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In this paper, our aim is to analyze geographical and temporal variability of disease incidence when spatio-
temporal count data have excess zeros. To that end, we consider random effects in zero-inflated Poisson
models to investigate geographical and temporal patterns of disease incidence. Spatio-temporal models that
employ conditionally autoregressive smoothing across the spatial dimension and B-spline smoothing over
the temporal dimension are proposed. The analysis of these complex models is computationally difficult
from the frequentist perspective. On the other hand, the advent of the Markov chain Monte Carlo algorithm
has made the Bayesian analysis of complex models computationally convenient. Recently developed data
cloning method provides a frequentist approach to mixed models which is also computationally convenient.
We propose to use data cloning, which yields to maximum likelihood estimation, to conduct frequentist
analysis of zero-inflated spatio-temporal modeling of disease incidence. One of the advantages of the data
cloning approach is that the prediction and corresponding standard errors (or prediction intervals) of smooth-
ing disease incidence over space and time is easily obtained. We illustrate our approach using a real dataset
of monthly children asthma visits to hospital in the province of Manitoba, Canada, during the period April
2006 to March 2010. Performance of our approach is also evaluated through a simulation study.
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1 Introduction

The analysis of disease incidence (or mortality) over space and time has received considerable attention
due to growing demand for reliable disease mapping. The idea behind developments on spatio-temporal
modeling of disease incidence is essentially to model variation in observed disease patterns and better
separate systematic variability from random noise, a component that usually overshadows crude disease
incidence maps. Maps of areal disease incidence over time are useful tools in determining spatial and
temporal patterns of disease incidence for targeting resources. Disease incidence rates (ratios) may dif-
fer substantially across geographical areas. A reliable estimate of the underlying disease risk is usually
provided by borrowing strength from neighboring geographic areas.

Poisson regression is commonly used for the analysis of disease cases, which implicitly assumes that
the cases in nearby areas are independent and the variance of response is equal to the mean. However,
these may not be reasonable assumptions because causal factors of the disease that are unmeasured or
unknown and thus omitted from the regression model can lead to extra-Poisson variation. Furthermore,
a certain degree of spatial correlation may be induced in the response, depending on how smoothly the
omitted factors vary across the areas. Clayton and Kaldor (1987) extended the use of mixed models for
geographical data to account for the extra-Poisson variability through the introduction of spatial random
effects in the context of disease mapping. However, there are many situations that our count data have
excess zeros. A zero-inflated Poisson (ZIP) regression model was used to account for count data with
excess zeros (Lambert, 1992). Following Lambert (1992), many works have been done in the case of count
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data with excess zeros (Welsh et al., 1996; Böhning, 1998; Yau et al., 2003; Tse et al., 2009; Wan and Chan,
2009). In the case of spatial count data with excess zeros, spatial ZIP models were employed (Agarwal
et al., 2002; Ugarte et al., 2004; Rathbun and Fei, 2006). Recently, Nieto-Barajas and Bandyopadhyay
(2013) considered a zero-inflated spatial gamma process model with applications to disease mapping. The
literature is also available for zero-inflated models with continuous responses where a recent special issue
of Biometrical Journal (Vol. 58 (2), 2016) was devoted on this subject.

The temporal random smoothing of incidence cases has also been studied in the literature. An autore-
gressive (AR) model for temporal count data was used by Zeger (1988). Waller et al. (1997) extended
the hierarchical Bayesian spatial models to account for temporal random effects and spatio-temporal inter-
actions. A unified approach for a Bayesian analysis of disease incidence in space and time was proposed
by Knorr-Held (2000). MacNab and Dean (2001), Silva et al. (2008), and Torabi and Rosychuk (2012)
proposed spatio-temporal models that use AR local smoothing across the spatial dimensions and B-spline
smoothing over the temporal dimensions. Martinez-Beneito et al. (2008) suggested an AR spatio-temporal
model in a Bayesian framework to link information in time and space. In some contexts, the underlying
disease risks may change over seasons within a given year. Torabi and Rosychuk (2010) proposed a spatio-
temporal model that uses conditional AR (CAR) smoothing across the spatial effects, AR smoothing over
the temporal effects, and a smoothing function to account for seasonal effects. Torabi (2012) proposed a
spatio-temporal model that uses AR smoothing across the spatial effects, random walk smoothing over the
temporal effects, and a smoothing function to account for seasonal effects.

