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Summary

In survey sampling, policymaking regarding the allocation of resources to subgroups (called
small areas) or the determination of subgroups with specific properties in a population should
be based on reliable estimates. Information, however, is often collected at a different scale
than that of these subgroups, hence the estimation can only be obtained on finer scale data.
Parametric mixed models are commonly used in small-area estimation. The relationship
between predictors and response, however, may not be linear in some real situations.
Recently, small-area estimation under the generalized linear mixed model (GLMM) with
a penalised spline (P-spline) regression model, for the fixed part of the model, has been
proposed to analyse cross-sectional responses, both normal and non-normal. However, there
are many situations in which we have time-related responses in small areas such as an
annual dataset on the number of asthma physician visits in different areas of Manitoba,
Canada. In cases where covariates that can possibly predict the asthma physician visits (such
as age and genetic and environmental factors) may not have a linear relationship with the
response, new models for analysing such datasets are required. In the current work, using
both time-series and cross-sectional data methods, we propose P-spline regression models
for small-area estimation under the GLMMs. Our proposed model covers both normal and
non-normal responses. In particular, the empirical best predictors of small-area parameters
and their corresponding prediction intervals are studied where the maximum likelihood
estimation approach is used to estimate the model parameters. The performance of the
proposed approach is evaluated using some simulations and also by analysing two real
datasets (precipitation and asthma).
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2 SEMI-PARAMETRIC SMALL-AREA MODELS

1. Introduction7

Sample surveys are commonly conducted to provide reliable estimates of finite8

population parameters such as totals, means, counts, quantiles, etc. In recent years, there9

has been an increasing demand for such estimates for sub-populations (small areas), such10

as counties or gender-age groups, to use in formulating policies and programs, allocating11

government funds, regional planning, and making decisions at a local level, amongst other12

uses. The sample sizes within areas, however, are often too small to warrant the use of the13

traditional area-specific direct estimates.14

To produce reliable estimates of characteristics of interest for small areas and obtain15

measures of error associated with each estimate, a number of methods have been proposed16

in the literature. These include, among others, the use of synthetic, composite and/or model-17

based estimators (Jiang & Lahiri 2006; Pfeffermann 2013; Rao & Molina 2015). Model-18

based estimators borrow strength from related areas both by defining a set of assumptions19

for modelling the stochastic behaviour of the variables in the underlying population and by20

introducing random effects into the model. In the context of mixed models, such small-area21

models may be classified into two broad types: (i) Area-level models (Fay & Herriot 1979)22

that relate small-area direct estimates to area-specific covariates; such models are used if unit-23

level data are not available. (ii) Unit-level models (Battese, Harter & Fuller 1988) that relate24

the unit values to associated unit-level covariates with known area means and area-specific25

covariates.26

Parametric models have been extensively used in small-area estimation. On the other27

hand, research which investigates non- or semi-parametric models in the context of small-28

area estimation is limited. Opsomer et al. (2008) extended the linear mixed model approach29

in the context of small-area estimation to the case in which a linear relationship may not30

hold using penalised splines (P-splines) regression. Torabi & Shokoohi (2015) proposed31

generalised linear mixed models (GLMMs) using P-spline regression to unify the analysis of32

normal and non-normal responses. From a very different perspective, Chambers & Tzavidis33

(2006) studied an approach for small-area estimation that is based on M-quantile regression34

which allows for models that are robust to the distributional assumptions on the errors and35

area effects. However, when the functional form of the relationship between q-th M-quantile36

and the covariates is not linear, this approach can lead to biased estimates of the small-37

area parameters. An extended version of this approach for the estimation of the small-area38

distribution function using a non-parametric specification of the conditional M-quantile of39

the response variable given the covariates has been also studied (Pratesi, Ranalli & Salvati40

2008, 2009; Salvati, Ranalli & Pratesi 2011). Jiang, Nguyen & Rao (2010) developed an41
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F SHOKOOHI AND M TORABI 3

adaptive fence procedure (Jiang et al. 2008) for selecting semi-parametric models using P-42

splines. Sperlich & José Lombardı́a (2010) used local polynomial inference in the context of43

small-area estimation.44

There has been a limited amount of research based on time series in the context of45

small-area estimation. Scott & Smith (1974) and Jones (1980), among others, used time46

series models to develop efficient estimates of aggregated parameters in the repeated survey47

setting. Tiller (1992) used the Kalman filter to combine a current-period state-wide estimate48

from the US Current Population Survey with the past estimates for the same state. However,49

these authors did not investigate the idea of effecting small-area estimation by combining50

cross-sectional and time-series data. Pfeffermann & Burck (1990) and Singh, Mantel &51

Thomas (1991), among others, studied cross-sectional and time-series models for small-52

area estimation using the Kalman filter by assuming specific models for the sampling errors53

over time. Rao & Yu (1994) proposed a combined cross-sectional and time-series model54

involving autocorrelated random effects and sampling errors with an arbitrary covariance55

matrix over time. Datta, Lahiri & Maiti (2002) applied a similar model to the Rao-Yu model56

having replaced autoregressive (AR) random effects part with a random walk model. Datta57

et al. (1999) considered a similar model but added extra terms to reflect seasonal variation.58

Torabi (2012) extended the Datta et al. (1999) model to account for spatial variation over59

areas/regions. Torabi & Shokoohi (2012) considered cross-sectional and time-series models60

for both normal and non-normal responses in a specific parametric model. Recently, Boubeta,61

