization of children
in Canada is asthma [16]. People suffering from asthma often have to make un-
scheduled visits to a physician or a hospital and in serious cases asthma can even
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lead to death. There are nearly 250, 000 deaths around the world annually due
to asthma [25]. Therefore, it is crucial to identify any trends in asthma incidence
that may help to detect risk factors and lead to further epidemiological studies.
Over a region, trends may be evident so the purpose of our paper is to examine
geographical variation in the number of asthma visits by children and adults to
hospital during 2000–2010 in the province of Manitoba, Canada.

As part of routine monitoring of geographic areas by public health agencies,
disease rate (or ratio) maps are often used to examine trends over space. These
agencies need to have reliable maps that are methodologically sound. The sta-
tistical and epidemiological literature has devoted considerable attention to this
important issue, since regional maps of morbidity and mortality rates are useful
tools in determining spatial patterns of disease. Identifying regions with substan-
tively different rates may be suggestive of region-level characteristics that could be
responsible for the geographic pattern of disease rates. These characteristics could
be further examined to determine any causal relationship with the disease.

It is well known that if we have more than one disease, with measurements
recorded at each spatial location, we need to consider multivariate areal data mod-
els to handle the dependence among the multivariate components and the spatial
dependence between locations; assuming that these diseases are believed to be re-
lated [9, 11, 12, 14, 26]. In this paper, we study a multivariate conditional autore-
gressive (MCAR) model [12] to simultaneously examine spatial trends of asthma
visits by children and adults to hospital in the province of Manitoba, Canada, dur-
ing 2000–2010. To make an inference, a hierarchical Bayesian (HB) approach using
Markov chain Monte Carlo (MCMC) techniques is employed.

2. Methodology

Let yiktl and niktl denote frequency of incidences and population for the ith region,
kth gender, tth time-period and lth disease (l = 1, 2). Then the observed cases for
each region and disease (yil) are assumed to follow a Poisson distribution with an
unknown mean θil

yil ∼ Poisson(θil), (1)

log(θil) = log(eil) + αl + ηil,

where eil is the gender and time-period standardized expected values for the ith

region and lth disease, which is given by

eil =
∑
k

∑
t

niktl
y.kt.
n.kt.

,

where i = 1, . . . , I, k = 1, 2, t = 1, . . . , T and l = 1, 2, with n.kt. =
∑

i

∑
l niktl and

similarly y.kt. =
∑

i

∑
l yiktl; αl is an intercept term that corresponds to the log

relative risk of disease l across the entire study region and ηil is the log relative
risk of incidence for the ith region and lth disease. For disease l it is assumed that
the log relative risks are spatially correlated across regions. It is also assumed that



August 26, 2013 0:49 Journal of Applied Statistics M.Torabi-cJAS

Bivariate Disease Mapping 3

all diseases are correlated within the ith region because the diseases depend on the
same unmeasured risk factors in that region.

To capture the spatial variation of ηi1 (for example disease 1) in the univariate
case, a variety of conditional autoregressive (CAR) models may be used by taking
a collection of mutually compatible conditional distributions p(ηi1|η−i1), i = 1, ..., I
where η−i1 = {ηj1 : j ̸= i, j ∼ i} and j ∼ i refers a set of neighbours for the i-th
region [2]. We consider the following general model which uniquely determines the
distribution of ηi1,

(η11, ..., ηI1)
′ ∼ N(0,Ση), (2)

Ση = σ2(D − γC)−1,

where D = diag(mi) with mi as the number of neighbours of region i;C is the
adjacency matrix of the map (i.e., Cii = 0, and Cij = 1 if i ∼ j, and 0 otherwise);
σ2 is the spatial dispersion; γ is a smoothing parameter which measures spatial
association (γmin ≤ γ ≤ γmax) where γ−1

min and γ−1
max are the smallest and largest

eigenvalues of D−1/2CD−1/2. As a result, this CAR model is proper since (D−γC)
is a non-singular matrix.

