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Abstract

Policy decisions regarding allocation of resources to subgroups in a popula-

tion, called small areas, are based on reliable predictors of their underlying

parameters. However, in sample surveys, the information to estimate reli-

able predictors is often insufficient at the level of the small areas. Hence,

parameters of the subgroups are often predicted based on the coarser scale

data. In view of this, there is a growing demand for reliable small area

predictors by borrowing information from other areas. These models are

commonly based on either linear mixed models (LMMs) or generalized linear

mixed models (GLMMs). The frequentist analysis of LMM, a special case

of GLMM, is computationally difficult. On the other hand, the advent of

the Markov chain Monte Carlo algorithm has made the Bayesian analysis

of LMM and GLMM computationally convenient. Recently developed data

cloning method provides a frequentist approach to complex mixed models

which is also computationally convenient. Data cloning which yields to max-
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imum likelihood estimation is used to conduct frequentist analysis of small

area estimation for Normal and non-Normal responses. It is shown that

for the Normal and non-Normal responses, data cloning leads to predictions

and prediction intervals of small area parameters that have reasonably good

coverage.

Keywords: Bayesian computation; Hierarchical model; Prediction interval

and exponential family; Random effect

1. Introduction

Sample surveys are conducted with the purpose of providing reliable pre-

dictors for the finite population parameters such as totals or means. Methods

used in deriving such predictors (direct survey predictors) are based on total

sample size. However in the past few decades, there has been increasing de-

mand to use sample survey data to get predictions for sub-populations, such

as counties or gender-age groups. Such sub-populations for which reliable

predictions are needed are called small areas. The traditional area-specific

direct predictors tend to have inadequate precision because of the small sam-

ples sizes corresponding to each small area. In health services research, policy

decisions about implementing programs or projects in these small areas are

made using predictions of underlying parameters. Hence, survey researchers

are developing methods to provide more reliable predictions for small areas.

To this end, model based estimators (Rao, 2003; Jiang and Lahiri, 2006;

Jiang, 2010) have been proposed to borrow strength from stated areas by

introducing random effects. Depending on the nature of the data, either

the linear mixed model (LMM) (Searle et al., 1992) or the generalized linear
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mixed model (GLMM) (McCulloch and Searle, 2001) is most often used for

small area estimation (Fay and Herriot, 1979; Battese et al., 1988; Kass and

Steffey, 1989; MacGibbon and Tomberlin, 1989; Prasad and Rao, 1990; Malec

et al., 1997; Ghosh et al., 1998; Singh et al., 1998; Datta et al., 2000; Ghosh

et al., 2009). Among other approaches, parameters of the LMM can be esti-

mated using either the maximum likelihood (ML) or restricted ML (REML).

It is straightforward to predict the small area mean under the LMM by using

the best linear unbiased predictor (BLUP), however obtaining its prediction

error and associated prediction interval are difficult. Both overall parame-

ters estimation and prediction of small area parameters under the GLMM

are computationally difficult under the frequentist approach. The Bayesian

approach has become quite popular because of its computational convenience

and the ability to provide not just the point predictors but also the associ-

ated prediction intervals. However, the Bayesian approach to prediction of

small area parameters crucially depends on the specification of the prior.

Non-informative or vague priors are often used to possibly get more infor-

mation from the data. However, lack of unique definition of non-informative

prior leads to many different suggestions for such priors. It is well known

that the choice of prior affects the predicted values. Hence, implementation

of the Bayesian approach requires substantial care. For example, use of an

inappropriate prior distribution can lead to improper posterior distribution

making the inferential statements somewhat questionable (e.g., Natarajan

and McCulloch, 1995; Hobert and Casella, 1996).

Recently, Lele et al. (2007) introduced an alternative approach, called

data cloning, to compute the ML estimates and their standard errors for
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general hierarchical models. Similar to the Bayesian approach, data cloning

avoids high dimensional numerical integration and requires neither maxi-

mization nor differentiation of a function. Because these estimators are ML

estimators, unlike the Bayesian estimators, they are independent of the choice

of the priors. By applying the data cloning approach, non-estimable param-

eters are also flagged automatically and possibility of improper posterior

distribution is completely avoided. Extending this work to the GLMM sit-

uation, Lele et al. (2010) described an approach to compute prediction and

prediction intervals of the random effects. Thus, the data cloning approach is

well suited to address the issues in small area estimation using the frequentist

paradigm.

In this paper, we use data cloning in the context of small area estimation.

In the next section, we describe the small area estimation problem in general

and describe how data cloning can be used to obtain prediction and prediction

intervals of small area parameters. In Section 3, we use three real datasets to

evaluate the performance of data cloning under cross-sectional (normal and

binomial mixed models) as well as cross-sectional and time-series (normal

mixed model). The data cloning is also evaluated through simulation studies

(Section 4). Concluding remarks are given in Section 5.

2. Small area estimation using data cloning

The basic model in small area estimation can be described as follows.

Let yij be the variable of interest for the jth unit within the ith area (j =

1, ..., ni; i = 1, ...,m). The yij are assumed to be conditionally independent
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with exponential family p.d.f.

f(yij|θij, ϕij) = exp[{yijθij − a(θij)}/ϕij + b(yij, ϕij)]. (1)

The density (1) is parameterized with respect to the canonical parameters

θij, known scale parameters ϕij and functions a(·) and b(·). The natural

parameters θij are then modeled as

h(θij) = x′
ijβ + ui + vij,

where h is a strictly increasing function, xij(p×1) are known design vectors,

β(p × 1) is a vector of unknown regression coefficients, and ui and vij are

random effects with ui
i.i.d.∼ N(0, σ2

u) and vij
i.i.d.∼ N(0, σ2

v). We also assume

that the population model holds for the sample. The objective in small area

estimation is to make inferences on the small area parameters θij or function

of θij. We now explain how data cloning can be used in the context of small

area estimation.