In some situations, spatio-temporal count data may have excess zeros. Wikle and Anderson (2003)
considered a ZIP spatio-temporal model in the regression form where the covariates also depend on time,
however, they did not consider the spatial and temporal random effects separately. Hoef and Jansen (2007)
studied a ZIP spatio-temporal by having first-order AR model for the temporal random effects and CAR
models for the spatial random effects. The both above papers used the Bayesian approach for the inference.
There are many different ways to perform inference in mixed models, however, the frequentist approach
has been computationally difficult particularly for these kinds of ZIP spatio-temporal models which fall
in the class of generalized linear mixed models (GLMMs). Consequently, many approximate approaches
have been proposed in the last two decades such as generalized estimating equations (Liang and Zeger,
1986; Prentice and Zhao, 1991; Torabi and Rosychuk, 2010) and penalized quasi-likelihood (Breslow
and Clayton, 1993; Torabi and Rosychuk, 2011) among other approaches. With advances in computational
power, the Bayesian approach especially the non-informative Bayesian approach has become quite popular
although the implementation of the non-informative Bayesian approach requires substantial care.

Recently, Lele et al. (2007) introduced an alternative frequentist approach, called data cloning (DC), to
compute the maximum likelihood (ML) estimates (MLE) and their standard errors for general hierarchical
models. Similar to the Bayesian approach, the DC avoids high dimensional numerical integration and
requires neither maximization nor differentiation of a function. Extending this work to GLMM situation,
Lele et al. (2010) described an approach to compute prediction and prediction intervals for the random
effects. The DC approach, thus, is well suited to offer a frequentist analysis of the zero-inflated spatio-
temporal models.

The contribution of this paper is two-fold. First, we propose a zero-inflated spatio-temporal model to
account for spatial and temporal count data with excess zeros. Second, we propose to use the DC as a
frequentist approach for the inference. In the next section, we describe the zero-inflated spatio-temporal
model. We then describe how the DC can be used to obtain model parameters estimate and predictions
with corresponding standard errors (or prediction intervals) for smoothing disease incidence over space
and time (Section 3). In Section 4, performance of the proposed approach is evaluated using a real dataset
of monthly number of children asthma visits to hospital in the province of Manitoba, Canada, during the
period April 2006 to March 2010. Performance of the ML estimate is also studied through a simulation
study. Concluding remarks are given in Section 5. The Appendix is devoted to the proof of asymptotic
normality of model parameters estimate.
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2 Zero-inflated spatio-temporal model

Let yit be the number of disease incidence cases (or otherwise) for the i-th geographic area at time t, and
let eit be the corresponding expected number of disease incidence cases for i = 1, ..., I; t = 1, ..., T. We
propose the following zero-inflated spatio-temporal model:

yit|(µit, θit) =

{
0 with probability 1− θit
Poi(µit) with probability θit

(1)

where Poi(µit) is a conditionally independent Poisson variable with mean function µit for the i-th geo-
graphic area at time t. In particular, we use link functions to relate the means of these distributions to linear
mixed models,

log(µit) = log(eit) +m+ S(t) + ηi + δit,

logit(θit) = m0 + S0(t) + η0i + δ0it, (2)

which are combinations of fixed (m,m0, S(t), S0(t)) and random effects (ηi, δit, η0i, δ0it), where m is a
fixed effect representing the overall mean log-ratio over time and area. To account for the fixed temporal
effects, S(t) represents a B-spline model with appropriate degree (order) and number of inner knots (Eilers
and Marx, 1996). For instance, a cubic B-spline with three inner knots was found useful in our exploration
of the data (Section 4). For our cubic B-spline, the knots are located at the first and third quartiles as well
as at the median of time t(= 1, ..., T ); one can similarly define the number and location of inner knots for
other (degrees of) B-spline models. To show the advancements of our proposed model, we focus on the
cubic B-spline in the rest of the paper. With the overall mean of log-ratio m in our model, the B-spline is
provided without an intercept. Hence, in the case of cubic B-spline model, S(t) is given by

S(t) = β1B1(t) + β2B2(t) + β3B3(t) + β4B4(t),

where (βl, Bl) are the coefficients and basis functions of the B-spline, respectively (l = 1, ..., 4), noting
that Bl(t) is a cubic function of t (Eilers and Marx, 1996; De Boor, 2001). The CAR model is used to
capture the spatial random effects ηi. We consider the following general model for the spatial effects ηi,