When we have information available about two sets of incidences (or mortality)
data from the same population groups or regions, we can relate the incidences cases
of two different diseases with spatial effects. To that end, we use a multivariate
CAR (MCAR) model to capture the spatial random effects (ηi1, ηi2). A variety of
MCAR models may be used [9, 11, 12, 14, 26]. We consider the following model
which uniquely determines the joint distribution of η1 = (η11, ..., ηI1)

′ and η2 =
(η12, ..., ηI2)

′ as

(
η1
η2

)
∼ N

(
0
0

)
,

(
Σ11 Σ12

Σ′
12 Σ22

) , (3)

where Σkl, k, l = 1, 2, are I × I covariance matrices [12]. From standard multi-
variate normal theory, we have E(η2|η1) = Σ12Σ

−1
11 η1 and var(η2|η1) = Σ22 −

Σ12Σ
−1
11 Σ

′
12 := Σ11.2. Let A = Σ12Σ

−1
11 , we can then write Σ22 = Σ11.2 + AΣ11A

′

and Σ12 = AΣ11. To uniquely define joint distribution of (η1, η2), we need to know
that Σ11 and Σ11.2 are positive definite. To write the joint distribution of (η1, η2),
we need to specify the matrices Σ11.2,Σ11, and A.

Following the univariate CAR structure, it is assumed that the conditional dis-
tribution for η2|η1 is

η2|η1 ∼ N(Aη1, ((D − γ2C)σ−2
2 )−1), (4)

and the marginal distribution of η1 is

η1 ∼ N(0, ((D − γ1C)σ−2
1 )−1), (5)

where γ2 is the smoothing parameter associated with the conditional distribution
of η2|η1, γ1 is similar for the marginal distribution of η1, and σ2

1 and σ2
2 are spatial

dispersions of η1 and η2|η1, respectively. Hence, the joint distribution will be always



August 26, 2013 0:49 Journal of Applied Statistics M.Torabi-cJAS

4 M. Torabi

proper if these two CAR distributions (4)-(5) are valid. It is also well known that
these two CAR models are proper since (D−γ1C) and (D−γ2C) are non-singular
matrices. The values of parameters γ1 and γ2 are restricted between 0 and 1. Also,
to determine the relationship between η1 and η2, it is assumed that the matrix A as
A = {aij}Ii,j=1 where aij = ϕ0 if j = i, aij = ϕ1 if j ∼ i, and 0 otherwise. Hence, we
have A = ϕ0NI +ϕ1C where ϕ0 and ϕ1 are the bridging parameters associating ηi2
with ηi1 and ηj1(j ∼ i), respectively, and NI is an identity matrix with dimension
I. The resulted MCAR model, which has six parameters (γ1, γ2, σ

2
1, σ

2
2, ϕ0, ϕ1), is

proper and uniquely determined by the joint distribution of (η1, η2).

3. Bayesian inference

With advances in computational power, much progress in HB modeling has been
made that enables stable estimators for mortality rates in small areas by using
information from all areas to derive estimates for individual areas. A comprehensive
account of HB models for spatial data is given by Banerjee, Carlin, and Gelfand
[1].

The Bayesian approach is employed to estimate the model parameters as well as
the relative risks. The Gibbs sampler (e.g., [5, 7]) is used to obtain the posterior
mean and variance of model parameters. To generate samples from the posterior
distribution using MCMC method via the Gibbs sampler, we need to sample from
the full conditional distributions. Note that in our model, all of these full conditional
distributions are standard distributions that can be easily sampled. To implement
our application in the HB setup, we use the OpenBUGS software [15].

The hyperparameters σ2
1 and σ2

2, which determine the variation of the spatial
trends, have to be estimated from the data. We assign the gamma distributed
priors to the precision of spatial effects, (σ−2

1 , σ−2
2 ), where the gamma prior is given

by σ−2 ∼ G(a, b)(say), with mean a/b and variance a/b2, to avoid problems with
improper hyperpriors. Gamma distributed priors are computationally convenient
because the full conditional of σ−2 is again gamma distribution. We also assign
N(0, 106) for α1, α2, ϕ0, ϕ1 and U(0, 1) for γ1 and γ2.

