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Bayesian methods have been extensively used in small area estimation. A linear model incor-
porating autocorrelated random effects and sampling errors was previously proposed in small
area estimation using both cross-sectional and time-series data in the Bayesian paradigm.
There are, however, many situations that we have time-related counts or proportions in small
area estimation; for example monthly dataset on the number of incidence in small areas. This
article considers hierarchical Bayes generalized linear models for a unified analysis of both
discrete and continuous data with incorporating cross-sectional and time-series data. The
performance of the proposed approach is evaluated through several simulation studies and
also by a real dataset.
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1. Introduction

Small area estimation has received a lot of attention in recent years due to growing
demand for reliable small area statistics. Rao [15], Jiang and Lahiri [9] and Jiang
[8] have given comprehensive accounts of model-based small area estimation. In
particular, area level [4] and nested error linear regression models [1, 13] are often
used in small area estimation to obtain efficient model-based estimators of small
area means.

Most of the research on small area estimation has focused on cross-sectional data
at a given point in time, and the research based on time series in the context of
small area estimation is limited. Scott and Smith [18], Jones [10] among others used
time-series methods to develop efficient estimates of aggregated parameters from
repeated surveys. Tiller [23] used the idea of Kalman filter to combine a current-
period state-wide estimate from the U.S. Current Population Survey with past
estimate for the same state. However, non of them studied small area estimation
by combining cross-sectional and time-series data.

Pferrermann and Burck [12] and Singh et al. [20] among others studied cross-
sectional and time-series models for small area estimation using Kalman filter by
assuming specific models for the sampling errors over time. Rao and Yu [16, 17]
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proposed a combined cross-sectional and time-series linear model involving au-
tocorrelated random effects and sampling errors using Bayesian and frequentist
approaches, respectively. Using Bayesian approach, Datta et al. [3] applied same
model as Rao-Yu model but replacing autoregressive (AR) random effects with
random walk model. Datta et al. [2] considered a similar model but added extra
terms to reflect seasonal variation in their application. Torabi [24] extended Datta
et al. [2] model to account for spatial variation over regions.

The main purpose of this paper is to extend the Rao-Yu model for non-Normal
data in the Bayesian framework. There are many applications in small area esti-
mation where the responses are time-related counts or proportions. For instance,
we may be interested to analyze monthly or yearly dataset of number of incidence
in small areas. Indeed, these types of models fall in the class of Generalized Linear
Mixed Models (GLMMs).

In this paper, we use Bayesian approach to propose a combined cross-sectional
and time-series model with AR(1) for non-Normal data. In the next section, we
describe the combined cross-sectional and time-series models. We then describe how
Bayesian paradigm can be used to make inference for the small area parameters.
The performance of proposed approach is reported in several simulation studies
with a corresponding evaluation of sensitivity of such type of analysis to prior
assumptions, and also by a real dataset. Finally, some concluding remarks are
given.

2. Cross-sectional and time-series models

The basic model for the combined cross-sectional and time-series data can be de-
scribed as follows. Let yit be the variable of interest for the ith area in given time
t(t = 1, ..., T ; i = 1, ...,m). The yit are assumed to be conditionally independent
with exponential family p.d.f.

f(yit|θit, φit) = exp[{yitθit − a(θit)}/φit + b(yit, φit)], (1)

(t = 1, ..., T ; i = 1, ...,m). The density (1) is parameterized with respect to the
canonical parameters θit, known scale parameters φit and functions a(·) and b(·).
The exponential family (1) covers well-known distributions including Normal, bi-
nomial and Poisson distributions. The natural parameters θit are then modeled
as

h(θit) = x′itβ + vi + uit,

where h is a strictly increasing function, xit(p×1) are known design vectors, β(p×1)

is a vector of unknown regression coefficient, vi
i.i.d.∼ N(0, σ2

v), and uit’s are assumed
to follow a common AR(1) process for each i, that is,

uit = ρui,t−1 + εit, |ρ| < 1,

with εit
i.i.d.∼ N(0, σ2

ε ).
As a special case, under Normal distribution h(θit) = θit, the Rao-Yu model is

given by

θ̂it = θit + eit,



August 13, 2012 14:29 Journal of Statistical Computation & Simulation Manuscript-JSCS-
revision

Journal of Statistical Computation and Simulation 3

where eit’s are sampling errors normally distributed, given the θit’s, with zero
means and a known block diagonal covariance matrix Ψ with blocks Ψi. The errors
(vi, εit, eit) are also assumed to be independent of each other. Our goal is to make
inference for small area parameters θij or function of θij .