(η1, ..., ηI)
′ ∼ N(0,Ση),

Ση = σ2
η(P − ληD)−1,

where P is a I × I diagonal matrix with elements Pii = wi+ where wi+ =
∑

j wij is the number of areas
that are adjacent to area i by defining the weights wij = 1 if area i and j are adjacent (shown i ∼ j) and
0 otherwise; D is a I × I matrix with elements Dij = wij/wi+ if i ∼ j and Dij = 0 otherwise (also
Dii = 0); σ2

η is the spatial dispersion parameter; λη measures the conditional spatial dependence. Hence,
(P − ληD) is then non-singular provided that |λη| < 1 (Spiegelhalter et al., 2004). The I full conditional
distributions can be also written as

ηi|η−i ∼ N
(λη

∑
j wijηj∑
j wij

,
σ2
η∑

j wij

)
, i = 1, ..., I, (3)

where η−i = {ηj : j ̸= i, j ∼ i}.

where P is a I × I diagonal matrix with elements Pii = 1/hi where hi is the number of areas that are
adjacent to area i; D is a I × I matrix with elements Dij = 1/hi if area i and j are adjacent (shown i ∼ j)
and Dij = 0 otherwise (also Dii = 0); σ2

η is the spatial dispersion parameter; λη measures the conditional
spatial dependence, noting that if |λη| < 1, (II − ληD) is then non-singular; and II is the identity matrix
of dimension I (Spiegelhalter etal., 2004).
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As special case when the conditional spatial dependence λη is one, we have the I full conditional dis-
tributions as where η−i = {ηj : j ̸= i, j ∈ ∂i} and #∂i is the number of neighbors of the corresponding
area i, and η̄i is the mean of the random effects in the neighborhood of the i-th geographic area.

One may define the interaction effect of space and time, δit, as ηi(t), Si(t), or simply iid Normal distribu-
tion, depending on the nature of dataset (Bernardinelli et al., 1992; MacNab and Dean, 2001; Silva et al.,
2008; Torabi and Rosychuk, 2012). Note that ηi(t) is a CAR model for each specific time t and Si(t) is a
B-spline model for each specific area i. We define m0, S0(t), η0i and δ0it in a similar manner for the logit
part of the model. It depends on the nature of data, in general, whether to use a spatial CAR model for each
time or a B-spline for each areal unit. In particular, one can use a spatial CAR model for each time, if the
areal trends are different for each time. Similarly, one can use a B-spline model for each areal unit, if the
time trends are different for each areal unit. The interaction term should also scientifically sound before
incorporating into the model.

3 Likelihood-based estimation

Let y = (y11, ..., y1T , ..., yI1, ..., yIT )
′ be the observed data vector and, conditionally on the random ef-

fects, v = (η1, ..., ηI , δ11, ..., δIT , η01, ..., η0I , δ011, ..., δ0IT )
′
, we assume that the elements of y are inde-

pendent and drawn from a ZIP distribution (1)-(2) with parameters α1 = (m,β1, ..., β4,m0, β01, ..., β04).
It is also assumed that distribution for v depends on parameters α2 which include λη, σ

2
η, λ0η, σ

2
0η and

related parameters from δit and δ0it. The goal of the analysis is to estimate the model parameters α =
(α1,α2)

′ and prediction of disease incidence over space and time (function of v) with corresponding stan-
dard errors. The marginal likelihood of data denoted by L(α;y) is obtained by integrating conditional
probabilities of responses over the distribution of random effects as follows:

L(α;y) =

∫
f(y|v,α1)g(v|α2)dv, (4)

where f(·) is the zero-inflated spatio-temporal model defined as (1)-(2), and g(·) is a multivariate Normal
distribution with mean 0 and variance-covariance matrix Σv,Σv = diag(Ση,Σδ,Σ0η,Σ0δ), where Σδ is
the variance-covariance matrix of (δ11, ..., δIT ) and similarly for Σ0δ.

We use the DC method in order to obtain MLE of the parameters of (4). The DC method uses the
Bayesian computational approach for frequentist purposes. To understand the idea behind the DC method,
imagine a hypothetical situation where the observations y are repeated independently by K different in-
dividuals, and all these individuals happen to result in exactly the same set of observations y, called
y(K) = (y,y, ...,y). The likelihood function for the combination of the data from these K indepen-
dent experiments is then given by {L(α;y)}K := LK(α;y). Note that this likelihood function has two
important features: a) the location of the maximum of this function is exactly equal to the location of the
maximum of L(α;y) and b) the Fisher information matrix based on this likelihood is K times the Fisher
information matrix based on L(α;y). Denote α̂ as the MLE and I(α̂) as corresponding Fisher information
matrix based on L(α;y). It is assumed that the parameters are identifiable and that there is a unique mode
(but possible multiple smaller peaks) to the likelihood function. The posterior distribution of α conditional
on the data y(K) is then given by