2.1. Data cloning: a brief description

Let y = (y1, ...,ym)
′ be the observed data vector and assume that the

elements of y are conditionally independent of the random effects u =

(u1, ..., um, v11, ..., vmnm)
′
and drawn from a distribution in the exponential

family with parameters α1. It is also assumed that distribution of u depends

on parameters α2 :

yi|u ∼ fyi|u(yi|u,α1),

u ∼ gu(u|α2). (2)
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The goal of the analysis is to estimate the model parameters α = (α1,α2)
′

and predict the random effects u. The likelihood for (2) is given by

L(α;y) =

∫ m∏
i=1

fyi|u(yi|u,α1)gu(u|α2)du.

To illustrate the data cloning approach, we start with the standard Bayesian

approach to inference for hierarchical models. Denote π(α) as a prior distri-

bution on the parameter space. The posterior distribution π(α|y) is given

by

π(α|y) = L(α;y)π(α)

C(y)
, (3)

where C(y) =
∫
L(α;y)π(α)dα is the normalizing constant. There are

computational tools such as Markov chain Monte Carlo (MCMC) algorithms

that facilitate generation of random variates from the posterior distribution

π(α|y) without computing the integrals in the numerator or the denominator

of (3)(Gilks et al., 1996; Spiegelhalter et al., 2004).

To understand the idea behind the data-cloning algorithm, imagine a

hypothetical situation where the statistical experiment underlying the ob-

servations y is repeated independently by K different individuals and all

these individuals happened to have the same set of observations y called

y(K) = (y,y, ...,y). The likelihood function for the combination of the data

from these K independent experiments is then given by {L(α;y)}K . Note

that this likelihood function has two important features: a) the location of

the maximum of this function is exactly equal to the location of the maxi-

mum of L(α;y) and b) the Fisher information matrix based on this likeli-

hood is K times the Fisher information matrix based on L(α;y). Denote α̂

as maximum likelihood estimator (MLE) and I(α̂) as corresponding Fisher
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information matrix based on L(α;y). It is assumed that the parameters are

identifiable and that there is a unique mode (but possibly multiple smaller

peaks) to the likelihood function. The posterior distribution of α conditional

on the data y(K) is then given by

πK(α|y(K)) =
{L(α;y)}Kπ(α)

C(y(K))
, (4)

where C(y(K)) =
∫
{L(α;y)}Kπ(α)dα is the normalizing constant. It then

follows from the standard result regarding the asymptotic behaviour of the

posterior distributions (e.g., Walker, 1969) that under regularity conditions,

if K is large, πK(α|y(K)) is approximately Normal with mean α̂ and variance

equal to I−1(α̂)/K. Hence, this distribution is nearly degenerate at the MLE

α̂ provided K is large. Moreover, the mean of this posterior distribution is

the MLE and K times the posterior variance is the corresponding asymptotic

variance of the MLE α̂.

In reality, we do not have data from K such independent experiments.

However, suppose that instead of looking at the distribution in equation (4)

as the posterior distribution of α given the observations from K indepen-

dent experiments, we look upon it as just another distribution, defined over

the parameter space Ω, with probability function (4). This distribution is

simply a function of the single set of observations y and the model com-

ponents f(·), g(·) and π(·). Lele et al. (2010) proved that under regularity

conditions, as K becomes large, this distribution is nearly degenerate at the

MLE α̂, the mean of the probability distribution (4) converges to α̂, and

for continuous parameters, its variance is approximately I−1(α̂)/K. It then

follows by generating random variates α1, ...,αB (say B is large) from (4)

7



and then computing its mean and variance to obtain the MLE α̂ and its

asymptotic variance, respectively. In fact, such generation of random vari-

ates from πK(α|y(K)) is very straightforward using the MCMC technique.

The experiment described above can be implemented using WinBUGS soft-

ware. The K−cloned dataset, y(K), is created by repeating the observed

data vector K times. It is pretended that these data are obtained from K

independent experiments. The standard MCMC method is used to generate

random variates from the posterior distribution πK(α|y(K)). The MLE of

the parameter α is simply the mean of these random variates provided K is

large. The variance of the MLE, the inverse of the Fisher information, for

the original data is K times the variance (or, variance-covariance matrix for

the multiparameter case) of these random variates provided the parameter

space is continuous. The advantage of this procedure is that it avoids: 1)

analytical or numerical evaluation of the high dimensional integral which is a

major computational hurdle for maximum likelihood estimation of GLMM,

2) numerical optimization of a function, and 3) numerical computation of the

curvature of the likelihood function. In this procedure, the number of clones

(K) is under the control of the analyst and can be made as large as neces-

sary to achieve the desired accuracy of the resultant estimates. Moreover,

as long as the prior distribution is not degenerate and the model satisfies

some regularity conditions, the results do not depend on the choice of the

prior distribution. A prior that has large probability mass near the true

MLE requires fewer clones to achieve the desired accuracy. Lele et al. (2010)

provided various checks to determine the adequate number of clones K. For

instance, one may plot the largest eigenvalue of the posterior variance as a
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function of the number of clones K to determine if the posterior distribution

has become nearly degenerate. As another criterion, it is approximately true

that as we increase the number of clones K,

(α− ᾱ)
′
V −1(α− ᾱ) ∼ χ2

p, (5)

where ᾱ and V are the mean and variance of the posterior distribution,

respectively, and p is the dimension of α. One may also compute the following

two statistics: a) ζ = 1
B

∑B
q=1(Oq −Qq)

2, where Oq and Qq are observed and

estimated quantiles for χ2
p random variable, and b) r̃2 = 1 − ρ2, where

ρ is the correlation between (Oq, Qq). If these statistics are close to zero, it

indicates that the approximation (5) is reasonable.

