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Disease mapping of a single disease has been widely studied in the public health set-up. Simultaneous mod-
eling of related diseases can also be a valuable tool both from the epidemiological and from the statistical
point of view. In particular, when we have several measurements recorded at each spatial location, we need
to consider multivariate models in order to handle the dependence among the multivariate components as
well as the spatial dependence between locations. It is then customary to use multivariate spatial models
assuming the same distribution through the entire population density. However, in many circumstances, it is
a very strong assumption to have the same distribution for all the areas of population density. To overcome
this issue, we propose a hierarchical multivariate mixture generalized linear model to simultaneously ana-
lyze spatial Normal and non-Normal outcomes. As an application of our proposed approach, esophageal and
lung cancer deaths in Minnesota are used to show the outperformance of assuming different distributions
for different counties of Minnesota rather than assuming a single distribution for the population density.
Performance of the proposed approach is also evaluated through a simulation study.

Key words: Bayesian computation; Exponential family; Hierarchical models; Mixture models;
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1 Introduction

Mapping rates of disease or mortality is essentially a way of describing their spatial distribution over an
area. Such distributions are very important for epidemiological and health-policy purposes as mapping
rates display the geographic variation in mortality or disease incidence. The main idea behind develop-
ments on spatial modeling of disease rates is essentially to model variations in true rates and better separate
systematic variability from random noise, a component that usually overshadows crude rate maps. Maps
of areal disease incidence and mortality rates are useful tools in determining spatial patterns of the disease
for targeting resources. Disease incidence and mortality rates may differ substantially across geographical
areas. A reliable estimate of the underlying disease rate is usually provided by borrowing strength from
neighboring geographic areas.

For data collected over geographic areas (areal data) such as health authorities, census tracts, and so
on, the most commonly used methods to estimate rates are conditionally autoregressive (CAR) specifica-
tions (Besag, 1974). The CAR distributions have many applications; including use as the likelihood for
the observation in area level models or as the distribution of the random effects in the mean structure in
hierarchical models. In the public health set-up, the CAR models are used to study areal patterns of the
disease (Torabi, 2012; Torabi and Rosychuk, 2010, 2011, 2012). The CAR models are most appropriate in
the univariate case when mapping a single disease is our interest. When we have information for multiple
diseases as multivariate areal data, one can obviously use a separate univariate CAR model for each dis-
ease. However, since a number of diseases may share the same set of spatial risk factors, or the diseases
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are related to each other, we may need a multivariate areal model or use a shared latent spatial random
risk term to properly analyze this kind of data. This feature enables us to model dependence among the
multivariate components while maintaining spatial dependence between areas.

There are several multivariate areal models in the literature. Mardia (1988) considered the theoretical
background for multivariate Normal Markov random field (MRF) specification. Billheimer et al. (1997)
studied a hierarchical statistical model for compositional monitoring data using a multivariate MRF in a
state-space setting. A two-fold CAR model for counts of two different diseases over each areal unit was
developed by Kim et al. (2001). A multi-objective version of the CAR model which allows for flexible
modeling of the spatial dependence structure was proposed by Sain and Cressie (2002). Multivariate CAR
(MCAR) models for hierarchical modeling based on MRF have been also developed (Carlin and Banerjee,
2003; Gelfand and Vounatsou, 2003). Jin et al. (2005) also introduced a flexible class of generalized
MCAR (GMCAR) models for areal data using the Bayesian approach. Knorr-Held and Best (2001) pro-
posed a shared component spatial model to study two diseases which are spatially correlated. A common
spatial factor model was proposed by Wang and Wall (2003) to study multivariate indicators of cancer risk
across counties in Minnesota. Feng and Dean (2012) used a shared latent spatial random risk term to jointly
analyze multivariate spatial count and zero-heavy count outcomes. However, the all proposed approaches
above assume that all the areas of population density have the same distribution.