3. Bayesian inference

The Bayesian approach is employed to estimate the small area parameters. The
Gibbs sampler (e.g., [5, 7]) may be used to obtain the posterior mean and posterior
variance of small area parameters. To generate samples from the posterior distri-
bution using Markov chain Monte Carlo (MCMC) method via the Gibbs sampler,
we need to sample from the full conditional distributions. Note that in our applica-
tion, all of these full conditional distributions are standard distributions that can
be easily sampled. To implement our application in the hierarchical Bayes (HB)
setup, we use the WinBUGS software [22].

4. Simulation study

4.1. Linear mixed model

We conduct a simulation study to evaluate the performance of Bayesian approach
in the linear mixed model set up. Note that Rao and Yu [16] studied a linear model
with incorporating cross-sectional and time-series data in the Bayesian framework,
however, they did not evaluate its performance. We consider the following model:

yit = vi + uit + eit(t = 1, ..., T ; i = 1, ...,m),
uit = ρui,t−1 + εit, |ρ| < 1

with ρ = 0.2, 0.4, eit
i.i.d.∼ N(0, 1), vi

i.i.d.∼ N(0, σ2
v) and εit

i.i.d.∼ N(0, σ2
ε ). Similar to

Rao and Yu [17], we set m = 40 small areas and T = 5, and then generate R = 5000

independent samples {y(r)
it ; t = 1, ..., T ; i = 1, ...,m; r = 1, ..., R} for each selected

pair (σ2
v , σ

2
ε ) and ρ, and keep Ψi as an identity matrix. For each simulated sample,

we apply MCMC method to get Bayesian inference of the small area parameters
θit = vi + uit.

In this paper, the proper priors are used for variance components. In particular,
the gamma distribution was used for the inverse of variance components with shape
and scale parameter 0.001. We also considered uniform distribution U(−1, 1) for ρ.
To monitor the convergence of the model parameters, we used several diagnostic
methods implemented in the Bayesian output analysis (BOA) program [21], a freely
available package created for R [14]. For this simulation set up, we used two chains
and the average number of iterations for convergence of the model parameters was
about 20,000.

Similar to Rao and Yu [17], we report the estimator of mean squared prediction

error (MSPE) for only θ̂1T . The true MSPE (TMSPE) of θ̂1T , and relative bias
(RB) of an estimator of the MSPE, say mspe, are given by

TMSPE(θ̂1T ) =
1

R

R∑
r=1

{θ̂(r)
1T − θ

(r)
1T }

2,
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Table 1. Percent relative bias of estimators of MSPE in linear mixed model.

σ2
ε

σ2
v 0.25 0.5 1.0 2.0

ρ = 0.2 0.25 -12.4 -7.1 -2.2 -1.1
0.5 -11.0 -6.6 -2.1 -1.0
1.0 -11.0 -6.7 -2.3 -1.0
2.0 -11.3 -7.2 -2.6 -1.2

ρ = 0.4 0.25 -12.1 -5.4 -1.1 0.2
0.5 -11.0 -5.8 -1.2 0.0
1.0 -10.4 -6.0 -1.4 -0.1
2.0 -11.2 -6.4 -1.6 -0.2

and

RB{mspe(θ̂1T )} =
{ 1

R

R∑
r=1

mspe(r)(θ̂1T )− TMSPE(θ̂1T )
}
/TMSPE(θ̂1T ),

where θ̂
(r)
1T , θ

(r)
1T , and mspe(r)(θ̂1T ) are the values of θ̂1T , θ1T , and mspe(θ̂1T ) for the

rth simulation study, respectively. Note that mspe(θ̂1T ) is the posterior variance

of θ̂1T .
The results of RB of mspe(θ̂1T ) are reported in Table 1 for different ρ and pair of

(σ2
v , σ

2
ε ). As shown, the estimator of MSPE performs well for higher between-time

variation for both ρ = 0.2 and ρ = 0.4; noting that the RB is slightly smaller for
ρ = 0.4 compared to ρ = 0.2 in most scenarios. However, the RB is stable with
increasing area-specific variation.