Lombardia & Morales (2017) also used a time-related response to study empirical best62

predictors under area-level Poisson mixed models.63

The contribution of the current paper is two-fold. The first aim of this paper is to develop64

semi-parametric models to unify the analysis of both discrete and continuous responses65

in the class of GLMMs for time-series and cross-sectional data. It is well known that66

frequentist analysis of these models is computationally difficult. There are some approximate67

methods based on the frequentist paradigm for analysing mixed models, such as Penalised68

quasi-likelihood (PQL), Laplace approximation and Gauss-Hermite quadrature, among other69

approaches. Recently, Lele, Dennis & Lutscher (2007) introduced an approach, called data70

cloning (DC), to compute maximum likelihood estimates (MLEs) and their corresponding71

standard errors for general hierarchical models. Data cloning is a computational algorithm72

based on Markov chain Monte Carlo (MCMC) which yields the MLE. Lele, Nadeem &73

Schmuland (2010) used the DC method to compute point predictions and prediction intervals74

for random effects in the class of GLMMs. As the second aim of this paper, we propose to75

use the DC method to make inference for our proposed semi-parametric mixed models for76

normal and non-normal responses by combining time-series and cross-sectional data methods77

in the context of small-area estimation.78
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4 SEMI-PARAMETRIC SMALL-AREA MODELS

The rest of this manuscript is organised as follows. Semi-parametric mixed models for79

combined time-series and cross-sectional data are introduced in Section 2. In Section 3, we80

describe how the DC method can be used for obtaining parameter estimates and predictions81

with their corresponding standard errors. We report the results of simulation studies for82

evaluating the performance of the proposed approach in Section 4. In Section 5, we consider83

analyses of two real datasets, a Canadian precipitation dataset and an asthma physician visits84

dataset from the Canadian province of Manitoba. Finally, some concluding remarks are given85

in Section 6.86

2. Semi-parametric mixed models87

A semi-parametric model for time-series and cross-sectional data utilising P-splines on88

the covariates is described as follows. Let Yit denote the variable of interest in area i(=89

1, ...,m) at time t(= 1, ..., T ). The Yit values are assumed to be conditionally independent,90

given the random effects, with exponential family density91

fY (yit|ζit, ςit) = exp

(
yitζit − a(ζit)

ςit
+ b(yit, ςit)

)
, i = 1, ...,m; t = 1, ..., T (1)

The density (1) is parameterised with respect to the canonical parameters ζit, known scale92

parameters ςit and known functions a(·) and b(·). The exponential family (1) covers well-93

known distributions including normal, binomial and Poisson. The natural parameters ζit for94

semi-parametric regression model are then modelled as95

ζit = h(θit) = m0(xit) + νi + uit, i = 1, ...,m; t = 1, ..., T, (2)

where h is a strictly increasing function to guarantee a one-to-one relationship between θit96

and natural parameters ζit, θit = E(yit|ζit, ςit), and νi
i.i.d.∼ N(0, σ2

ν), i = 1, . . . ,m, are area97

specific random effects. We assume that uit’s follow a common AR(1) process for each area98

i; that is,99

uit = ρui(t−1) + εit, |ρ| < 1, (3)

with εit
i.i.d.∼ N(0, σ2

ε ). The function m0(xit) is unknown but it is assumed that it can be100

approximated sufficiently well by following P-spline:101

m0(xit) ≈ β0 + β1xit + · · ·+ βpx
p
it +

L∑
l=1

γl(xit − κl)p+. (4)
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F SHOKOOHI AND M TORABI 5

In the formula above, p is the degree of the spline, (x)p+ denotes the function xp1(x > 0),102

where 1(.) denotes the indicator function, xit is a known value (covariate), {κ1, . . . , κL}103

is a set of fixed knots, β = (β0, β1, . . . , βp)
> and γ = (γ1, . . . , γL)> are the regression104

coefficients and P-spline part of the model, respectively and L is the number of spline knots.105

We assume that γl
i.i.d.∼ N(0, σ2

γ), l = 1, . . . , L. The random variables νi, γl, and εit are also106

assumed to be independent of each other. Inference is then carried out based on the P-spline107

model (4).108

It is well known that if the location of the knots is sufficiently spread out over the109

range of xit and if L is sufficiently large, then the class of models which are adequately110

approximated using P-splines is very large and includes most smooth functions (Eilers &111

Marx 1996; De Boor 2001). It is recommended to use the minimum of 40 and nc/4, where112

nc is the number of unique values of xit, as the number of spline knots L (Ruppert 2002). We113

follow this recommendation in this paper. We refer the readers to Ruppert, Wand & Carroll114

(2003) for more details on P-spline regression models.115

A special case of model (2) is h(θit) = θit. The area-level mixed model can be written116

yit = θit + eit = m0(xit) + νi + uit + eit, uit = ρui(t−1) + εit,

and if m0(xit) is approximated sufficiently well, then the area-level semi-parametric mixed117

model is given by118

yit ≈ β0 + β1xit + · · ·+ βpx
p
it +

L∑
l=1

γl(xit − κl)p+ + νi + uit + eit, uit = ρui(t−1) + εit,

for i = 1, ...,m, t = 1, ..., T , when, given the θit, e = (e11, ..., emT )> is a vector of normally119

distributed sampling errors, given θit’s, with zero means and a known (to avoid identifiability120

issues) block diagonal covariance matrix Ψ with blocks Ψi.121

3. Likelihood-based estimation122

Let α = (β>, ρ, σ2
ν , σ

2
γ , σ

2
ε )> denote the unknown parameters in the model described123

by (1)-(4). The marginal likelihood of the data denoted by L(α;y) is obtained by integrating124

conditional probabilities of responses over the distribution of random effects as follows:125