2.1.1. Prediction of random effects

Prediction of random effects, particularly from the frequentist viewpoint,

is problematic. If the parameters α are known, then one can clearly use the

conditional distribution of u, the latent variables, given the observed data.

That is, one can use π(u|y,α∗) where α∗ is the true value of the parameter.

A naive approach, when α is estimated using the data, is to use π(u|y, α̂).

However, this approach does not take into account the variability introduced

by the model parameters estimate. An approach that has been suggested in

the literature (e.g., Hamilton, 1986; Lele et al., 2010) to take into account

the variation of the estimator is to use the density:

π(u|y) =
∫
f(y|u,α1)g(u|α2)ϕ(α, α̂, I−1(α̂))dα

C(y)
, (6)

where ϕ(., µ, σ2) denotes Normal density with mean µ and variance σ2, which

are equal to the MLE and the inverse of the Fisher information matrix here.
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Harris (1989) argued for the use of bootstrap estimate of the sampling dis-

tribution instead of the asymptotic Normal distribution. Kass and Steffey

(1989) and Booth and Hobert (1998) considered this predictive density and

provided first-order and second-order approximations, respectively (based on

Laplace approximations), for the mean and variance of it, but they did not

study how good the predictive density or its approximation is compared to

π(u|y,α∗). In practice, especially if we have non-Normal responses, it is

more informative to obtain prediction intervals than simple summary statis-

tics such as mean and variance of the predictive distribution. In this paper,

we obtain prediction intervals for small area parameters using the density

in equation (6) along with MCMC sampling, which is a novel approach in

small area estimation context. It is not known if the predictive density in

(6) is optimal in any sense as an estimator of π(u|y,α∗). It is, however,

a consistent and sensible estimator. For a Normal linear regression model

with fixed effects, this approach leads to the usual t-distribution based pre-

diction intervals. The results presented in Section 4 show that the prediction

intervals based on this predictive density have properties similar to the com-

petitors in LMM, however, these competitors are not applicable in GLMM.

This suggests that the use of predictive density in equation (6) is a reasonable

approach to obtain prediction intervals for small area parameters. The main

advantage of the predictive density formulation is that it can be applied to

non-Normal responses in a straightforward fashion. The results presented

in Section 4.2 show that the coverage obtained for the prediction of propor-

tions is quite close to the nominal coverage. This suggests that the use of

predictive density of equation (6), although not fully justified theoretically,
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is sensible.

In this paper, for prior distributions, unless stated, we used the indepen-

dent normal distribution for fixed effects with mean 0 and variance 106, and

gamma distribution for inverse of variance components with shape and scale

parameter 0.001.

3. Data analysis

3.1. County crop areas dataset

We study performance of the data cloning approach by applying it to a

real dataset given by Battese et al. (1988). We consider the estimation of

mean hectares of corn per segment for m = 12 counties (areas) in north-

central Iowa. The total sample size, n =
∑

i ni, for the 12 counties is 36 and

the sample size ni within each county ranged from 1 to 5. The population

size Ni within each county ranged from 394 to 965. The nested error model

used here is given by

yij = β0 + β1x1ij + β2x2ij + ui + eij(j = 1, ..., ni; i = 1, ...,m), (7)

where yij is the number of hectares of corn in the jth segment of the ith

county, x1ij and x2ij are the number of pixels classified as corn and soybeans

in the jth segment of the ith county, ui
i.i.d.∼ N(0, σ2

u) and eij
i.i.d.∼ N(0, σ2

e).

The small area mean

µi = β0 + β1X̄1i + β2X̄2i + ui ≡ X̄
′

iβ + ui, (8)

where X̄1i and X̄2i are the known population mean number of pixels classified

as corn and soybeans in the ith county by using LANDSAT satellite readings

and X̄ i = (1, X̄1i, X̄2i)
′ and β = (β0, β1, β2)

′.
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The best estimator of the ith area mean µi in the class of unbiased pre-

dictors (Rao, 2003), sometimes called the “Bayes” estimator, is given by

µB
i = E(µi|yi,β, δ) = X̄

′
iβ + γi(ȳi − x̄′

iβ), (9)

where γi = σ2
u/(σ

2
u + σ2

e/ni), δ = (σ2
u, σ

2
e)

′
, ȳi and x̄i are the sample means.

However, the Bayes estimator given by (9) depends on the knowledge of the

regression coefficients β and variance parameters δ which are unknown in

practice. Replacing β and δ by their estimated values β̂ and δ̂, we obtain the

empirical Bayes (EB) or empirical best linear unbiased prediction (EBLUP)

of µi as

µ̂EB
i = X̄

′
iβ̂ + γ̂i(ȳi − x̄′

iβ̂). (10)

The mean squared prediction error, sometimes also called the mean squared

error (MSE), of µ̂EB
i is MSE(µ̂EB

i ) = E(µ̂EB
i − µi)

2 where the expectation

is with respect to the model. Prasad and Rao (1990) and Datta and Lahiri

(2000) gave an approximate formula to compute the MSE of the EBLUP as

well as a nearly unbiased estimator of MSE of the EBLUP (called mse(µ̂EB
i ))

in the sense that E[mse(µ̂EB
i )] = MSE(µ̂EB

i ) + o(m−1).