πK(α|y(K)) =
LK(α;y)π(α)

C(K,y)
, (5)

where C(K,y) =
∫
LK(α;y)π(α)dα is the normalizing constant. The following theorem provides the

validity of inference based on the likelihood of K copies of the original data.
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Theorem 1: Consider the general models (1) and (2). Under some mild regularity conditions, as K
becomes large, the distribution in

√
KΣ−1/2(α− α̂)|y(K) converges to a multivariate Normal distribution

with mean 0 and variance-covariance matrix Ip which is the identity matrix with the dimension of α, α̂ is
the MLE, and Σ is the inverse of the Fisher information matrix for the MLE.

Proof of Theorem 1 is provided in the Appendix.

The Theorem 1 assures that the sample mean vector of the generated random numbers from the pos-
terior distribution (5) provides the MLE of the model parameters α, and K times their sample variance-
covariance matrix is an estimate of the asymptotic variance-covariance matrix of the MLE α̂.

Determining the number of clones K is possible through diagnostics measures and plots (Lele et al.,
2010), which are available in the dclone package (Sólymos, 2010), a freely available package created for
R (R Development Core Team, 2015). We use these criteria to obtain appropriate number of clones in our
simulation study and in our application.

3.1 Prediction of random effects

We now need to predict the disease incidence ratio (DRit = µc
it/eit) at area i and time t, where µc

it =
E(yit|θit, µit,α1). Following Hamilton (1986) and Lele et al. (2010), based on the MLEs for α, the
prediction (and prediction interval) of DRit = drit conditional on the observed data is possible through
the following posterior density via Markov chain Monte Carlo (MCMC) sampling:

π(drit|y) =
∫
f(y|drit,α1)g(drit|α2)ϕ(α, α̂, I−1(α̂))dα

C(y)
, (6)

where f(·) is the zero-inflated spatio-temporal model defined as (1)-(2), g(·) is a multivariate Normal dis-
tribution, ϕ(., µ,Σ) denotes a multivariate Normal density with mean µ and variance-covariance Σ, which
are equal to the MLE and the inverse of the Fisher information matrix here, and C(y) =

∫
L(α;y)π(α)dα

is the normalizing constant.

In this paper, for the DC and hierarchical Bayesian (HB) analysis (i.e. K = 1), the independent
Normal distribution is assigned for fixed effects with zero mean and variance 106, gamma distribution for
the inverse of variance components with shape and scale parameter 0.001, and a uniform distribution on
(−1, 1) for λη. We also use uniform distribution U(0, 1000) instead of the gamma distribution as a prior
for the standard deviations (Gelman, 2006). To monitor the convergence of the model parameters, we use
several diagnostic methods implemented in the Bayesian output analysis (BOA) program (Smith, 2007) in
R. We also use diagnostic methods implemented in the dclone package (Sólymos, 2010) to monitor the
convergence of the model parameters in terms of number of clones K.

4 Application

4.1 Data analysis

We use a monthly dataset of children (age ≤ 20 years) asthma visits to hospital in the Canadian province
of Manitoba for during the period April 2006 to March 2010. The population of Manitoba was stable
during the study period from 1.18 million people in 2006 to 1.20 million people in 2010, with an average
population of children of around 335,000 people. The province consisted of eleven Regional Health Au-
thorities that were responsible for the delivery of health care services. These eleven regions were further
sub-divided into 56 Regional Health Authorities Districts (RHADs) and these RHADs are the geographic
areas used in our model and all data were linked to these geographic boundaries. For simplicity, we call
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Figure 1. Histogram of number of visits for asthma by children in a month in an area of Manitoba, Canada,
from April 2006 to March 2010

these areas 1,2,...,56. The number of children with asthma visits totaled 4,948 over the study period with
mean and median number of monthly asthma visits per area of 2 and 0 (range 0 to 69), respectively. The
yearly areal children population sizes varied from 290 to 173,400 people, with mean and median numbers
of 5,974 and 2,382 people, respectively. The largest population was in area 56, while area 42 had the least
population. Figure 1 gives a histogram of number of visits for asthma by children in a month in an area of
Manitoba for all 2,688 (= I × T = 56× 48) count values with more than 50% zeros which clearly shows
the need of a zero-inflation model. We also present the provincial rate of children asthma visits over time.
Figure 2 shows the overall crude rates,

∑I
i=1 yit/

∑I
i=1 nit, of children asthma visits to hospital over time

where nit is the population at risk at area i and month t.