For each model considered in the “Application” section, we independently sim-
ulate two parallel runs (c = 2), each of length D = 2d with d = 25, 000. To
reduce the effects of the starting values on the final results, the first 10,000 iter-
ations of each run are deleted (a burn-in sequence). We take every fifth iteration
of the remaining 40,000 iterations to reduce the autocorrelation in the run (i.e.,
thinning), leading to 8,000 iterations for each run for analysis purposes. Hence,
we have two runs with sample size 8, 000 for each run. To monitor the conver-
gence of the model parameters, we use several diagnostic methods implemented
in the Bayesian output analysis (BOA) program [20], a freely available package
created for R [18]. In particular, we evaluate descriptive diagnostic tests such as
the autocorrelation of generated samples of model parameters from the posterior
distribution and convergence diagnostic tests such as Brooks, Gelman, and Rubin
tests [3, 7] and Heidelberger and Welch test [10]. None of these tests indicated
non-convergence of the model parameters.
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Figure 1. Plots of SDR for children (solid line) and adults (dashed line) asthma visits to hospital in the
province of Manitoba, Canada.

4. Application

Our study was based on a yearly dataset of asthma visits to a hospital by Children
(age ≤ 20) and adults (age > 20) in the province of Manitoba, Canada, during
the 2000–2010 fiscal years. Eleven Regional Health Authorities, which were sub-
divided into 56 Regional Health Authority Districts (RHAD), were responsible
for the distribution of health care services in the province of Manitoba and these
RHADs are the geographic unit used in our model and all data were linked to
these geographic boundaries. A population-based centroid was provided for each
RHAD although the centroid was not necessarily the geographic centre of that
region. The regions were labelled 1,2,...,56 and the data were aggregated over the
study period 2000 to 2010. The number of asthma visits by children totaled 14,691
over the study period with mean and median number of yearly cases per region
of 26 and 17 (range 3 to 422), respectively, while the number of asthma visits to
hospital by adults totaled 77,095 over the study period with mean and median
number of yearly cases per region of 138 and 52 (range 11 to 3885), respectively.
The population of Manitoba was stable during the study period from 1.15 million
in 2000 to 1.20 million in 2010. The region population sizes varied from 920 to
663,000, with mean and median numbers of 20,900 and 7922, respectively. The
largest population was in region 56 while region 38 had the least population.

For each region, asthma visits to a hospital by children was considered disease 1
and asthma visits to a hospital by adults was considered disease 2. The expected
number of diseases is adjusted by gender and year. The standardized disease ratios
(SDRs) (i.e., SDRil = yil/eil) shown in Figure 1 exhibit the evidence of spatial
correlation between two diseases, motivating use of the MCAR model.

We fit the model (1) to our datasets. Table 1 reports the model parameters
estimate and corresponding 95% credible intervals. It seems that the model is
able to capture some variations presented in the data as the model parameters
are mostly significant. Regarding estimation of the spatial association parameters,
(λ1, λ2), we observe that we have strong degree of spatial association in the random
effects η1 as the point estimate and corresponding 95% equal-tail interval estimates
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Table 1. Parameters estimate and corre-

sponding 95% credible intervals of bivariate

spatial mixed model using the HB method;

children and adults asthma visits to hospital

in the province of Manitoba, Canada, 2000–

2010.

Parameter Estimate 95% CI

α1 0.344 (-1.049,1.205)
α2 0.232 (-0.337,0.856)
λ1 0.969 (0.893,0.998)
λ2 0.723 (0.240,0.981)
σ2
1 0.666 (0.446,0.997)

σ2
2 0.323 (0.210,0.486)

ϕ0 0.639 (0.448,0.832)
ϕ1 0.003 (-0.046,0.052)

are 0.969 and (0.893, 0.998), while the moderate point estimate and wide confidence
interval suggest a relatively modest degree of spatial association in the random
effects η2. It is also important to note that in our set-up, λ1 measures spatial
association in the children random effects η1, while λ2 measures spatial association
in the adults random effects η2 given the children random effects η1.

Turn now to spatial dispersion for each disease, i.e., σ2
1 and σ2

2. It is resulted from
Table 1 that we have relatively small variability in both random effects although
again comparison is difficult here since σ2

1 is a marginal dispersion for η1 while σ2
2

is a conditional dispersion for η2 given η1.