L(α;y) =

∫ ∫ ∫ m∏
i=1

T∏
t=1

f(yit|ζit, ςit)g(ζit|ρ, σ2
ν , σ

2
γ , σ

2
ε )dνiduitdγl, (5)

where f(·) is the semi-parametric mixed model defined as (1)-(4), and g(·) is a multivariate126

normal distribution with appropriate mean and covariance matrix.127
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6 SEMI-PARAMETRIC SMALL-AREA MODELS

We use the DC method to obtain the MLE of the parameters which appear in (5). The DC128

method uses the Bayesian computational approach for frequentist purposes. To understand129

the logic behind the DC method, imagine a hypothetical situation where the observations130

y = (y11, ..., ymT )> are repeated independently by K different individuals, and all these131

individuals happen to result in exactly the same set of observations y. We denote these132

repeated datasets by y(K) = (y>,y>, ...,y>)>. The likelihood function for the combination133

of the data from theseK independent experiments is then given by {L(α;y)}K = LK(α;y).134

Note that this likelihood function has two important features:135

1. The location of the maximum of this function is exactly equal to the location of the136

maximum of L(α;y).137

2. The Fisher information matrix based on this likelihood is K times the Fisher138

information matrix based on L(α;y).139

Let α̂ be the MLE and I(α̂) be the corresponding Fisher information matrix based on140

L(α;y). We assume that the model is identifiable and there is a unique mode (but possibly141

multiple smaller peaks) for the likelihood function. The posterior distribution ofα conditional142

on the data y(K) is then given by143

πK(α|y(K)) =
LK(α;y)π(α)

C(y(K))
, (6)

where π(α) is the prior distribution and C(y(K)) =
∫
LK(α;y)π(α)dα is the normalising144

constant. The following theorem guarantees that inference based on LK(α;y), the likelihood145

of K copies of the original data, is closely related to inference based on L(α;y):146

Theorem 1. Consider the general model described by (1)-(4). Under some mild regularity147

conditions, as K becomes large, the posterior distribution of
√
KΣ−1/2(α− α̂)|y(K)148

converges to a multivariate normal distribution with mean 0 and covariance matrix I which is149

the identity matrix with the dimension of α, α̂ is the MLE, and Σ is the inverse of the Fisher150

information matrix for the MLE.151

Proof. It suffices to show that the distributions considered in our model satisfy the152

assumptions A.1-A.3 considered in Lele, Nadeem & Schmuland (2010). First, it is obvious153

that each sampling distribution fY (.) (i.e. normal, binomial and Poisson), as a function of θ,154

has a local maximum which we shall denote by θ∞, and that fY (θ∞) > 0 and π(θ∞) > 0.155

The maximum likelihood estimator is then θ∞. Second, for each pair of functions π(.)156

and fY (.), the function π(.) is continuous at any interior point of parameter space and157

is thus continuous at θ∞. Likewise the function fY (.) has continuous second derivatives158

in a neighbourhood of any interior point as well as at θ∞, and D2fY (θ∞) is strictly159
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F SHOKOOHI AND M TORABI 7

negative definite since it belongs to exponential family. Third, since the sampling functions160

fY (.) belong to the exponential family and have local maxima, for any δ > 0, we have161

γ(δ) = sup{fY (θ) : ‖θ − θ∞‖ > δ} < f(θ∞). Therefore, the rest of proof follows along162

the lines of Lele, Nadeem & Schmuland (2010).163

Theorem 1 assures that the sample mean vector of the generated random numbers from164

the posterior distribution (6) provides the MLE of the model parameters α, and furthermore165

K times their sample covariance matrix is an estimate of the asymptotic covariance matrix of166

the MLE α̂.167

Lele, Nadeem & Schmuland (2010) also provided various checks to determine the value168

of K which constitutes an adequate number of clones. For instance, one may plot the ratio169

of the largest eigenvalue of the posterior variance of K clones to the eigenvalue of the170

posterior variance of one clone, as a function of the number of clones K. By investigating171

the graph one can determine if the posterior distribution has become nearly degenerate.172

As another criterion, it is approximately true that as we increase the number of clones,173

(α− ᾱ)>V −1(α− ᾱ) ∼ χ2
q, where ᾱ and V are the mean and the variance of the posterior174

distribution of α, respectively, and q is the dimension of α. One may also compute the175

following two statistics: (a) ζ =
∑B
b=1(Ob − Eb)2/B, where Ob and Eb are observed and176

estimated quantiles for χ2
q random variable, and (b) r̃2 = 1− τ2, where τ is the correlation177

between O and E. If these statistics are close to zero, it indicates that the foregoing χ2178

approximation is reasonable. Note that the foregoing three criteria have been implemented179

in the dclone package (Sólymos 2010), which is freely available in R (R Development180

Core Team 2016). We use these criteria to obtain the appropriate number of clones in our181

simulations and in the data analyses.182

3.1. Prediction of small-area parameters183

The main goal in small area estimation is to predict small-area parameters θit and to184

determine the precision of these predictions. Following Hamilton (1986) and Lele, Nadeem185