We also study the performance of the prediction interval of θ̂1T . To this end,

for each simulation run r, we calculate θ
(r)
1T = v

(r)
1 + u

(r)
1T and compute appropriate

quantiles α and (1 − α) of the posterior means θ̂
(r)
1T . The coverage probabilities

of the θ̂1T is the proportion of the times (over R = 5000) that θ
(r)
1T falls within

(θ̂
(r)(α)
1T , θ̂

(r)(1−α)
1T ). Table 2 shows the coverage probabilities of the estimates of θ1T .

The Bayesian method performs very well in terms of coverage probabilities of the
θ̂1T for different confidence coefficients for both ρ = 0.2 and ρ = 0.4. In particular,
for different σ2

v , the coverage probabilities reach the nominal values with increasing
between-time variation.

4.2. Logistic mixed model

We also conduct a simulation study to evaluate the performance of Bayesian ap-
proach in the logistic mixed model set up. To that end, we first generate R = 5000
independent samples:

y
(r)
it,s ∼ Binomial(n, p

(r)
it ) (2)

log(
p

(r)
it

1− p(r)
it

) = v
(r)
i + u

(r)
it (t = 1, ..., T ; i = 1, ...,m),

where yit is the number of “success” in the ith area at time t with corresponding

success rate pit and sample size n, v
(r)
i

i.i.d.∼ N(0, σ2
v), and u

(r)
it is generated from
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Table 2. Coverage probabilities of the θ̂1T in linear mixed model with different confidence coefficients.

σ2
v σ2

ε Confidence coefficient
0.90 0.95 0.98 0.99

ρ = 0.2 0.25 0.25 0.859 0.925 0.966 0.982
0.5 0.879 0.934 0.973 0.985
1.0 0.892 0.944 0.979 0.988
2.0 0.898 0.948 0.978 0.988

0.5 0.25 0.866 0.927 0.967 0.983
0.50 0.883 0.934 0.973 0.986
1.0 0.896 0.944 0.978 0.988
2.0 0.896 0.946 0.978 0.987

1.0 0.25 0.867 0.929 0.969 0.984
0.50 0.883 0.934 0.972 0.986
1.0 0.894 0.943 0.978 0.987
2.0 0.898 0.947 0.978 0.987

2.0 0.25 0.871 0.929 0.968 0.984
0.50 0.883 0.935 0.972 0.985
1.0 0.891 0.944 0.977 0.987
2.0 0.898 0.947 0.977 0.988

ρ = 0.4 0.25 0.25 0.863 0.923 0.967 0.982
0.5 0.883 0.939 0.975 0.987
1.0 0.894 0.949 0.979 0.990
2.0 0.901 0.951 0.980 0.990

0.5 0.25 0.866 0.930 0.970 0.982
0.50 0.881 0.939 0.975 0.987
1.0 0.897 0.946 0.980 0.990
2.0 0.900 0.952 0.980 0.990

1.0 0.25 0.868 0.931 0.968 0.983
0.50 0.884 0.939 0.973 0.987
1.0 0.898 0.946 0.979 0.990
2.0 0.900 0.951 0.979 0.990

2.0 0.25 0.870 0.929 0.969 0.981
0.50 0.883 0.939 0.975 0.986
1.0 0.899 0.945 0.980 0.990
2.0 0.881 0.939 0.978 0.989

AR(1) with appropriate ρ. We also generate R = 5000 independent non-samples:

y
(r)
it,ns ∼ Binomial(N − n, p

(r)
it ). (3)

We set N = 100, n = 5, ρ = 0.4, and consider T = 5 for each selected pair
(σ2
v , σ

2
ε ). To evaluate the role of number of areas (m) in the performance of Bayesian

approach particulary in terms of RB, we consider three different number of areas
m = 20, 40 and 80. For each simulation run r, the true small area proportion is

P
(r)
it = N−1(y

(r)
it,s + y

(r)
it,ns). We compute the small area proportions p̂it from (2), for

each simulation run r, called p̂
(r)
it . For this simulation set up, with two chains, the

average number of iterations for convergence of the model parameters was about
20,000. The TMSPE of p̂it and RB of mspe(p̂it) are then given by

TMSPE(p̂it) = R−1
∑R

r=1(p̂
(r)
it − P

(r)
it )2,

RB[mspe(p̂it)] =
{

1
R

∑R
r=1 mspe(p̂

(r)
it )− TMSPE(p̂it)

}
/TMSPE(p̂it),
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Table 3. True MSPE of p̂1T in logistic mixed model for different number of small areas (m) and variance

components (σ2
v, σ

2
ε ).