Table 1 shows the estimates of the model parameters by employing ML,

REML, PR, HB, and data cloning (DC) methods, noting that PR stands

for the method of Prasad and Rao (1990) and HB stands for hierarchical

Bayesian method. To monitor the convergence of the model parameters, we

used several diagnostic methods implemented in the Bayesian output anal-

ysis (BOA) program (Smith, 2007). We also used three diagnostic methods

described in Section 2 and implemented in dclone package (Sólymos, 2010),
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a freely available package created for R, to monitor the convergence of the

model parameters in terms of number of clones (K). For this specific ap-

plication, we used K = 20 to obtain MLE, and 5, 000 iterations for the

convergence of model parameters. In PR method, the regression coefficients

are estimated by the generalized least square method and variance compo-

nents by fitting-of-constants method (Rao, 2003). As expected, the estimates

of the model parameters for two methods ML and DC are very similar unlike

the HB approach.

Table 1. Estimates (and standard errors) of the model parameters in the

nested error linear regression model (7) for the ML, REML, PR, HB, and

DC approaches.

Parameter ML REML PR HB DC

β0 50.97(24.52) 51.07(24.41) 51.05(24.58) 49.18(26.23) 51.00(23.64)

β1 0.33 (0.06) 0.33(0.05) 0.33(0.05) 0.33(0.05) 0.33(0.05)

β2 -0.13(0.06) -0.14(0.06) -0.13(0.06) -0.13(0.06) -0.13(0.05)

σ2
u 121.10(72.70) 140.02(82.27) 139.68(59.73) 143.00(124.30) 121.20(74.04)

σ2
e 137.30(39.29) 147.27(42.16) 149.56(45.09) 180.10(67.74) 137.40(39.44)

In Table 2, we present the EB (EBLUP) estimates of the mean hectares

of corn per segment using model (8) and corresponding root mean squared

errors (square root of mse(µ̂EB
i )) for methods ML, REML, PR, HB, and DC;

noting that the mse(µ̂EB
i ) for PR, ML and REML methods are calculated

based on the approximations given in Prasad and Rao (1990) and Datta and

Lahiri (2000), and posterior distributions are used to calculate the mse(µ̂EB
i )

for HB and DC methods. It seems that the all approaches have comparable
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results in terms of the estimates of small area means and associated root

mean squared errors of the estimates of small area means.

Table 2. Average EB and associated root mean squared errors (rmse) over

sample sizes within areas for the ML, REML, PR, HB, and DC methods in

the nested error linear regression model (7).

EB rmse

ni ML REML PR HB DC ML REML PR HB DC

1 118.5 118.4 118.4 119.0 118.4 9.7 9.9 9.6 8.8 8.7

2 108.7 108.4 108.5 110.1 108.8 8.1 8.2 8.1 8.2 7.6

3 122.8 122.8 122.8 122.1 122.7 6.7 6.7 6.6 6.7 6.3

4 115.2 115.3 115.3 113.9 114.9 5.9 5.9 5.8 6.2 5.5

5 124.8 124.8 124.8 125.2 124.8 5.4 5.5 5.4 5.9 5.2

3.2. Health insurance of minority subpopulations dataset

We now evaluate the performance of data cloning using a real dataset

that uses a binomial mixed model. Ghosh et al. (2009) considered small

domain estimation of the proportion of persons without health insurance

for different minority groups in the Asian population. The small domains

were constructed on the basis of age, sex, race, and region where the person

belonged. Ghosh et al. (2009) used the data provided by National Health

Interview Survey (NHIS) for the year 2000 which report the individual level

binary response, whether a person has health insurance or not, along with

his or her individual level covariates.
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The Asian group is composed of four categories: Chines, Filipino, Asian

Indian, and Others such as Korean, Vietnamese, Japanese, Hawaiian, Samoan,

Guamanian and etc. These individuals were assigned to specific domains de-

pending on their age, gender, race, and the region they come from. There

were three age-groups (0-17, 18-64, 65+), two groups for gender, four regions

depending on the size of the Metropolitan Statistical Area (< 499, 999; 500, 000−

999, 999; 1, 000, 000−2, 499, 999;> 2, 500, 000), and four groups for race. The

total number of domains is then 96(= 3 × 2 × 4 × 4). The sample sizes

for some domains for a targeted minority Asian population were not large

enough to produce the reliable estimates. They then employed both HB and

EB methodologies to obtain small domain estimates and also to find the as-

sociated measure of precision. In particular, they considered the following

model

log(
pij

1− pij
) = β0 + β1xij1 + β2xij2 + β3xij3 + ui(j = 1, ..., ni; i = 1, ..., 96),

where ui
i.i.d.∼ N(0, σ2

u); pij = E(yij) with yij = 1 or 0 if the jth individual

in the ith small domain does not (does) have health insurance; xij1, xij2, xij3

are the family size, education level, and total family income of the jth unit

in the ith small domain, respectively.

However, we can consider age, gender, and race as small area and region

as strata. We then have the following two-level binomial mixed model

log(
pij

1− pij
) = β0+β1xij1+β2xij2+β3xij3+ui+vij(j = 1, ..., n; i = 1, ...,m),

(11)

with yij ∼ Binomial(nij, pij) where nij is number of persons without health
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insurance within region j and area i, n = 4 is the number of regions and

m = 24(= 3 × 2 × 4) is the number of small areas, ui
i.i.d.∼ N(0, σ2

u) and

vij
i.i.d.∼ N(0, σ2

v). We first consider the estimates of model parameters by

applying DC and HB methods. The estimates of model parameters and

associated standard errors are similar for both DC and HB methods with

the exception of the variance component σ2
u (Table 3). To illustrate that

the results of the HB method are not invariant to priors, we used uniform

distribution U(0, 1000), instead of the gamma distribution as a prior for the

standard error (Gelman, 2006). We observed that the results of DC are

invariant while HB method performed quite differently for the gamma and

uniform prior distributions (Table 3).