& Schmuland (2010), based on the MLE of α, the prediction of (and the prediction interval186

for) θit, conditional on the observed data, is obtained using MCMC algorithm under the187

following posterior density188 ∫
f(y|ζit,β)g(ζit|ρ, σ2

ν , σ
2
γ , σ

2
ε )φ(α, α̂, I−1(α̂))dα

C(y)
. (7)

In (7) f(·) and g(·) are as in (5), and φ(., µ,Σ) denotes a multivariate normal density with189

mean µ and covariance Σ, which are set equal here to the MLE of µ and the inverse of190
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8 SEMI-PARAMETRIC SMALL-AREA MODELS

the Fisher information matrix. Also in (7) C(y) =
∫
L(α;y)π(α)dα is the normalising191

constant.192

The prior distributions π(α) in the DC method are chosen as βj ∼ N(0, 106), j =193

0, . . . , p, σν ∼ Uniform(0, 1000), σγ ∼ Uniform(0, 1000), σε ∼ Uniform(0, 1000) and ρ ∼194

Uniform(−1, 1). Note that the results in the DC method are invariant to the choice of priors.195

However, if one uses appropriate/informative priors, a smaller number of clones (K) will be196

needed in order to achieve convergence. To monitor the convergence of the algorithm, we197

use several diagnostic methods implemented in the Bayesian output analysis (BOA) program198

(Smith 2007) in R. We also use diagnostic methods implemented in the dclone package199

(Sólymos 2010) to monitor the convergence of the algorithm in terms of the number of clones200

K as described in Section 3. We have also provided the R code for the simulation studies and201

data analyses as supplementary materials; please contact the first author for questions related202

to the R code.203

4. Simulation study204

4.1. Normal mixed model205

We conducted a simulation study to evaluate performance of the proposed approach206

in the semi-parametric normal mixed model set-up. We used the following semi-parametric207

area-level model as the true model under which the samples for the simulation study were208

generated. We used the following set-up for our simulation study:209

yit = m0(xit) + νi + uit + eit, i = 1, ...,m; t = 1, ..., T,

uit = ρui,t−1 + εit, |ρ| < 1.

We set m = 50, T = 5, ρ = 0.4, eit
i.i.d.∼ N(0, 1), νi

i.i.d.∼ N(0, σ2
ν) and εit

i.i.d.∼ N(0, σ2
ε )210

where σ2
ν = σ2

ε = 1. Following Breidt, Claeskens & Opsomer (2005) and Rao, Sinha &211

Dumitrescu (2014), we considered these three different choices of m0(xit):212

1) Linear: m0(xit) = 1 + xit,213

2) Quadratic: m0(xit) = 1 + xit + 0.5 x2it,214

3) Exponential: m0(xit) = 1− xit + 0.5 exp(xit).215

We generated xit from a normal distribution with mean 0 and variance 1 once and

treated them as fixed in the simulation study. Throughout the simulation study, we used

the linear P-spline approximation (p = 1) for m0(xit). Following Ruppert (2002); Ruppert,

Wand & Carroll (2003), we set the number of knots to be L = 40. We generated R = 1000
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F SHOKOOHI AND M TORABI 9

independent samples

{(y(r)it , xit), i = 1, ...,m; t = 1, ..., T ; r = 1, ..., R},

assuming

y
(r)
it = m0(xit) + ν

(r)
i + u

(r)
it + e

(r)
it ,

where ν(r)i , ε
(r)
it and e(r)it were generated from the corresponding normal distributions with

σ2
ν = σ2

ε = σ2
e = 1. For each simulated run, we applied the DC method to get the MLE of the

model parameters and also to provide the prediction and prediction intervals of the empirical

best linear unbiased predictor (EBLUP) of small-area means. That is, we calculated

θ
(r)
it = m0(xit) + ν

(r)
i + u

(r)
it ,

using

θ̂
(r)
it = β̂

(r)
0 + β̂

(r)
1 xit +

40∑
l=1

E[γ
(r)
l (xit − κl)+|yi]α=α̂ + E[ν

(r)
i + u

(r)
it |yi]α=α̂,

with γl
i.i.d.∼ N(0, σ2

γ) and yi = (yi1, ..., yiT )>. We also compared our proposed P-spline

regression model with the corresponding parametric model which is simplym0(xit) = x>itβ.

For each iteration, we then have

θ̃
(r)
it,p = β̂

(r)
0 + β̂

(r)
1 xit + E[ν

(r)
i + u

(r)
it |yi]α=α̂.

For this simulation set-up, the average number of clones needed to obtain the MLE was

K = 20, and the average number of iterations needed to achieve convergence was about

10,000. We calculated the empirical mean squared prediction error (EMSPE) of small-area

means as

EMSPE(θ̂it) =
1

R

R∑
r=1

{θ̂(r)it − θ
(r)
it }

2.

Also, the relative bias (RB) of an estimator of the MSPE, say mspe, was calculated as

RB[mspe(θ̂it)] =
{ 1

R

R∑
r=1

mspe(r)(θ̂it)− EMSPE(θ̂it)
}
/EMSPE(θ̂it),

where θ̂
(r)
it , θ

(r)
it , and mspe(r)(θ̂it) are the values of θ̂it, θit, and mspe(θ̂it) for the r-th216

simulation run, respectively. Note that mspe(θ̂it) is the variance of θ̂it whence this quantity217

can be computed under the posterior distribution (7).218
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10 SEMI-PARAMETRIC SMALL-AREA MODELS

Table 1. Average EMSPE of small-area means θ̂iT over areas in the case of the P-spline normal mixed
model.