Mixture models can provide a flexible framework for modeling the response distribution and can im-
prove model fit. For non-spatial data, there is a well-established literature on mixture models (Mclachlan
and Peel, 2000; Fruhwirth-Schnatter, 2006). In the case of spatial setting, several authors have proposed
mixture models for point-referenced (geostatistics) data. For example, Gelfand et al. (2005) used a Dirich-
let process mixture model to examine precipitation measurements at fixed locations in southern France.
Kottas and Sanso (2007) extended this approach by allowing the point locations to be random. A similar
Poisson point-process mixture model was used to identify cell abundance patterns from fluorescent inten-
sity images of lymphatic tissue (Ji et al., 2009). For multivariate point-referenced data, Reich and Fuentes
(2007) proposed a semi-parametric mixture model specified through a stick-breaking process. In the case
of areal setting, Green and Richardson (2002) and Lawson and Clark (2002) proposed univariate mixture
models for mapping disease risks. Alfo et al. (2009) developed a mixture model for multivariate spatial
count outcomes using the EM algorithm for the inference. Wall and Liu (2009) also developed a spatial
latent class model for multivariate binary data and modeled the latent class indicators using a multinomial
probit model with spatially correlated error terms. Recently, Neelon et al. (2014) developed a multivariate
spatial mixture model for areal data with continuous outcomes to examine areal differences in standardized
test scores in North Carolina.

In this paper, we propose a hierarchical multivariate mixture generalized linear model to simultaneously
analyze spatial Normal and non-Normal outcomes. As an application of our proposed model, we analyze
esophageal and lung cancer deaths in Minnesota. We show that esophageal and lung cancer deaths in
Minnesota have a spatially correlated structure (Section 3). We also use mixture models to show, for this
dataset, that assuming different distributions for different counties of Minnesota outperforms assuming a
single distribution for the population density.

The format of the paper is as follows. In Section 2, we propose a multivariate mixture spatial model in
the class of generalized linear mixed model (GLMM). We also study how Bayesian inference can be used
to obtain estimates, and also to get prediction for smoothing disease rates (or ratios) over an area. We prove
that the corresponding posterior distribution is proper (Theorem 1). Performance of the proposed approach
is evaluated using esophageal and lung cancer datasets in Minnesota (Section 3) and by a simulation study
(Section 4). Concluding remarks are given in Section 5. The Appendix is devoted to the proof of Theorem
1.
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2 Models for multivariate outcomes

2.1 Multivariate spatial generalized linear mixed models

Let yij be the variable of interest at area i for outcome (or otherwise) j(j = 1, ..., J ; i = 1, ..., n). The yij
are assumed to be conditionally independent, given random effects, with exponential family p.d.f.

f(yij |ψij , δij) = exp{yijψij − a(ψij)}b(yij), (1)

(j = 1, ..., J ; i = 1, ..., n). The density (1) is parameterized with respect to the canonical parameters ψij ,
known functions a(·) and b(·). The natural parameters ψij are then modeled as

θij := h(ψij) = qij + x′ijβj + ϕij (j = 1, ..., J ; i = 1, ..., n),

where θij represents the linear function of fixed and spatial random effects, h is a strictly increasing func-
tion, qij are known constants, xij(p × 1) are known design vectors, βj(p × 1) is a vector of unknown
regression coefficients for outcome j, ϕij are spatial random effects of area i for outcome j which can be
defined as shared spatial component or multivariate CAR models. In particular, we can define ϕij = γjϕi
where γj is the factor loading for the shared spatial component on outcome j, with γ1 = 1, and ϕi is the
spatial random effect assumed here to follow a proper CAR distribution (Cressie and Chan, 1989; Stern and
Cressie, 1999) to account for the spatially structured correlation in the outcomes. The spatial component

(ϕ1, ..., ϕn)
′ ∼MVN(0,Σϕ), (2)

Σϕ = σ2(In − λC)−1M,

where In is the identity matrix of dimension n,M is a n×n diagonal matrix with elementsMii = 1/gi;C
is a n × n matrix with elements Cik = 1/gi if areas i and k are adjacent (shown i ∼ k) and Cik = 0
otherwise (also Cii = 0), where gi is the number of areas which are adjacent to area i;σ2 is the spatial
dispersion parameter; and λ measures the conditional spatial dependence. If |λ| < 1, (In − λC) is then
non-singular.