Table 3. Estimates (and standard errors) of the model parameters in the

binomial mixed model (11) for DC and HB approaches with different priors.

Parameter DC HB HB

Gamma distribution Uniform distribution

β0 -0.468(0.825) -0.333(1.052) 0.015(1.126)

β1 -0.200(0.137) -0.208(0.165) -0.224(0.166)

β2 0.024(0.015) 0.022(0.017) 0.022(0.018)

β3 0.300(0.093) 0.297(0.108) 0.267(0.115)

σ2
u 0.001(0.002) 0.031(0.056) 0.053(0.084)

σ2
v 0.074(0.044) 0.098(0.064) 0.125(0.076)

The estimates of rate of persons without health insurance for different

area and region, and associated standard errors for both DC and HB meth-

ods are provided in Figure 1 which shows that they are similar. To compare

the performance of HB method for different priors, we computed the ratio of

16



predicted probabilities of persons without health insurance for gamma distri-

bution to uniform distribution (Figure 2). It is obvious that the performance

of HB method is different for gamma and uniform distributions, illustrating

the fact that the HB results are not invariant to the choice of priors.

3.3. Unemployment rate estimation

The Canadian Labour Force Survey (LFS) produces monthly estimates

of the unemployment rate at national and provincial levels. The LFS also

releases unemployment estimates for sub-provincial areas such as Census

Metropolitan Areas (CMAs) and Census Agglomeration (CAs). However,

for some sub-provincial areas, the direct estimates are not reliable since the

sample size in some areas is quite small. The small area estimation in LFS

concerns estimation of unemployment rates for local sub-provincial areas such

as CMA/CAs using small area models. We use the 2013 January to Decem-

ber LFS unemployment rate estimates, yit, in our data analysis. There are

m = 80 CMA/CAs across Canada. Within each area, we consider 12 con-

secutive monthly estimates yit from January 2013 to December 2013. For

the January to December 2013 data, the overall average (over 80 CMA/CAs

and 12 months) unemployment rate is 0.072. There have been some devel-

opments in the LMM to address time-series models in the context of small

area estimation (Rao and Yu,1994; Datta et al., 1999; Esteban et al., 2012;

Torabi, 2012). We consider the following area-level time-series model:

yit = ui + vit + eit (t = 1, ..., T = 12; i = 1, ...,m = 80), (12)

vit = ρvi,t−1 + ϵit, |ρ| < 1,
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Figure 1: Prediction and standard error (SE) of (a) pi1, (b) pi2, (c) pi3, and (d) pi4 in the

binomial mixed model (11) for DC and HB approaches.
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gamma distribution to uniform distribution.
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where ui
i.i.d.∼ N(0, σ2

u), vit has an AR(1) model with ϵit
i.i.d.∼ N(0, σ2

ϵ ), and

the parameter of interest is θiT = ui + viT as the true unemployment rate

for area i in December 2013. Let yi = (yi1, ..., yiT )
′, ei = (ei1, ..., eiT )

′,θi =

(θi1, ..., θiT )
′, where ei follows a multivariate Gaussian with mean vector 0 and

sampling covariance matrix Σi. We then have yi ∼ N(θi,Σi), (i = 1, ...,m).

The sampling covariance matrix Σi is unknown in the model, however, a

smoothed estimator of the sampling variances is often used. There are meth-

ods to calculate the sampling covariances, for example generalized variance

function (Tiller, 1989, 1992), equal coefficient of variation (CV), and equal

design effects (You, 2008). In this paper, we use the equal design effects

modelling approach (see You, 2008 for more details).

The model parameters estimate (and corresponding standard errors) of

ρ, σ2
ϵ , σ

2
u using the DC approach are -0.225 (0.484), 0.031(0.036) and 0.004

(0.002), respectively. Figure 3 displays the LFS direct estimates, DC and HB

model-based predictions of the December 2013 unemployment rates for the 80

CMA/CAs across Canada. For the point estimates, the DC predictions lead

to moderate smoothing of the direct LFS and the HB model-based estimates.

For the CMAs with large population sizes and therefore large sample sizes,

the direct estimates, HB, and DC predictions are very close to each other as

expected.

Figure 4 displays the root mean squared error of the unemployment rate

predictions in December 2013. It is clear from Figure 4 that the unem-

ployment rates are predicted with higher precisions in the DC approach as

compared to the HB approach.
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Figure 3: Unemployment rate predictions for the DC (solid blue-line), direct (dashed

red-line), and HB (dashed green-line) approaches in December 2013.
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Figure 4: Root mean squared error (rmse) of the DC (solid blue-line) and HB (dashed

green-line) unemployment rate predictions in December 2013.
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4. Simulation study

4.1. Linear mixed model

We conduct a simulation study on the relative performance of the EB

estimators in the LMM set-up. The EB estimators studied are ML, REML,

PR, HB, and DC methods. We used a real dataset {(yij, x1ij, x2ij); j =

1, ..., ni; i = 1, ...,m} given by Battese et al. (1988) to simulate samples from

the nested error model (7).

We first obtain the estimates of model parameters from the dataset, using

for example ML method, which are (β0, β1, β2, σ
2
u, σ

2
e)

′ = (51.0, 0.329,−0.134,

121.2, 137.4)′, and then treat them as known for the simulation study. Us-

ing those parameter values, we then approximate the true MSE of the EB

estimator by drawing R=1,000 independent samples {y(l)ij ; j = 1, ..., ni; i =

1, ...,m; l = 1, ..., R}, as y(l)ij = β0+β1x1ij+β2x2ij+u
(l)
i +e

(l)
ij where the x1ij and

x2ij values are fixed, u
(l)
i is generated from N(0, σ2

u) and e
(l)
ij from N(0, σ2

e).