True model
Approach

P-spline Parametric
Linear 0.585 0.584
Quadratic 0.593 0.708
Exponential 0.610 0.706

Table 2. Percent AARB of estimators of MSPE of small-area means θ̂iT over areas in the case of the
P-spline normal mixed model.

True model
Approach

P-spline Parametric
Linear 4.94 4.15
Quadratic 5.13 11.18
Exponential 5.81 9.25

The average EMSPE of small-area means θ̂iT (for the current time T ) over areas for219

all three pre-specified models m0(xiT ) (linear, quadratic, exponential) for both P-spline and220

parametric models are reported in Table 1. The results show that the values of EMSPE are221

stable for the P-spline method for all three pre-specified models m0(xiT ) while these values222

increase for the quadratic and exponential parametric models. Table 2 reports the average223

absolute relative bias in percent (AARB) of mspe over areas for the three different models224

m0(xiT ) for both P-spline and parametric models. The proposed P-spline model performs225

reasonably well in terms of AARB (AARB < 6%) for the all three models m0(xiT ). The226

parametric model, however, gives much higher values than the semi-parametric model for227

both the quadratic and exponential models.228

We are also interested in obtaining prediction intervals for the small-area means. To229

this end, for each simulation run r, we calculate θ(r)iT and compute appropriate quantiles230

α and (1− α) of θ̂(r)iT . In particular, the coverage probability of θ̂iT is calculated as the231

proportion of the times (over R = 1000) that θ(r)iT falls within (θ̂
(r)
iT (α), θ̂

(r)
iT (1− α)). Table232

3 shows the coverage probabilities and the average lengths of the prediction intervals for233

θ̂iT for the P-spline and parametric models for all three pre-specified models m0(xiT ). The234

proposed P-spline model performs well in terms of the average coverage probabilities of235

the prediction intervals θ̂iT for all three pre-specified models m0(xiT ). The corresponding236

parametric model performs well in terms of the coverage probabilities but the P-spline method237

produces slightly shorter confidence intervals.238
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F SHOKOOHI AND M TORABI 11

Table 3. Average coverage probabilities (and average lengths) of prediction intervals for small-area
means θ̂iT over areas in the case of the P-spline normal mixed model.

True model Approach
Confidence coefficient (average lengths)

0.90 0.95 0.98 0.99
Linear P-spline 0.892 (2.458) 0.944 (2.927) 0.976 (3.471) 0.987 (3.838)

Parametric 0.893 (2.468) 0.944 (2.940) 0.977 (3.485) 0.988 (3.849)
Quadratic P-spline 0.892 (2.471) 0.942 (2.943) 0.976 (3.490) 0.988 (3.860)

Parametric 0.888 (2.666) 0.940 (3.175) 0.973 (3.762) 0.985 (4.155)
Exponential P-spline 0.890 (2.484) 0.941 (2.958) 0.975 (3.508) 0.986 (3.879)

Parametric 0.890 (2.642) 0.940 (3.146) 0.971 (3.728) 0.982 (4.117)

4.2. Logistic mixed model239

We also conducted a simulation study to evaluate performance of the proposed approach240

in the semi-parametric logistic mixed model context. To that end, we first generated R =241

1000 independent samples from the following model:242

y
(r)
it ∼ Binomial(nit, θ

(r)
it ), (8)

log(
θ
(r)
it

1− θ(r)it
) = m0(xit) + ν

(r)
i + u

(r)
it , i = 1, ...,m; t = 1, ..., T ; r = 1, ..., R,

where ν(r)i
i.i.d.∼ N(0, σ2

ν), u(r)it were generated from an AR(1) model with (ρ, σ2
ε ), ε(r)it

i.i.d.∼243

N(0, σ2
ε ). Three different choices of m0(xit), linear (0.1 + 0.01xit), quadratic (0.1 +244

0.01xit + 0.5 x2it), and exponential (0.1− 0.01xit + 0.5 exp(xit)) were used. We set m =245

50, T = 5, nit = 5, σ2
ν = σ2

ε = 1, and ρ = 0.4. The values of xit’s were generated once from246

the Uniform(−10, 0) distribution and they were then treated them as fixed in the simulation247

study.248

Using the simulated datasets {(y(r)it , xit), i = 1, ...,m; t = 1, ..., T ; r = 1, ..., R}, we

applied the DC method to estimate the model parameters and also to predict the small-area

proportion θit for each simulation run r using

log(
θ̂
(r)
it

1− θ̂(r)it
) = β̂

(r)
0 + β̂

(r)
1 xit +

40∑
l=1

E[γ
(r)
l (xit − κl)+|yi]α=α̂ + E[ν

(r)
i + u

(r)
it |yi]α=α̂,

where γl
i.i.d.∼ N(0, σ2

γ). The average number of clones needed to obtain the MLE was249

K = 20 and the average number of iterations required for convergence was about 10,000.250

Similarly to the normal mixed model setting, we studied the EMSPE of θ̂it, the RB of251

mspe(θ̂it), and the average coverage probabilities of θ̂it. Note that in the case of logistic and252

Poisson (Section 4.3) mixed models, we have only reported performance of our proposed253
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12 SEMI-PARAMETRIC SMALL-AREA MODELS

Table 4. Average EMSPE of small-area proportions θ̂iT over areas for the P-spline logistic mixed
model.