Another way to define spatial random effects is through multivariate CAR models. Let Φi = (ϕi1, ..., ϕiJ )
′,

(i = 1, ..., n), be a J-dimensional vector with e.g. ϕi1 as a spatially random variable of the first out-
come (e.g., disease) at the ith area. Similar to the univariate CAR models, the unique joint distribution
Φ = (Φ1, ...,Φn)

′ is given by

Φ ∼MVN(0,ΣΦ), (3)

ΣΦ = (Γ− Cr)
−1,

where Γ is an nJ × nJ block diagonal matrix with J × J diagonal entries Γi, Cr is nJ × nJ with
(Cr)ij = riCij , (Cr)ii = 0, and ri is a smoothing parameter at area i. One can choose different Γ and Cr

matrices to obtain different MCAR model structure from (3). To obtain a non-singular covariance matrix in
(3), we need to make sure that (Γ−Cr) is a positive definite and symmetric matrix. However, establishing
these conditions may be difficult in the general cases. There have been some work in the literature in that
direction. For instance, one can simplify the formulation by assuming that ri = ρIJ×J , (i = 1, ..., n),
where ρ is again a smoothing parameter, and Γ = D ⊗ Λ, where Λ is a J × J positive definite and
symmetric matrix and D = diag(gi). By replacing these formulas in (3), the corresponding covariance
matrix in (3) is positive definite as long as Λ is positive definite and the univariate CAR distribution is valid
(Carlin and Banerjee, 2003; Gelfand and Vounatsou, 2003). However, the assumption of a common ri for
all i(= 1, ..., n) may be too strong in some cases. Hence, many MCAR models have been developed for
different scenarios of ri (Kim et al., 2001; Carlin and Banerjee, 2003). One approach is to directly specify
the joint distribution for a multivariate spatial process through the specification of simpler conditional
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and marginal forms (Jin et al., 2005). For instance, in the case of J = 2, let η1 = (ϕ11, ..., ϕn1)
′ and

η2 = (ϕ12, ..., ϕn2)
′ be spatial random variables of two outcomes, one can then have

η1 ∼MVN(0, σ2
1(In − λ1C)

−1M),

and the conditional distribution for η2|η1 is

η2|η1 ∼MVN(Aη1, σ
2
2(In − λ2C)

−1M),

where λ1 is the smoothing parameter associated with the marginal distribution of η1, λ2 is similar for the
conditional distribution of η2|η1, and σ2

1 and σ2
2 are spatial dispersions of η1 and η2|η1, respectively, (Jin

et al., 2005). To determine the relationship between η1 and η2, it is assumed that the matrix A is A =
{aik}ni,k=1 where aik = ζ0 if k = i, aik = ζ1 if k ∼ i, and 0 otherwise. Hence, we have A = ζ0I + ζ1C

where ζ0 and ζ1 are the bridging parameters associating ηi2 with ηi1 and ηk1(k ̸= i), respectively.

2.2 Multivariate mixture spatial generalized linear mixed models

A more flexible tool is given in the mixture model approach. The basic idea is that the population under
scrutiny may be decomposed into sub-areas with different levels of risk. The parameters describing these
levels of risk stem from a discrete parameter distribution (π1, ..., πL). The non-parametric mixture model
assumes that these area-specific random effects have a discrete probability distribution taking L values
θij1, ..., θijL with probabilities πij1, ..., πijL, respectively. Each of these L components of the mixture
represents a cluster containing a proportion πijl (assigning binary variable δijl to each cluster l with cor-
responding probability πijl) from the population with θijl and with the constraint that

∑L
l=1 πijl = 1.

Hence, we propose the following marginal distribution of the outcome yij which is given by

yij ∼
L∑

l=1

πijlf(yij |ψijl), (4)

θijl := h(ψijl) = qijl + x′ijlβjl + ϕijl,

πijl =
ex

′
ijlυjl+ζijl∑L

l=1 e
x′
ijlυjl+ζijl

,

where we define fixed effects xijl for each cluster l corresponding to outcome j in area i with the fixed
parameters βjl, qijl are known constants, and ϕijl captures spatial random effects for each cluster l and
area i corresponding to outcome j. Similar to non-mixture models (Section 2.1), one can define a MCAR
model for each cluster l such that (ϕ11l, ..., ϕnJl)′ ∼ MVN(0,ΣnJ(αl)) depends on model parameters
αl which is (λ1l, λ2l, σ