σ2
v σ2

ε m
20 40 80

1 1 0.020 0.020 0.020
2 0.022 0.021 0.021

2 1 0.019 0.019 0.018
2 0.020 0.020 0.020

Table 4. Percent relative bias of estimators of MSPE of p̂1T in logistic mixed model for different number of

small areas (m) and variance components (σ2
v, σ

2
ε ).

σ2
v σ2

ε m
20 40 80

1 1 -5.3 -3.6 -2.5
2 -1.8 1.2 1.1

2 1 -8.9 -5.1 -1.5
2 0.6 -0.3 -0.8

Table 5. Coverage probability (and average length) for p̂1T in logistic mixed model for different number of small

areas (m) and variance components (σ2
v, σ

2
ε ).

σ2
v σ2

ε m Confidence coefficient
0.90 0.95 0.98 0.99

1 1 20 0.876(0.442) 0.931(0.515) 0.964(0.593) 0.977(0.641)
40 0.883(0.447) 0.934(0.520) 0.967(0.598) 0.980(0.647)
80 0.886(0.451) 0.941(0.524) 0.974(0.603) 0.984(0.651)

2 20 0.888(0.461) 0.938(0.537) 0.965(0.617) 0.976(0.667)
40 0.884(0.461) 0.935(0.537) 0.961(0.618) 0.972(0.667)
80 0.891(0.463) 0.938(0.539) 0.969(0.620) 0.978(0.670)

2 1 20 0.864(0.414) 0.916(0.484) 0.951(0.561) 0.963(0.610)
40 0.872(0.417) 0.929(0.488) 0.961(0.566) 0.970(0.614)
80 0.879(0.422) 0.926(0.493) 0.960(0.571) 0.972(0.619)

2 20 0.872(0.434) 0.919(0.508) 0.947(0.588) 0.957(0.639)
40 0.874(0.436) 0.923(0.511) 0.956(0.591) 0.965(0.641)
80 0.877(0.436) 0.920(0.510) 0.948(0.591) 0.958(0.641)

where mspe(p̂it) is the posterior variance of p̂it. We also study the coverage prob-
abilities of p̂it.

We report the TMSPE for only p̂1T which is stable for different number of small
areas (m) and variance components (σ2

v , σ
2
ε ), (Table 3). The RB of mspe(p̂1T )

is reported in Table 4 which performs very well and also, in general, the RB is
decreased with increasing number of small areas, as expected. The results of the
coverage probabilities and average length (in parenthesis) of the p̂1T for different
number of small areas and confidence coefficients are reported in Table 5, which also
provide good coverage probabilities of the p̂1T for different confidence coefficients.

5. Sensitivity analysis

We now investigate the choice of priors through a sensitivity study for our simula-
tion study, for example, for the logistic mixed model set up. Full details of the prior
sensitivity and choice of models appear in [11]. The hyperprior distributions of the
variance components are generally set to be vague to get the most information
from the data. In general, the prior for the precision of the random effects (σ−2)
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Table 6. True MSPE and RB(%) of p̂1T for sensitivity analysis of prior distributions in the case m = 40.

Prior A B C D E F G H
TMSPE 0.0218 0.0202 0.0201 0.0200 0.0222 0.0220 0.0297 0.0198
RB(%) -17.75 -3.58 -2.86 -2.50 -21.67 -17.85 -67.85 -0.70

is often specified as a gamma distribution with scale and shape parameters both
equal to 0.001. One may also use a uniform prior for the standard errors [6].