True model Average EMSPE
Linear 0.020
Quadratic 0.020
Exponential 0.020

Table 5. AARB of estimators of MSPE of small-area proportions θ̂iT over areas for the P-spline logistic
mixed model.

True model AARB (in %)
Linear 5.22
Quadratic 4.95
Exponential 5.67

Table 6. Average coverage probabilities (and average lengths) of small-area proportions θ̂iT over areas
with different confidence coefficients for the P-spline logistic mixed model.

True model
Confidence coefficient (average lengths)

0.90 0.95 0.98 0.99
Linear 0.888 (0.444) 0.942 (0.517) 0.974 (0.595) 0.986 (0.642)
Quadratic 0.891 (0.441) 0.942 (0.513) 0.974 (0.590) 0.986 (0.638)
Exponential 0.889 (0.441) 0.940 (0.514) 0.974 (0.591) 0.985 (0.639)

P-spline model and have not provided the results of the corresponding parametric models as254

they had behaviour similar to that observed in the normal mixed model (Section 4.1). Table255

4 shows the average EMSPE of the small-area proportions θ̂iT (for the current time T ) over256

areas for all three pre-specified models m0(xiT ). As shown in Table 4, the values of average257

EMSPE are small and stable for all of the models. The AARB of mspe(θ̂iT ) over areas is258

reported in Table 5. Similarly to the normal mixed model setting, these results show that259

the proposed P-spline model works reasonably well in terms of the AARB (AARB ≤ 6%).260

The average coverage probabilities and the average lengths of prediction intervals of small-261

area proportions θ̂iT over areas for different coefficients are given in Table 6. The proposed262

P-spline model also performs well in terms of the average coverage probabilities and the263

average lengths of prediction intervals of the small-area proportions θ̂iT over areas for all of264

the models considered.265

c© 2018 Australian Statistical Publishing Association Inc.
Prepared using anzsauth.cls



F SHOKOOHI AND M TORABI 13

4.3. Poisson mixed model266

We also conducted a simulation study to evaluate performance of the proposed approach267

in the semi-parametric Poisson mixed model set-up. To that end, we first generatedR = 2000268

independent samples from the following model:269

y
(r)
it ∼ Poisson(Nitθ

(r)
it ), (9)

log(θ
(r)
it ) = m0(xit) + ν

(r)
i + u

(r)
it , i = 1, ...,m; t = 1, ..., T ; r = 1, ..., R,

where ν(r)i
i.i.d.∼ N(0, σ2

ν), u(r)it were generated from AR(1) with (ρ, σ2
ε ), ε(r)it

i.i.d.∼ N(0, σ2
ε ).270

Three different choices of m0(xit) as linear (0.1 + 0.01xit), quadratic (0.1 + 0.01xit +271

0.1 x2it), and exponential (0.1 + 0.01xit + 0.1 exp(xit)) were used. We chose m = 50, T =272

5, Nit = 3, ρ = 0.4, and σ2
ν = σ2

ε = 1. We generated the xit’s from normal distribution with273

mean 0 and variance 1, and then treated them as fixed in the simulation study.274

Using the simulated datasets {(y(r)it , xit), i = 1, ...,m; t = 1, ..., T ; r = 1, ..., R}, we

applied the DC method to estimate the model parameters and also to predict the small-area

rate θit for each simulation run r using

log(θ̂
(r)
it ) = β̂

(r)
0 + β̂

(r)
1 xit +

40∑
l=1

E[γ
(r)
l (xit − κl)+|yi]α=α̂ + E[ν

(r)
i + u

(r)
it |yi]α=α̂,

where γl
i.i.d.∼ N(0, σ2

γ). The average number of clones needed to obtain the MLE was275

K = 20 and the average number of iterations required for convergence was about 10,000.276

Similarly to the other simulation studies in this work, we studied the EMSPE of θ̂it, the277

RB of mspe(θ̂it), and the average coverage probabilities of θ̂it. Table 7 shows the average278

EMSPE of the small-area rates θ̂iT (for the current time T ) over areas for all three pre-279

specified models m0(xiT ). As shown in Table 7, the values of average EMSPE increase280

from the linear to the quadratic and to the exponential model. The AARB of mspe(θ̂iT )281

over areas is reported in Table 8. Similarly to the other mixed models considered in our282

simulation studies, the proposed P-spline model performs reasonably well in terms of the283

AARB (AARB ≤ 9.4%). We note that when the number of simulations was increased from284

2000 to 5000 in the case of the exponential model, we even got better AARB ≤ 4.30% (These285

results are not shown here). The average coverage probabilities and the average lengths of286

the prediction intervals of small-area rates θ̂iT over areas for different coefficients are given287

in Table 9. The proposed P-spline model performs well in terms of the average coverage288

probabilities and the average lengths of the prediction intervals of the small-area rates θ̂iT289

over areas for different confidence coefficients and for the all three pre-specified models290

m0(xiT ).291
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14 SEMI-PARAMETRIC SMALL-AREA MODELS

Table 7. Average EMSPE of small-area rates θ̂iT over areas for the P-spline Poisson mixed model.

True model Average EMSPE
Linear 9.24
Quadratic 10.97
Exponential 11.89

Table 8. AARB of estimators of MSPE of small-area rates θ̂iT over areas for the P-spline Poisson
mixed model.