2
1l, σ

2
2l, ζ0l, ζ1l) in the case of J = 2. Another option is to use factor loading for

the shared spatial component (Section 2.1) in the form of ϕijl = γjϕil such that for each cluster l, we
have (ϕ1l, ..., ϕnl) as a proper CAR model (2) with the corresponding parameters (λl, σ2

l ), (l = 1, ..., L).
The roles of υjl and ζijl are similar to βjl and ϕijl. Note that in model (4), we assume that the number of
clusters (L) is known, however, one can consider large number of clusters (say e.g. L = 10) and check
the performance of different clusters (L ≤ 10) using e.g. a Bayesian criterion called deviance information
criterion (DIC), (see also the end of Section 2.3), to find out the best choice of L.We will study unknown L
with this criterion and other sophisticated approaches in a separate research project (see also the Discussion
Section).
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2.3 Statistical inference

The multivariate mixture model (4) may be implemented in a Bayesian framework using Markov chain
Monte Carlo (MCMC) procedures. The target is to find the posterior distributions of θ and of β given
y = (y11, ..., ynJ), and in particular, the posterior means, variances and covariances of these distributions.
Three special cases are of great practical interest. The first is when the yij are conditionally independent
Bin(qij , pij) where θij = log(pij/(1 − pij)) and a(ψij) = qij log(1 + exp(θij)). In the second case,
yij ∼ Poisson(τij) where θij = log(τij) and a(ψij) = exp(θij). In the third case, yij ∼ N(θij , 1) where
a(ψij) =

1
2θ

2
ij .

To implement the MCMC, we assume that βjl and parameters involved in the spatial random effects
ϕijl are mutually independent with βjl ∼ Uniform (RpL), (pL < n); inverse of variance components have
gamma distributions with shape and scale parameters ( 12c,

1
2d) with different values of c and d for each

variance component; in the case of shared spatial random effects, γj ∼ Uniform (R) and λl, (l = 1, ..., L),
have uniform distributions between (−1, 1).

We now need to check that under the conditions above, the posterior distribution (e.g., in the case of
shared spatial random effects for the model (4)) of θ given y is proper. The following theorem provides
sufficient conditions to ensure this.

Theorem 1: Assume that f(yij |ψ) is bounded for all i and j. Suppose also that there exist yi1j , ..., yimj(1 <
i1 < ... < im ≤ n; pJ ≤ m ≤ n) such that

∫ ∞

−∞
exp{yirjψ − a(ψ)}dψ <∞,

where r = 1, ...,m, θ = h(ψ), ψij = h−1[
∑L

l=1 δijl(qijl + x′ijlβjl + γjϕil)], and the corresponding
design vectors xi1jl, ..., ximjl. Then the joint posterior Pr(θ, β, π, γ, λ, τ |y) is proper if cl > 0, dl + n >
0, dl +m > 0, and τl = 1/σ2

l , (l = 1, ..., L), where L is finite and known.

Proof of Theorem 1 is given in the Appendix.

The Theorem 1 generalizes the one of Ghosh et al. (1999) which considers the univariate spatial model
in the non-mixture context with intrinsic CAR (ICAR) for the spatial random effects. Now, the joint
posterior distribution (e.g., in the case of shared spatial random effects for the model (4)) can be expressed
as

Pr(θ, β, γ, ϕ, π, λ, σ2|y) (5)

∝ f(y|β, γ, ϕ)p(Φ1|λ1, σ2
1)...p(ΦL|λL, σ2

L)p(β)p(γ)p(π)p(λ1)...p(λL)p(σ
2
1)...p(σ

2
L),

where σ2 = (σ2
1 , ..., σ

2
L). The first term on the right hand side of (5) is the conditional likelihood (1)

which is exp[
∑n

i=1

∑J
j=1{yijψij − a(ψij)}]. The terms p(Φ1|λ1, σ2

1)...p(ΦL|λL, σ2
L) are the distribution

of Φ, and the remaining terms are the prior distributions on (β, γ, π, λ1, ..., λL, σ
2
1 , ..., σ

2
L); flat priors

are assigned to β, γ, and λ; priors assigned to the variances of the spatially structured random effects
(σ2

1 , ..., σ
2
L) can be inverse Gamma distributions or their standard deviations can be uniformly distributed,

because of the robust properties of this prior (Gelman, 2006); corresponding priors to mixing parameters
(πij1, ..., πijL) in (4), which are through υjl and ζijl, are assigned similar to βjl and ϕijl. Note that we use
MCMC with incorporating Metropolis-Hastings to simulate realizations of the posterior distribution. This
framework for the analysis was implemented through the freely available software WinBUGS (Lunn et al.,
2006).
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To compare various models, we use the DIC, defined as DIC = D(Θ) + pD, where D(Θ) is the
posterior mean of the deviance with D(Θ) = −2 logL(y|Θ) and Θ denotes the collection of parameters in
the model (Spiegelhalter et al., 2004). The penalty term pD is the effective number of model parameters,
defined by pD = D(Θ)−D(Θ̄), where Θ̄ = E(Θ|y) is the posterior mean of Θ. Models with lower DIC
scores are preferred as they achieve a more optimal combination of fit and parsimony.