Note that from linking parameters ϕ0 and ϕ1, it is also resulted from Table 1
that the two diseases have positive spatial correlation. This is also evident from
the posterior means and corresponding 95% credible intervals of the SDRs for two
diseases (Table 2).

In particular, Figure 2 shows that the two diseases are strongly correlated with
higher fitted ratios in the north-central part of the province. More investigation
may be warranted to explore the reasons for seemingly higher ratios of asthma cases
in the north-central part of Manitoba compared to other parts of the province.

5. Sensitivity analysis

We now investigate the choice of priors through a sensitivity study for our data
analysis. Full details of the prior sensitivity and choice of models appear in [17].
The hyperprior distributions of the variance components are generally set to be
vague to get the most information from the data. In general, the prior for the
precision of the random effects (σ−2) is often specified as a gamma distribution
with scale and shape parameters both equal to 0.001. One may also use a uniform
prior for the standard errors σ [8].

To investigate the influence of hyperprior specifications in our set-up, we conduct
a sensitivity analysis with respect to the prior distributions for the precision of
random effects parameter σ−2

1 and σ−2
2 , assuming a variety of different gamma

priors G(a, b). Following [19, 21, 23, 24], we use the following combinations in our
experimental design: (a, b) = (0.001, 0.001), (0.5, 0.0005), (0.01, 0.01), (0.1, 0.1),
(1, 0.1), (2, 0.001), (0.2, 0.0004), and (10, 0.25), which are denoted by A, B, C, D,
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Table 2. Posterior mean of SDRs and corresponding 95% credible interval of

bivariate spatial mixed model using the HB method; children and adults asthma

visits to hospital in the province of Manitoba, Canada.