To investigate the influence of hyperprior specifications in the logistic context,
we conduct a sensitivity analysis with respect to the prior distributions for the
precision of random effects parameters σ−2

v and σ−2
ε , assuming a variety of differ-

ent gamma priors G(a, b), whose mean and variance are a/b and a/b2, respectively.
Following [19], [24] and [25], we use the following combinations in our experimen-
tal design: (a, b) = (0.5, 0.0005), (0.001, 0.001), (0.01, 0.01), (0.1, 0.1), (2, 0.001),
(0.2, 0.0004), and (10, 0.25), which are denoted by A, B, C, D, E, F, and G, re-
spectively. We also consider the uniform distribution U(0, 100) for standard errors
(σv, σε) denoted by H. We consider the same set up as in our simulation study for
logistic mixed model for ρ = 0.4 and σ2

v = σ2
ε = 1; noting that the ρ is generated

from uniform distribution U(−1, 1).
Table 6 provides the TMSPE and RB(%) of p̂1T for different sceneries. As shown,

the TMSPE is stable for different scenarios of gamma and uniform distributions
for variance components. It seems that the RB is similar for scenarios B, C, and D
in the case of gamma distribution, however, with increasing the mean and variance
of gamma priors (A,E,F, and G), the RB values are also increasing. The RB for
our uniform distribution (H) is also better than all other scenarios.

6. Application

We also consider the Bayesian analysis by using a real dataset of logistic mixed
model. We use a yearly dataset of childhood (age ≤ 20 years) asthma visits to
hospital in the Canadian province of Manitoba during 2000-2010 fiscal years. The
population of Manitoba was stable during the study period from 1.15 million in
2000 to 1.20 million in 2010, with an average population of children of around
335,000. The province consisted of eleven Regional Health Authorities that were
responsible for the delivery of health care services. These eleven regions were fur-
ther sub-divided into 56 Regional Health Authorities Districts (RHAD) and these
RHAD are used as small areas in our model. The number of children asthma vis-
its totaled 14,690 over the study period with mean and median number of yearly
cases per region of 26 and 17 (range 3 to 422), respectively. The region children
population sizes varied from 290 to 175,300, with mean and median numbers of
5,998 and 2,488, respectively. We ignore the variation of geographical regions in
this data analysis, and our focus is to apply our cross-sectional and time-series
binomial mixed model to this dataset. We consider the following model

log(
pit

1− pit
) = α+ vi + uit(t = 1, ..., 10; i = 1, ..., 56)

where α is overall mean over area and time, vi
i.i.d.∼ N(0, σ2

v), and uit = ρui,t−1 +εit,

with |ρ| < 1 and εit
i.i.d.∼ N(0, σ2

ε ); noting that yit, children asthma visits to hospital
in the ith area at time t, has binomial distribution with parameters pit and nit
where nit is the corresponding population size. We first consider the estimates
of model parameters by applying Bayesian approach. The estimates of the model
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Table 7. Parameter estimates and standard errors (SE) of yearly children asthma visits to hospital 2000-2010

using Bayesian approach, logistic mixed model.

Parameter α σ2
v ρ σ2

ε

Estimate -5.089 0.196 0.881 0.067
SE 0.093 0.167 0.070 0.010
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Figure 1. The 95% credible interval of the rate of children asthma visits to hospital in 2010 using Bayesian
approach, logistic mixed model.

parameters and associated standard errors are reported in Table 7. We also provide
95% credible interval of the rates of children asthma visits to hospital for different
areas in 2010 (Figure 1).

7. Concluding remarks

In small area estimation, there are many situations where observations are time-
related counts or proportions. Using Bayesian approach, we have proposed a gener-
alized model involving autocorrelated random effects and sampling errors for small
area estimation with utilizing both cross-sectional and time-series data. Under the
GLMM, our simulation results have shown that Bayesian approach performs very
well in terms of relative bias of estimators of MSPE of small area parameters. The
Bayesian based prediction approach also provided very good coverage probabili-
ties of the small area parameters. In a separate manuscript (Torabi and Shokoohi
[26]), we have also proposed a frequentist approach in small area estimation for
generalized model with utilizing both cross-sectional and time-series data.

We studied the convergence of the samples obtained through diagnostic methods,
and concluded that convergence was achieved. Our sensitivity analysis using differ-
ent priors for the variance components pointed out that this hierarchical Bayesian
analysis for cross-sectional and time-series data yields good results in terms of RB
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and coverage probabilities with using uniform distribution or gamma distribution
with relatively small variances for precision of random effects. However, in general,
we got large RB with using gamma distribution with large variances.
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