3 Application to Minnesota lung and esophageal cancers

The data consists of the number of deaths due to lung cancer (yi1 observed; Ei1 expected) and esophageal
cancer (yi2 observed; Ei2 expected) in the entire eight year period (1991-1998) at the 87 counties (areas)
in Minnesota, USA (Jin et al. 2005; Torabi, 2014). The expected numbers of deaths are age-adjusted.
Figure 1 shows the standardized mortality ratios (SMRs) of lung cancer (yi1/Ei1) and esophageal cancer
(yi2/Ei2), with some similarity of spatial structure observed in these two cancers. There are also noticeable
jumps in the SMR, particularly in the centre and north-centre of Minnesota, where the larger SMRs occur.
Figure 1 also shows some substantial differences between the two diseases in terms of their SMRs. For
example, counties 13, 35, and 36 have low risk of esophageal cancer, but high risk of lung cancer, while the
opposite is true for counties 8, 21, and 46. This supports the choice of a multivariate model which allows
different spatial patterns for each disease. A spatial Poisson regression model was used as these cancer
deaths are assumed to be rare enough relative to the population in each county. The model is then given by

yij ∼
2∑

l=1

πijlPoisson(ψijl),

θijl := log(ψijl) = log(Eij) + x′iβjl + ϕijl, (i = 1, ..., 87; j = 1, 2; l = 1, 2),

πijl =
ex

′
iυjl+ζijl∑L

l=1 e
x′
iυjl+ζijl

,

where πij2 denotes the weight for the second mixture component, ζijl
ind.∼ N(0, σ2

ζ ), x
′
i with x1i is propor-

tion of males in the ith county, and x2i as ethnicity covariate which is proportion of black in the ith county.
It seems that the risk factors of sex and ethnicity are the same for the both lung cancer and esophageal
cancer cases, so in our study we consider βjl = βl (Jemal et al., 2008); noting that it is well known that
smoking is a risk factor for lung cancer, however, we did not have access to this covariate in our dataset.
We also consider two different structures (factor loading and multivariate model) for the spatial random
effects ϕijl. By end of this analysis, we also evaluate that L = 2 seems to be enough for our dataset. As
indicated in this paper, we assume that the number of clusters (L) is known.

We considered c/2 = 1 and d/2 = 10 c = 0.001 and d = 1 as shape and scale parameters of pri-
ors in the inverse gamma for our variance components. We ran 3 initially dispersed chains for 150, 000
iterations each, discarding the first 50, 000 as burn-in. To reduce autocorrelation, we retained every 50
iteration. To monitor the convergence of the model parameters, we used several diagnostic methods im-
plemented in the Bayesian output analysis program (Smith, 2007), a freely available package created for
R (R Development Core Team, 2014). In particular, we evaluated descriptive diagnostic tests such as the
autocorrelation of generated samples of model parameters from the posterior distribution and convergence
diagnostic tests such as Brooks, Gelman, and Rubin tests (Gelman and Rubin, 1992; Brooksand and Gel-
man, 1998) and Heidelberger and Welch test (Heidelberger and Welch, 1983). None of these tests indicated
non-convergence of the model parameters. We also investigated the choice of priors through a sensitivity
study (e.g., using uniform distribution for standard deviations rather than inverse gamma distribution for
variance components) for our data analysis and found our results are robust against priors.
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Figure 1 Standardized mortality ratios of esophageal cancer (a) and lung cancer (b) in Minnesota.

Model diagnostics indicated efficient mixing and rapid convergence of the chains. In particular, the
post-burn-in trace plots (not shown here) indicated that the chains overlapped substantially. To evaluate
the performance of our model, we also compared our proposed model (in both cases of spatial random
effects: factor loading and multivariate model) to three sub-models: (1) a mixture model with separate
spatial random effects (M3); (2) a non-mixture model with separate spatial random effects (M6); and (3) a
non-mixture model with shared (M4) and multivariate (M5) spatial random effects. It is worth mentioning
that we also tried log(θijl) = log(Eij) + x′iβjl + γjlϕi, however, we had a convergence issue.