Using the simulated datasets {(y(l)ij , x1ij, x2ij); j = 1, ..., ni; i = 1, ...,m; l =

1, ..., R}, we compute the EB estimates µ̂
EB(l)
i from (10), for each simulation

run l, using different methods. In addition, µ̂
DC(l)
i is obtained as Bayes es-

timator (posterior mean) of µi where the model parameters are obtained by

the DC approach, noting that the sampling distribution of the MLE estima-

tors are used as prior to get µ̂
DC(l)
i . The µ̂

HB(l)
i is posterior mean of µi with

some vague priors on the model parameters. For this simulation set-up, the

average number of clones was K = 50 to obtain MLE, and the average num-

ber of iterations for convergence of the model parameters was about 20, 000.
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The true MSE of µ̂EB
i is approximated as

TMSEi =
1

R

R∑
l=1

{µ̂EB(l)
i − µ

(l)
i }2,

where µ
(l)
i = β0 + β1X̄1i + β2X̄2i + u

(l)
i . Table 4 shows that in terms of true

MSE, µ̂DC
i is more efficient than other estimators particularly over HB with

relative efficiency, TMSE(µ̂HB
i )/TMSE(µ̂DC

i ), ranging from 105% to 120%.

Table 4. Average true MSE of µ̂ML
i , µ̂REML

i , µ̂PR
i , µ̂HB

i , and µ̂DC
i over sample

sizes within areas in the nested error linear regression model (7).

ni ML REML PR HB DC

1 85.3 83.8 82.5 88.7 84.5

2 59.6 58.3 57.2 65.0 59.4

3 40.9 40.2 41.6 46.0 40.9

4 31.3 30.6 32.3 36.5 31.3

5 27.6 26.9 50.8 33.2 27.7

We also study the performance of prediction intervals resulted from the

DC approach. To have comparable results, we study the coverage prob-

abilities of µ̂ML
i , µ̂REML

i , µ̂PR
i , µ̂DC

i and µ̂HB
i . To this end, for each simu-

lation run l, we calculate µ
(l)
i and compute appropriate quantiles α and

(1− α) of the posterior means µ̂
DC(l)
i and µ̂

HB(l)
i . The coverage probabilities

of µ̂DC
i is the proportion of the times (over R = 1, 000) that µ

(l)
i falls within

(µ̂
DC(l)
i (α), µ̂

DC(l)
i (1 − α)). We have similar expression for the HB method.

The coverage probability of µ̂ML
i , µ̂REML

i and µ̂PR
i are based on the tradi-

tional closed form prediction interval

EBLUP± zα/2
√
mse, (13)
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where mse is a nearly unbiased estimator of MSE of the EBLUP, and zα/2

denoting the upper 100(1 − α/2)% percentile of the standard normal dis-

tribution. The results of the coverage probabilities and average lengths of

confidence intervals of µ̂ML
i , µ̂REML

i , µ̂PR
i , µ̂DC

i and µ̂HB
i and different confi-

dence coefficients are given in Figures 5 and 6.

In Table 5, we compute the average coverage probabilities and average

lengths of estimates of small area means over areas for the all methods. The

DC method, along other methods ML, REML, and PR, performs very well

in terms of coverage probabilities of the small area means and also average

lengths for different confidence coefficients. The HB method also performs

well in coverage probabilities of the small area means. Note that in the DC

method, the inferences are based on the likelihood unlike the HB method.

Most importantly, the results in the DC method are invariant to the choice of

priors, while the results in HB method may depend on the priors and we may

get different results for different priors. Although the methods ML, REML,

and PR performed very well in terms of coverage probabilities and average

lengths, these methods are not applicable in GLMM.
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Figure 5: Coverage probabilities of confidence intervals of the µ̂ML
i , µ̂REML

i , µ̂PR
i , µ̂HB

i and

µ̂DC
i with confidence coefficients (a) 0.90, (b) 0.95, (c) 0.98, and (d) 0.99 in the nested

error linear regression model (7).

26



●
●

●

●

● ● ●
●

●

●
●

●

2 4 6 8 10 12

15
20

25
30

Area

●
●

●

●

● ● ●
●

●

●
●

●

●
●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

● ● ●
●

●

●
●

●

1 2 3 4 5 6 7 8 9 10 11 12

●
●

●

●

●
● ●

●

●

●
●

●

2 4 6 8 10 12

20
25

30

Area

●
●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

ML
REML
PR
HB
DC

1 2 3 4 5 6 7 8 9 10 11 12

(a) (b)

●
●

●

●

●
● ●

●

●

●
●

●

2 4 6 8 10 12

25
30

35
40

Area

●
●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

● ● ●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

● ● ●
●

●

●
●

●

1 2 3 4 5 6 7 8 9 10 11 12

●
●

●

●

●
● ●

●

●

●
●

●

2 4 6 8 10 12

25
30

35
40

Area

●
●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

●
●

●

1 2 3 4 5 6 7 8 9 10 11 12

(c) (d)

Figure 6: Average lengths of confidence intervals of the µ̂ML
i , µ̂REML

i , µ̂PR
i , µ̂HB

i and µ̂DC
i

with confidence coefficients (a) 0.90, (b) 0.95, (c) 0.98, and (d) 0.99 in the nested error

linear regression model (7).
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Table 5. Average coverage probabilities (and average lengths) of µ̂ML
i , µ̂REML

i ,

µ̂PR
i , µ̂DC

i and µ̂HB
i over areas with different confidence coefficients in the

nested error linear regression model (7).