True model AARB (in %)
Linear 6.38
Quadratic 9.39
Exponential 7.41

Table 9. Average coverage probabilities (and average lengths) of small-area rates θ̂iT over areas with
different confidence coefficients for the P-spline Poisson mixed model.

True model
Confidence coefficient (average lengths)

0.90 0.95 0.98 0.99
Linear 0.897 (7.303) 0.947 (8.777) 0.978 (10.536) 0.989 (11.758)
Quadratic 0.897 (7.851) 0.947 (9.426) 0.978 (11.300) 0.988 (12.601)
Exponential 0.898 (8.188) 0.948 (9.827) 0.978 (11.774) 0.989 (13.124)

5. Applications292

5.1. Homogenized and adjusted Canadian climate data (HACCD)293

The website of Environment and Climate Change Canada provides homogenized and294

adjusted climate datasets for many climatological stations in Canada. The homogenized295

surface air temperature for Canada (HSATC2) data provides monthly, seasonal and annual296

means of the daily maximum, minimum and mean temperatures (Vincent et al. 2012). The297

adjusted precipitation for Canada (APC2) dataset provides adjusted daily rainfall, snowfall298

and total precipitation for many locations in Canada (Mekis & Vincent 2011). These datasets299

have been discussed and analyzed in a number of papers, for example, Mekis & Hogg (1999),300

Zhang et al. (2000), Alexander et al. (2006),Vincent & Mekis (2006), among others.301

We used the annual mean temperature in HSATC2 and the annual total precipitation in302

APC2 for those stations that appear in both datasets. As a result 29 locations were selected.303

Only records from the years 1967 – 1976 (30 years in all) were used due to incompleteness304

of the data for other years. We refer to the resulting combined data set as the “HACCD” data.305
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Figure 1. Annual precipitation versus annual temperature for four selected locations after normalising
the data. Note that the numbers 1 to 30, with which the graphs are annotated, refer to years 1967 to
1996, and R refers to location.

We were interested in the relationship between annual total precipitation and annual306

mean temperature for each location in Canada. Note that other datasets, e.g. homogenized307

surface pressure data and homogenized surface wind speed data, were available, however,308

in this analysis we focused only on HSATC2 and APC2. Figure 1 depicts the relationship309

between annual precipitation and annual temperature for selected locations. From this graph,310

one may conclude that a parametric linear mixed model cannot describe the relationship311

between annual precipitation and annual temperature.312

After normalising the response and covariate, we fitted the following model to the data:313
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16 SEMI-PARAMETRIC SMALL-AREA MODELS

Table 10. Model parameter estimates and corresponding standard errors (SE) and 95% confidence
intervals (LCI, UCI) for precipitation at 29 locations in Canada during the years 1967–1996. The
estimates were calculated using the P-spline normal mixed model.

Parameter β0 β1 ρ σ2
ε σ2

ν σ2
γ

Estimate 0.043199 -0.066147 -0.216700 0.000369 0.904384 0.001008
SE 0.032795 0.050246 0.287821 0.000126 0.055443 0.000548
LCI -0.009677 -0.188412 -0.674034 0.000193 0.802029 0.000324
UCI 0.097085 0.026536 0.460943 0.000673 1.018250 0.002288

yit = β0 + β1xit +

40∑
l=1

γl(xit − κl)+ + νi + uit + eit, (i = 1, ..., 29; t = 1, ..., 30),

uit = ρui,t−1 + εit, |ρ| < 1,

The model parameter estimates, standard errors, and their corresponding 95%314

confidence intervals are reported in Table 10. For the HACCD dataset, the number of clones315

needed to obtain the MLE wasK = 30 and the number of iterations required for convergence316

was 50,000. For the variance of the sampling errors we used all available data to obtain a317

smooth estimate which turned out to be approximately 1. This value was used in the analysis.318

Figure 2 shows predictions and corresponding 95% prediction intervals for the precipitation319

at the 29 locations in question, for the year 1996. The predictions are expressed in terms of320

the normalised data.321

5.2. Asthma physician visits322

We used our proposed approach to analyse the dataset of annual physician visits relating323

to Total Respiratory Morbidity (TRM) condition. Such visits consist of visits by patients324

diagnosed with any of the following respiratory diseases: asthma, chronic or acute bronchitis,325

emphysema, or chronic airway obstruction, and chronic obstructive pulmonary disease. These326

data were collected in the Canadian province of Manitoba during the 2000-2010 fiscal years.327

The population of Manitoba was reasonably stable during the study period, varying only328

from 1.15 million individuals in 2000 to 1.20 million individuals in 2010. The province is329

subdivided into five Regional Health Authorities that are responsible for the delivery of health330

care services. These five regions are further sub-divided into 222 Regional Health Authorities331

Districts (RHADs). Through the expedient of removing missing values, 217 of these RHADs332

became available for use in the analysis. For simplicity, we used these RHADs as areas; we333

denoted them by R1, R2,...,R217. In this analysis, our interest was to study the effect of age334
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Figure 2. Ninety-five % prediction intervals for average precipitation in the year 1996 at different
locations in Canada; the data were normalised. The bullets represent point predictions; the error bars
constitute the corresponding prediction intervals.