Children Adults
Region Estimate 95% CI Estimate 95% CI

1 0.600 ( 0.465 , 0.764 ) 0.653 ( 0.578 , 0.735 )
2 1.548 ( 1.427 , 1.680 ) 1.355 ( 1.300 , 1.413 )
3 1.910 ( 1.668 , 2.175 ) 1.924 ( 1.775 , 2.083 )
4 1.203 ( 1.036 , 1.394 ) 1.296 ( 1.215 , 1.380 )
5 2.212 ( 1.831 , 2.649 ) 2.233 ( 2.053 , 2.429 )
6 1.221 ( 0.966 , 1.525 ) 1.383 ( 1.267 , 1.506 )
7 0.482 ( 0.415 , 0.555 ) 0.870 ( 0.821 , 0.920 )
8 0.533 ( 0.430 , 0.653 ) 0.658 ( 0.591 , 0.732 )
9 0.916 ( 0.789 , 1.058 ) 0.678 ( 0.624 , 0.738 )
10 2.065 ( 1.832 , 2.319 ) 1.373 ( 1.271 , 1.482 )
11 0.453 ( 0.335 , 0.600 ) 1.003 ( 0.922 , 1.089 )
12 0.867 ( 0.638 , 1.157 ) 0.994 ( 0.877 , 1.123 )
13 0.461 ( 0.368 , 0.573 ) 0.471 ( 0.426 , 0.521 )
14 1.713 ( 1.467 , 1.988 ) 1.084 ( 0.915 , 1.272 )
15 0.731 ( 0.536 , 0.972 ) 0.897 ( 0.816 , 0.984 )
16 0.540 ( 0.473 , 0.613 ) 0.559 ( 0.519 , 0.600 )
17 0.531 ( 0.445 , 0.626 ) 0.674 ( 0.624 , 0.728 )
18 0.737 ( 0.577 , 0.932 ) 1.057 ( 0.963 , 1.157 )
19 0.585 ( 0.484 , 0.704 ) 0.688 ( 0.628 , 0.754 )
20 1.568 ( 1.416 , 1.729 ) 1.073 ( 1.018 , 1.130 )
21 2.141 ( 1.909 , 2.393 ) 1.669 ( 1.569 , 1.775 )
22 0.410 ( 0.348 , 0.481 ) 0.759 ( 0.723 , 0.797 )
23 0.736 ( 0.634 , 0.850 ) 0.728 ( 0.683 , 0.774 )
24 1.280 ( 1.070 , 1.517 ) 0.851 ( 0.777 , 0.928 )
25 1.632 ( 1.457 , 1.823 ) 1.171 ( 1.084 , 1.261 )
26 2.468 ( 2.229 , 2.726 ) 1.879 ( 1.697 , 2.070 )
27 1.668 ( 1.473 , 1.882 ) 1.950 ( 1.870 , 2.030 )
28 3.227 ( 2.909 , 3.567 ) 3.027 ( 2.886 , 3.176 )
29 1.854 ( 1.682 , 2.040 ) 1.795 ( 1.713 , 1.880 )
30 3.194 ( 2.780 , 3.645 ) 1.668 ( 1.557 , 1.784 )
31 1.366 ( 1.225 , 1.517 ) 0.712 ( 0.649 , 0.779 )
32 2.539 ( 2.153 , 2.978 ) 2.182 ( 1.925 , 2.455 )
33 2.837 ( 2.248 , 3.532 ) 1.862 ( 1.545 , 2.230 )
34 3.636 ( 3.195 , 4.130 ) 3.985 ( 3.554 , 4.450 )
35 2.505 ( 2.222 , 2.810 ) 2.555 ( 2.327 , 2.805 )
36 3.269 ( 2.929 , 3.632 ) 2.327 ( 2.088 , 2.589 )
37 3.113 ( 2.876 , 3.367 ) 1.782 ( 1.604 , 1.969 )
38 2.900 ( 2.256 , 3.677 ) 2.463 ( 2.059 , 2.920 )
39 3.275 ( 2.735 , 3.890 ) 2.704 ( 2.306 , 3.162 )
40 2.695 ( 2.382 , 3.039 ) 2.482 ( 2.208 , 2.777 )
41 3.192 ( 2.839 , 3.576 ) 2.156 ( 1.894 , 2.436 )
42 1.938 ( 1.381 , 2.666 ) 2.066 ( 1.714 , 2.483 )
43 1.411 ( 1.180 , 1.671 ) 0.974 ( 0.871 , 1.088 )
44 1.233 ( 1.019 , 1.479 ) 0.807 ( 0.726 , 0.894 )
45 1.722 ( 1.514 , 1.951 ) 0.680 ( 0.627 , 0.737 )
46 2.361 ( 2.102 , 2.646 ) 1.151 ( 1.070 , 1.236 )
47 2.150 ( 1.804 , 2.545 ) 1.056 ( 0.934 , 1.189 )
48 2.014 ( 1.733 , 2.334 ) 1.299 ( 1.191 , 1.418 )
49 1.748 ( 1.474 , 2.058 ) 1.042 ( 0.941 , 1.152 )
50 1.712 ( 1.515 , 1.925 ) 1.581 ( 1.505 , 1.659 )
51 1.862 ( 1.624 , 2.132 ) 1.082 ( 1.011 , 1.156 )
52 0.890 ( 0.743 , 1.056 ) 0.821 ( 0.760 , 0.884 )
53 0.843 ( 0.712 , 0.993 ) 1.041 ( 0.980 , 1.105 )
54 1.675 ( 1.447 , 1.929 ) 1.890 ( 1.792 , 1.993 )
55 1.564 ( 1.385 , 1.762 ) 1.763 ( 1.686 , 1.843 )
56 0.558 ( 0.541 , 0.575 ) 0.869 ( 0.861 , 0.878 )

E, F, G, and H, respectively. In fact, the Gamma priors (0.1, 0.1) and (2, 0.001) have
lowest and highest means and corresponding variances while other Gamma priors
are between these two priors. We also study the uniform distribution U(0, 100) for
standard errors σ1 and σ2 denoted by U. We consider the same set-up as in our
data analysis, noting that the scenario A is the same set-up employed in the data
analysis Section.

Table 3 provides the model parameters estimates (and corresponding standard
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Figure 2. Maps of posterior mean of SDRs for children and adults asthma visits to hospital in the province
of Manitoba, Canada. Major urban centre (Winnipeg region) is provided as inset.