Average coverage

probabilities (and average lengths)

Confidence coefficient ML REML PR DC HB

0.90 0.88(21.4) 0.88(21.6) 0.88(21.7) 0.84(19.9) 0.81(19.5)

0.95 0.93(25.6) 0.93(25.8) 0.93(25.9) 0.90(23.8) 0.89(23.6)

0.98 0.96(30.4) 0.96(30.6) 0.97(30.8) 0.95(28.5) 0.95(28.5)

0.99 0.98(33.7) 0.98(33.9) 0.98(34.1) 0.96(31.7) 0.97(32.0)

4.2. Logistic mixed model

We present a simulation study to evaluate the performance of the pro-

posed approach for non-Normal responses. To that end, we first generate

R = 3, 500 independent samples from binomial distribution:

y
(l)
ij ∼ Binomial(n, p

(l)
ij ),

log(
p
(l)
ij

1− p
(l)
ij

) = α + u
(l)
i + v

(l)
ij (j = 1, ..., k; i = 1, ...,m; l = 1, ..., R), (14)

where u
(l)
i is generated from N(0, σ2

u) and v
(l)
ij from N(0, σ2

v). We set n =

3, k = 5,m = 40, α = 0 and σ2
u = σ2

v = 1.

We first evaluate the performance of a method so called “lme4” which

is based on Laplace approximation to get MLE in R. To our knowledge,
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the lme4 package is the most popular and sophisticated package to get the

MLE in the GLMM. In lme4, we can get the model parameters estimate and

variance-covariance matrices for fixed effects and random effects separately.

We can also get the prediction of random effects from the lme4 package.

We first compare the performance of lme4 package in terms of parameters

estimation and corresponding standard errors.

Using the simulated datasets {y(l)ij ; j = 1, ..., k; i = 1, ...,m; l = 1, ..., R},

we compute the model parameters estimates from (14), for each simulation

run l, for the methods DC, lme4 and HB. Our interest is to compare the

performance of these three approaches and in particular two frequentist ap-

proaches DC and lme4. Table 6 presents the bias of parameters estimators.

We also want to explore if the reported standard errors properly represent

the true standard deviations. Towards this goal, we report the true variance

of the estimated parameters and mean values of the estimated variances. It

seems that the fixed parameter α is well estimated by all three approaches

DC, lme4 and HB. However, the variance components (σ2
u, σ

2
v) are badly es-

timated by the lme4 package with relatively large biases particularly for σ2
u.

On the other hand, the DC estimators of these two variance components are

reasonably unbiased and their standard errors are also estimated well. Over-

all, it seems that DC approach performs very well in terms of point estimates

and standard errors as compared to the lme4 method. Note that in the HB

method, the bias for σ2
v is much larger than corresponding bias value in the

DC method, and also the standard errors of HB estimators and of the two

variance components are relatively larger than the corresponding estimators

in DC method.
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Table 6. Mean values of biases and variances, and simulated variances of

model parameters for the DC, lme4 and HB methods in the binomial mixed

model (14).

DC lme4 HB

Parameter Bias Simulated VAR VAR Bias Simulated VAR VAR Bias Simulated VAR VAR

α -0.003 0.041 0.040 0.007 0.036 0.034 -0.004 0.039 0.040

σ2
u 0.038 0.179 0.193 -0.300 0.209 0.700 0.042 0.229 0.216

σ2
v -0.005 0.165 0.173 -0.107 0.138 0.892 0.064 0.209 0.219

We now turn to evaluate the performance of prediction of random effects

for the DC approach and compare it with the lme4 and HB methods. To

that end, for each simulation run l, the posterior mean p̂
DC(l)
ij is computed

using the model parameters obtained by DC approach while p̂
HB(l)
ij is the

posterior mean with vague priors on the model parameters; noting that in

the lme4 method for each simulation run l, we can get the random effects

u
(l)
i and v

(l)
ij and consequently p̂

lme4(l)
ij . For this simulation set-up, the aver-

age number of clones was K = 20 to obtain MLE, and the average number

of iterations for convergence of the model parameters was about 5, 000. To

compute the true MSE of p̂ij, we also generate R = 3, 500 non-sampled units:

y
(l)
ijr ∼ Binomial{(N − n), p

(l)
ij },

log(
p
(l)
ij

1− p
(l)
ij

) = α+ u
(l)
i + v

(l)
ij (j = 1, ..., k; i = 1, ...,m; l = 1, ..., R),

where N = 100 and for each simulation run l, the true small area pro-

portions is P
(l)
ij = N−1(y

(l)
ij + y

(l)
ijr). The true MSE of p̂ij is then approxi-

mated as TMSE(p̂ij) = R−1
∑R

l=1(p̂
(l)
ij − P

(l)
ij )

2, (j = 1, ..., k; i = 1, ...,m), for

p̂
DC(l)
ij , p̂

lme4(l)
ij and p̂

HB(l)
ij . We also calculate the average absolute bias of p̂ij
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over simulation runs. The average true MSE and average absolute bias of p̂ij

over areas and units for the DC approach are 0.028 and 0.135 respectively,

while these values for the lme4 method are 0.074 and 0.221 respectively, and

for the HB method are 0.028 and 0.137 respectively. Since the TMSE values

are similar for each i, it is sufficient to report TMSE(p̂1j), (j = 1, ..., k). As

shown in Table 7, both p̂DC
1j and p̂HB

1j have similar results in terms of mea-

sure of variability unlike p̂lme4
1j . As a result, the performance of DC method

is better than lme4 in terms of prediction of random effects based on true

MSE and average absolute bias of p̂ij.