as a risk factor on the TRM condition. Figure 3 depicts the complex relationship between335

logit of physician rate and the average age for some selected RHADs. From this figure we336

can argue that a parametric model is not suitable to fit the data and we therefore turned to a337

semi-parametric model. Our interest was in using the P-spline logistic mixed model to make338

inferences about the rate of physician TRM visits in all of the 217 RHADs in different years.339

The sample sizes for some areas were not large enough to produce reliable estimates. Hence340

we applied the following model:341

yit ∼ Binomial(nit, θit), (10)

log(
θit

1− θit
) = β0 + β1zit + β2xit +

L∑
l=1

γl(xit − κl)+ + νi + uit,

i = 1, ..., 217; t = 1, ..., 10,
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Figure 3. Logit of physician rate versus the average age for females and males for some selected
RHADs; zero rates were replaced by 10−20 to avoid ∞. Note that 1 to 10 refer to years 2000 to 2010.

where yit and nit are the total number of physician TRM visits and the corresponding342

population at risk in area Ri at time t, respectively. The quantity θit is the rate of physician343

TRM visits in area Ri at time t; β0 is the overall mean of the log-odds over areas and times; zit344

and xit are the percentage of females and average age in area Ri at time t, respectively, with345

the corresponding coefficients β1 and β2; L = 40 is the number of knots. We assumed that346

γl
i.i.d.∼ N(0, σ2

γ), νi
i.i.d.∼ N(0, σ2

ν), uit = ρui,t−1 + εit with |ρ| < 1 and εit
i.i.d.∼ N(0, σ2

ε ).347

The model parameters estimate, standard errors, and their corresponding 95% confidence348

intervals are reported in Table 11. For this particular dataset, the number of clones needed to349

obtain the MLE was K = 20 and the number of iterations required to achieve convergence350

was 20,000. One of the main features of the DC method is the ability to provide predictions351
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Table 11. Model parameter estimates and corresponding standard errors (SE) and 95% confidence
intervals (LCI, UCI) for physician TRM visits in Manitoba during 2000–2010. The estimates were
calculated using the P-spline logistic mixed model.

Parameter β0 β1 β2 ρ σ2
ε σ2

ν σ2
γ

Estimate -11.951 0.300 0.703 0.758 1.850 13.470 0.011
SE 0.092 0.040 0.087 0.006 0.025 0.477 0.004
LCI -12.131 0.218 0.218 0.747 1.800 12.570 0.004
UCI -11.766 0.377 0.866 0.770 1.900 14.438 0.020

and prediction intervals for random effects. We provide predictions (Figure 4) and 95%352

prediction intervals (Figure 5) for the physician TRM visit rates for different RHADs in 2010353

for both females and males. Overall our analysis suggests that Winnipeg and some areas in354

southern Manitoba have larger rates of asthma visits compared to other parts of the province.355

These findings may represent real increases or different distributions of important covariates356

that are unmeasured and unadjusted for in our modelling. Further investigation is needed to357

explore these findings.358

6. Concluding comments359

Mixed models using penalised spline (P-spline) regression models have previously360

been studied in the context of small-area estimation for the cross-sectional data. There361

are, however, many real situations in small-area estimation in which the response variables362

are serially dependent over time. Models accommodating such serial dependence have not363

previously been developed. In this paper we propose semi-parametric mixed models which364

combine time-series and cross-sectional data methodology, using P-spline regression models365

for both normal and non-normal responses.366

We make use of a data cloning approach to inference in order to obtain maximum367

likelihood estimates of the parameters of the proposed P-spline mixed models. Under the368

semi-parametric normal mixed model set-up, we study finite sample properties of our369

proposed approach. Our approach appears to work reasonably well in terms of the coverage370

probabilities of the small-area means. We also studied finite sample properties of our371

proposed approach in the context of semi-parametric logistic and Poisson mixed models.372

Our approach also appears to work well in this context, in terms of the coverage probabilities373

of small-area proportions and rates, respectively. We used our proposed approach to analyse374

two real datasets, consisting of observations of precipitation and of physician visits, using375

semi-parametric normal and logistic mixed models, respectively.376
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Figure 4. Prediction of TRM visit rates in 217 RHADs for females and males in Manitoba in 2010. The
predictions were made using the P-spline logistic mixed model

To accommodate serial dependence we used an AR(1) model in our procedure. However377

other time series models such as random walks, higher orders of AR, Ornstein-Ulhenbeck378

models, Polya tree processes, and other smoothing approaches could be used. We have379

considered only a single covariate in our model; however our model could easily be extended380

to multiple covariates, which would be more applicable in real life situations. We also chose381

the number of knots in our model based on the approach proposed by Ruppert (2002) which382

is not the only possibility. One could also use the fence method introduced by Jiang et al.383

(2008) and Jiang, Nguyen & Rao (2010) to determine the number of spline knots L and the384

degree of spline p. Alternatively, one could use a Bayesian framework through the Reversible385

Jump MCMC scheme (Green 1995). Our semi-parametric area-level time-series model could386

also be extended to a semi-parametric unit-level time-series model which might be suitable387

for some applications. Our univariate model could also be extended to a multivariate version388

to investigate the multiple responses including mixed responses/outcomes (continuous and389

discrete). We plan to study these approaches in the future.390
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Figure 5. Ninety-fifty% prediction intervals of rates of physician TRM visit for 217 RHADs (females
and males) in 2010 in Manitoba. The predictions were made using the P-spline logistic mixed model.
The bullets represent point predictions of rate; the error bars constitute the corresponding prediction
intervals.
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