Table 1 provides the model comparison results for the various models, noting that ϕijl in modelM2 and
ϕij in model M5 indicate the multivariate spatial random effects. The mixture model with factor loading
of shared spatial random effects (M1) outperformed other sub-models, noting that the model with shared
spatial random effects (M1) also performed better than the corresponding model with multivariate spatial
random effects (M2). Overall, the proposed mixture spatial model had the best performance, suggesting
that incorporating the shared spatial random effects into the mixing weights provided a modest additional
benefit relative to other sub-models.

Table 2 presents the posterior means and 95% credible intervals (CrIs) for the proposed model param-
eters. The results suggested that there are two distinct mixing components, or “latent sub-populations” of
cancer patients. Sub-population 1 contained an estimated 58% of the overall population, and was charac-
terized by comparatively high proportions of other ethnicities (compared to the black) and same size of
males and females (β11 = −0.04, β21 = −3.42). Sub-population 2 contained the remaining 42% of the
overall population and was associated with higher proportions of females with slightly larger group of other
ethnicity compared to the black group (β12 = −10.15, β22 = −0.40). In addition, the model accounted
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Table 1 Model comparison statistics for analysis of the lung and esophageal cancer mortality data.

Model D(θ) pD DIC
M1 : log(ψijl) = log(Eij) + x′iβjl + γjϕil 1101 46 1147
M2 : log(ψijl) = log(Eij) + x′iβjl + ϕijl 1137 45 1182
M3 : log(ψijl) = log(Eij) + x′iβjl + ϕil 1141 42 1183
M4 : log(ψij) = log(Eij) + x′iβj + γjϕi 1147 40 1187
M5 : log(ψij) = log(Eij) + x′iβj + ϕij 1153 38 1191
M6 : log(ψij) = log(Eij) + x′iβj + ϕi 1160 36 1196

Table 2 Posterior means and 95% credible intervals (CrIs) for the proposed model M1.

Mixture component Parameter Posterior Mean 95% CrI
1 β11 -0.04 (−0.40, 0.36)

β21 -3.42 (−5.39,−1.23)
λ1 0.96 (0.87, 0.99)
σ2
1 0.04 (0.02, 0.07)

2 β12 -10.15 (−18.90,−2.32)
β22 -0.40 (−2.30, 1.60)
λ2 0.50 (0.40, 0.60)
σ2
2 0.14 (0.06, 0.22)
γ2 0.85 (0.68, 1.02)

for spatial association in both sub-populations which were relatively high (λ1 = 0.96 and λ2 = 0.50).
The factor loading parameter γ was estimated as 0.85(0.68, 1.02), indicating that the both cancers share
a common and possibly identical spatial structure, with γ substantially above zero and with γ2 = 1 not
rejected. The posterior expected SMRs of the proposed model is given in Figure 2. The common spa-
tial component resembles the SMR maps for lung and esophageal cancers (Figure 1). The mixture model
appears to have maintained some areas with jumps (centre and north-centre) for both cancers while dis-
playing increased smoothing in other parts of Minnesota. Based on our available data, we can conclude
that other ethnicity rather than blacks and females are two distinct groups who are most at risk to die due
to lung and esophageal cancers; these two groups also have different spatial patterns of deaths due to lung
and esophageal cancers over the counties in Minnesota. In particular, the focus may be in the counties
with the higher ratios of death due to lung and esophageal cancers, compared to the average population,
for further investigations and possible interventions.

The posterior mean estimates, along with the 95% CrIs of the common latent spatially structured effect
for two sub-populations are shown in Figure 3. It seems that the residual terms appear to be more or less
flat, confirming the dominance of a strong underlying spatial structure shared between lung and esophageal
cancers. To examine whether any residual spatial structure has been left for each of the proposed model,
we used Moran’s I (Moran, 1950; Feng and Dean, 2012; Neelon et al., 2014; Cliff and Ord, 1981; Cressie,
1993) tests on the county residuals from the model. In particular, let ŷij denotes the predicated disease

counts for cancer j(= 1, 2). Moran’s I statistic is given by Ij =
e′jDej
e′jej

, where e′j = (e1j , ..., enj) with

eij = (yij − ŷij)/
√
var(ŷij). The posterior mean (95% CrI) of I1 and I2 for lung and esophageal cancers

are 0.015(−0.049, 0.068) and 0.047(−0.023, 0.129), respectively, suggesting that the residuals have no
significant spatial correlation.
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Figure 2 Posterior expected SMRs of esophageal (a) and lung (b) cancers in Minnesota.