Table 7. True MSE (and average absolute bias) of p̂1j(j = 1, ..., k) for the

DC, lme4 and HB methods in the binomial mixed model (14).

Unit j 1 2 3 4 5

DC 0.027(0.133) 0.027(0.135) 0.028(0.137) 0.027(0.134) 0.028(0.136)

lme4 0.028(0.136) 0.077(0.227) 0.076(0.226) 0.076(0.224) 0.077(0.226)

HB 0.028(0.135) 0.028(0.137) 0.029(0.138) 0.028(0.136) 0.028(0.137)

We also study the relative bias (RB) of an estimator of the MSE, say

mse, as

RB[mse(p̂ij)] =
{ 1

R

R∑
l=1

mse(l)(p̂ij)− TMSE(p̂ij)
}
/TMSE(p̂ij),

where mse(l)(p̂ij) is the value of mse(p̂ij) for the lth simulation study. Since

the lme4 package does not provide the variance of the p̂ij, we only compare

the performance of RB of mse(p̂ij) for two methods DC and HB. The average

absolute RB values over areas and units for the DC method is 5.2% while
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this value for the HB approach is 9.9%. We only report the absolute RB

values for DC and HB approaches across units in area 1 (Table 8).

Table 8. Percent absolute RB of mse(p̂1j), (j = 1, ..., k), for both DC and HB

methods in the binomial mixed model (14).

Unit j 1 2 3 4 5

DC 2.7 3.4 7.2 4.4 4.8

HB 7.6 8.0 11.9 9.4 9.5

We also study the coverage probabilities of p̂DC
ij and p̂HB

ij . The results

of the coverage probabilities and average lengths of confidence intervals of

the p̂DC
1j and p̂HB

1j and different confidence coefficients are given in Table 9

for different j(= 1, ..., k). The DC approach performs very well in terms of

coverage probabilities of p̂1j(j = 1, ..., k) for different confidence coefficients

which are close to the nominal coverage.

Table 9. Coverage probabilities (and average lengths) of confidence intervals

of the p̂DC
1j and p̂HB

1j , (j = 1, ..., k), with confidence coefficients 0.90, 0.95,

0.98, and 0.99 in the binomial mixed model (14).

0.90 0.95 0.98 0.99

Unit j DC HB DC HB DC HB DC HB

1 0.882(0.523) 0.870(0.515) 0.931(0.602) 0.927(0.595) 0.967(0.683) 0.962(0.676) 0.981(0.730) 0.978(0.725)

2 0.887(0.522) 0.872(0.514) 0.939(0.601) 0.931(0.594) 0.969(0.682) 0.966(0.675) 0.981(0.730) 0.979(0.723)

3 0.877(0.520) 0.863(0.512) 0.929(0.600) 0.921(0.592) 0.966(0.681) 0.962(0.674) 0.978(0.729) 0.976(0.722)

4 0.884(0.521) 0.869(0.512) 0.932(0.600) 0.920(0.592) 0.969(0.680) 0.963(0.674) 0.979(0.728) 0.975(0.722)

5 0.877(0.521) 0.862(0.514) 0.928(0.601) 0.918(0.594) 0.966(0.682) 0.959(0.675) 0.978(0.729) 0.975(0.724)

We compute the average coverage probabilities and average lengths of

the predictions of small area proportions over areas i and units j for two

methods DC and HB (Table 10). The DC method performs very well in
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terms of coverage probabilities of the small area proportions for different

confidence coefficients which is slightly better than the HB approach.

Table 10. Average coverage probabilities (and average lengths) of the p̂DC
ij

and p̂HB
ij over areas and units with different confidence coefficients in the

binomial mixed model (14).

Average coverage

probabilities (and average lengths)

Confidence coefficient DC HB

0.90 0.880(0.522) 0.866(0.514)

0.95 0.932(0.602) 0.924(0.594)

0.98 0.967(0.682) 0.963(0.676)

0.99 0.980(0.730) 0.977(0.724)

5. Discussion

In small area estimation complex models are being used when responses

are proportions or counts. In such cases, Bayesian methods are advocated

because they are computationally more convenient than the maximum like-

lihood (ML) method. In this paper, we have shown that likelihood inference

can be obtained for such models by using data cloning to overcome computa-

tional difficulties of the ML method. Under the linear mixed models, it may

also lead to better inferential solutions to small area parameters. Under the

generalized linear mixed model, data cloning based prediction intervals have

at least as good a coverage as the Bayesian prediction intervals with appro-

priate priors. These appropriate priors, of course, are not known in practice.
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The answers using data cloning are invariant to the choice of prior and the

issue of improper posterior distribution is non-existent. Also, non-estimable

parameters are flagged automatically. Note that we used the asymptotic

Normal distribution to predict the random effects, however, one may use

the bootstrap estimate of sampling distribution (Harris, 1989). This may

lead to improvement in the prediction of random effects in terms of coverage

probabilities and average lengths. To conclude, data cloning provides a bet-

ter statistical inference for small area estimation, in particular for complex

models on proportion or count responses.

As pointed out by a referee, probability matching priors also give approx-

imately frequentist answers (Fraser and Reid, 2002). The problem with those

priors is that they are extremely difficult to construct for any realistic model.

The method of data cloning is simple and straightforward and does not need

any special construction of priors. Even after using probability matching pri-

ors, we still have to do Markov chain Monte Carlo to get the posterior. We

cannot use off-the-shelf programs such as WinBUGS to conduct that kind of

analysis, and special programs will need to be written for each model.
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