Table 3. Parameters estimates (and corresponding standard errors) and means of SDRs over regions for sensitivity analysis of prior distributions for different

scenarios of gamma and uniform distributions for variance components.

Prior A B C D E F G H U

α1 0.335(0.413) 0.342(0.425) 0.336(0.424) 0.352(0.406) 0.344(0.413) 0.346(0.410) 0.339(0.394) 0.332(0.409) 0.354(0.401)
α2 0.227(0.294) 0.230(0.300) 0.226(0.300) 0.239(0.291) 0.232(0.292) 0.233(0.292) 0.229(0.283) 0.222(0.301) 0.239(0.284)
λ1 0.968(0.030) 0.969(0.028) 0.968(0.030) 0.968(0.030) 0.969(0.029) 0.972(0.026) 0.968(0.029) 0.980(0.019) 0.967(0.030)
λ2 0.716(0.197) 0.722(0.197) 0.717(0.196) 0.715(0.197) 0.723(0.194) 0.741(0.186) 0.721(0.196) 0.812(0.150) 0.713(0.197)
σ2
1 0.693(0.150) 0.676(0.144) 0.693(0.150) 0.694(0.151) 0.666(0.142) 0.636(0.132) 0.686(0.147) 0.480(0.088) 0.710(0.155)

σ2
2 0.333(0.076) 0.324(0.072) 0.333(0.075) 0.337(0.076) 0.323(0.071) 0.303(0.067) 0.330(0.075) 0.226(0.044) 0.342(0.077)

ϕ0 0.636(0.100) 0.636(0.097) 0.636(0.098) 0.635(0.101) 0.639(0.098) 0.640(0.096) 0.635(0.099) 0.665(0.087) 0.633(0.101)
ϕ1 0.003(0.025) 0.004(0.024) 0.003(0.024) 0.004(0.025) 0.003(0.024) 0.003(0.024) 0.003(0.025) 0.0001(0.022) 0.004(0.025)
SDR1 1.687 1.687 1.687 1.688 1.687 1.687 1.687 1.687 1.687
SDR2 1.424 1.424 1.424 1.424 1.424 1.424 1.424 1.423 1.424

errors) and also the means of SDRs over regions (SDR) for different sceneries.
As shown in Table 3, the estimates of model parameters and SDRs are stable for
different scenarios of gamma and uniform distributions for variance components.

6. Conclusion

We illustrate a model for bivariate spatial analysis that pays specific attention to
the mapping of areal data of two (or more) diseases ratios which are believed to
be correlated. The model accommodates a multivariate conditional autoregressive
(MCAR) model to capture the dependence among the multivariate (bivariate) com-
ponents and the spatial dependence between regions. The fully Bayesian approach
is employed for the analysis using Markov chain Monte Carlo techniques. We study
the convergence of the samples obtained through diagnostic methods and conclude
that convergence was achieved. Our sensitivity analysis using different priors for
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the variance components points out that this hierarchical Bayesian bivariate spa-
tial analysis for Poisson data yields similar results regardless of the vague priors
considered in the “Application” section.

We adjust our expected number of cases by gender and time (year). However, we
may have lost some information about the time trends of incidences for children and
adults over years. Also, in our dataset of asthma visits to hospital, some individuals
may have been counted multiple times although the number of re-admissions to
hospital was relatively small. To capture these variations, we have planned to study
spatio-temporal modeling of bivariate disease mapping in a separate manuscript.

We have shown that these two diseases (asthma visits by children and adults)
are spatially correlated, so it is evident that we should use this information for
disease mapping. Overall, it is suggested by the model estimates that the high
asthma incidence ratios for children and adults were mainly located in the north-
central part of the province. In fact, in a separate manuscript [22], we have studied
these two diseases (children and adults asthma visits to hospital) separately using
a frequentist approach and observed that the high asthma incidence ratios for
children are also mainly located in the north-central part of the province while
for adults only two regions in the south-central and two regions in the north-
central part of the province had high asthma incidence ratios. The findings of our
analysis may represent real increases or may be indicative of different distributions
of important covariates that are unmeasured and unadjusted for in our modeling.
Further investigation is needed to look for possible risk factors for the regions with
high asthma ratios in the north-central part of Manitoba.
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