0 20 40 60 80

−
0
.3

−
0
.2

−
0
.1

0
.0

0
.1

0
.2

0
.3

County

V
a
lu
e

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

0 20 40 60 80

−
0
.3

−
0
.2

−
0
.1

0
.0

0
.1

0
.2

0
.3

County

V
a
lu
e

●●●
●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●
●
●

●

●●●●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●●
●●●

●●

●

●●●

●

●●

●

●●●●

●
●
●

●

●

●●

●

●

●

●
●●●●

●●

●

●
●

●

●

●
●

(a) (b)

Figure 3 Point estimates and 95% posterior credible intervals for the spatial random effects of first (a)
and second (b) sub-population; analysis of the lung and esophageal cancer dataset.
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Table 3 Mean values of the model parameters estimates and corresponding 95% coverage probability,
the variance of the estimated parameters and mean values of the estimated variances for spatial Poisson
mixture model based on 1, 500 simulated datasets.

Variance

Mixture component Parameter Mean 95% coverage probability HB Simulated
1 (% 55) β11 =-0.01 -0.005 0.940 0.004 0.003

β21 =0.10 0.093 0.943 0.002 0.002
λ1 =0.40 0.568 0.972 0.067 0.011
σ2
1 =0.12 0.116 0.945 0.017 0.008

2 (% 45) β12 =-0.07 -0.067 0.941 0.007 0.005
β22 =0.04 0.042 0.958 0.005 0.004
λ2 =0.40 0.550 0.973 0.069 0.009
σ2
2 =0.12 0.116 0.931 0.022 0.016
γ2 =0.82 0.82 0.948 0.00002 0.00002

4 Simulation study

We also conduct a simulation study to evaluate performance of the spatial Poisson (non-Normal outcomes)
mixture model using a scenario similar to our Minnesota lung and esophageal cancer dataset. More specif-
ically, data are generated from the following model:

yij ∼
2∑

l=1

πijlPoisson(ψijl), (6)

log(ψijl) = log(Ni) + βjl + γjϕil, (i = 1, ..., 87; j = 1, 2; l = 1, 2),

where γ1 = 1, and with parameters (β11, β12, β21, β22, γ2, λ1, λ2, σ2
1 , σ

2
2 , πij1, πij2) listed in Table 3. The

neighborhood structure and the population sizes (US Census 2010 dataset) are from the Minnesota dataset.
Estimates are obtained using 1, 500 datasets generated from the spatial Poisson mixture model (6). The
mean values of the model parameters estimates, the corresponding 95% coverage probability, the variance
of the estimated parameters, and mean values of the variances are presented in Table 3. It seems that the
estimates of model parameters are reasonably unbiased, and their variances are also estimated well with
comparing the variances with the corresponding simulated values. Overall, it seems that the spatial Poisson
mixture model provides good point estimates and corresponding variances for this data analysis.

5 Discussion

Disease mapping studies that consider only one disease have been widely used. However, simultaneous
modeling of multiple diseases is also very important provided we have measurements recorded at each
spatial area which are believed to be related. In addition, we may have different underlying distributions
for different areas of population density. To address this issue, we have proposed a multivariate mixture
spatial model in the class of GLMM to simultaneously analyze spatial Normal and non-Normal outcomes.
We used the Bayesian approach for the estimation of model parameters, and also prediction of the smooth-
ing disease ratios (rates) over an area. A motivation for our work was esophageal and lung cancer deaths
in Minnesota. Based on our available data from Minnesota, we concluded that other ethnicity rather than
blacks and females are two distinct groups who are most at risk to die due to lung and esophageal cancers.
In particular, we found that some counties in the centre and north-centre of Minnesota have higher ratios
of death due to lung and esophageal cancers compared to the average population. These findings may
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represent real changes in those counties or different distributions of important covariates that are unmea-
sured and unadjusted for in our modeling. Further investigation may be warranted to explore these findings.

Our approach is very general in the context of SGLMM using CAR models with shared components
or multivariate spatial random effects. In this paper, we assumed that the number of clusters is known,
however, this may not be an appropriate assumption in some applications. We have planned to study the
SGLMM for areal data assuming the number of clusters is unknown. As a natural extension of our model,
we have also planned to study a hierarchical multivariate mixture generalized linear model to simultane-
ously analyze spatio-temporal Normal and non-Normal outcomes.
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Appendix

Proof of Theorem 1: Using one-to-one transformation, one can write zil = ϕil−ϕnl, (i = 1, ..., n−1), zl =
(z1l, ..., z(n−1)l)

′, and then

Pr(θ, β, π, z, δ, γ, λ, τ |y) ∝ exp[
n∑

i=1

J∑
j=1

{yijψij − a(ψij)}]

×Πn
i=1Π

J
j=1Π

L
l=1[τ

( 1
2 )n

l ]δijlΠn
k=1,k ̸=i exp[

−1

2
δijlτlλl(zil − zkl)

2Cik]

×Πn
i=1Π

J
j=1Π

L
l=1[τ

(
dl
2 )−1

l ]δijl exp[
−1

2
δijlclτl]π

δijl
ijl

×Πn
i=1Π

J
j=1Π

L
l=1πijl,

where znl = 0, β = (βjl)
J,L
j,l , π = (πijl)

m,J,L
i,j,l , z = (zl)

L
l , δ = (δijl)

m,J,L
i,j,l , γ = (γj)

J
j , λ = (λl)

L
l , τ =

(τl)
L
l . Without loss of generality, we assume that ir = r(r = 1, ...,m) and let θ∗ = (θil, ..., θml)

′

where θil = (θi1l, ..., θiJl)
′. Now, integrating with respect to (θ(m+1)l, ..., θnl), the joint posterior of

θ∗, β, π, z, δ, γ, λ, τ given y is

Pr(θ∗, β, π, z, δ, γ, λ, τ |y) ∝ exp[
m∑
i=1

J∑
j=1

{yijψij − a(ψij)}]

×Πn
i=1Π

J
j=1Π

L
l=1[τ

( 1
2 )n

l ]δijlΠn
k=1,k ̸=i exp[

−1

2
δijlτlλl(zil − zkl)

2Cik]

×Πn
i=1Π

J
j=1Π

L
l=1[τ

(
dl
2 )−1

l ]δijl exp[
−1

2
δijlclτl]π

δijl
ijl

×Πn
i=1Π

J
j=1Π

L
l=1πijl,

then,

Pr(θ∗, β, π, z, δ, γ, λ, τ |y) ∝ exp[
m∑
i=1

J∑
j=1

{yijψij − a(ψij)}]
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×Πn
i=1Π

J
j=1Π

L
l=1[τ

1
2 (n+dl)−1

l ]δijlΠn
k=1,k ̸=i exp[

−1

2
δijlτl{cl + λl(zil − zkl)

2Cik}]

×[Πn
i=1Π

J
j=1π

δijl
ijl ]× [Πn

i=1Π
J
j=1Π

L
l=1πijl].

Now, integrating with respect to τ gives

Pr(θ, β, π, z, δ, γ, λ|y)

≤ K exp[
m∑
i=1

J∑
j=1

{yijψij − a(ψij)}]

×Πn
i=1Π

n
k=1,k ̸=iΠ

J
j=1Π

L
l=1[cl + λl(zil − zkl)

2Cik]
−δijl

2 (n+dl)

×[Πn
i=1Π

J
j=1Π

L
l=1π

δijl
ijl ]× [Πn

i=1Π
J
j=1Π

L
l=1πijl],

where K(> 0) is a generic constant which does not depend on θ∗ and z. We also know that β, γ,
and λ have uniform distributions, and δijl given other parameters follows a multinomial distribution
(1, πij1, ..., πijL), with υjl and ζijl have similar behavior as βjl and ϕijl, respectively. In addition,
znl = 0 and

∑n
i=1

∑n
k=1,k ̸=i

∑L
l=1 λl(zil−zkl)2Cik involves only (n−1)L variables z1l, ..., z(n−1)l, (l =

1, ..., L). Thus, integrating with respect to z, and using the structure of a multivariate t-distribution, it fol-
lows that

Pr(θ|y) ≤ K exp[

m∑
i=1

J∑
j=1

{yijψij − a(ψij)}],

which completes the proof of Theorem 1.
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