The following model is found useful in our exploration of the data:

log(µit) = log(eit) + ηi + S(t) + δit,

logit(θit) = η0i + S0(t), (7)

where S(t) is a cubic B-spline, ηi is a CAR model, δit ∼ N(0, σ2
δ ), η0i ∼ N(0, σ2

η0), and S0(t) ∼
N(0, σ2

t ). Note that the expected number of asthma visits (eit) is adjusted with respect to gender by

eit =
2∑

l=1

nitl
yl
nl

,

where nitl is the population at risk at area i and time t and gender l, yl =
∑I

i=1

∑T
t=1 yitl where yitl is the

number of children asthma visits at area i and time t and gender l, and similarly nl =
∑I

i=1

∑T
t=1 nitl.

We first fit the model (7) to the dataset of children asthma visits using the DC and HB methods. Following
Ponciano et al. (2009) and Torabi (2014), we use model selection based on the information criteria for this
purpose. In particular, to compare two models, one can write AIC1 − AIC2 = −2ln( L̂1

L̂2
) + 2(d1 − d2),
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Figure 2. Provincial children asthma visits rate over time in the province of Manitoba, Canada, during the
period April 2006 to March 2010

where AIC stands for Akaike Information Criteria (e.g., AIC1 = 2d1−2ln(L1)), L̂i is the complete likeli-
hood function evaluated at MLE α̂ for model i(i = 1, 2), d1 and d2 are the number of estimated parameters
under models 1 and 2, respectively (Burnham and Anderson, 2002; Ponciano et al., 2009). We define the
spatial model (only ηi and η0i in (7)) as model (i), the temporal model (only S(t) and S0(t)) in (7) as model
(ii) , and the model (7) as model (iii). We then found that AICi−AICiii = 4.32, AICii−AICiii = 6.12.
The AIC differences greater than two are generally thought to be significant, and differences greater than
three are very signifiant (Burnham and Anderson, 2002; Taper, 2004; Ponciano et al., 2009). We conclude
that the spatio-temporal model (7) provides a better description of the data than models with only spatial or
only temporal effects. Table 1 reports the model parameters estimates and corresponding standard errors
for the both DC and HB approaches. It seems that the standard errors in the DC approach are smaller than
the corresponding values in the HB method. We also observe that the HB method performs differently
for the gamma and uniform prior distributions unlike the DC method. For this application, the number of
clones was K = 5 to obtain MLE, and the number of iterations for convergence of the model parameters
in DC and HB methods was about 40,000. In particular, to check the convergence of the DC approach, we
need to calculate the largest eigenvalue of the posterior variance-covariance matrix, or to calculate mean
squared error and another correlation-like fit statistic based on a Chi-squared approximation. The maxi-
mum eigenvalue reflects the degenerateness of the posterior distribution, while the two fit measures reflect
if the Normal approximation is adequate. All three statistics should converge to zero as the number of
clones increases. If this happens, different prior specifications are no longer influencing the results (Lele
et al., 2007, 2010). These are conveniently collected by the dcdiag function in dclone package in R. In
the case of K = 5, the maximum eigenvalue, mean squared error, and correlation-like fit statistic are
0.02, 0.002, and 0.001, respectively. To also further investigate the behavior of the convergence of the DC
approach, we provide a plot of posterior variances for different values of K (Figure 3).

We also study the sensitivity of our results to the number of knots. To that end, we consider different
number of knots (3, 6, 10) for our S(t) defined in (7) for the cases of MLE and HB (using uniform
distribution as prior for the standard deviations), noting that we used 3 knots as default for the all results in

c⃝ 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



8 Mahmoud Torabi:

Table 1. Parameter estimates (and standard errors), zero-inflated spatio-temporal model for MLE and HB
methods, children asthma visits to hospital in the province of Manitoba, Canada, during the period April
2006 to March 2010

Estimate (Standard error)

Parameter MLE MLE HB HB
Gamma distribution Uniform distribution Gamma distribution Uniform distribution

β1 -0.110 (0.167) -0.112 (0.149) -0.100 (0.215) -0.108 (0.173)
β2 -0.326 (0.206) -0.325 (0.219) -0.526 (0.272) -0.334 (0.212)
β3 -0.010 (0.210) -0.011 (0.198) 0.185 (0.278) -0.011 (0.223)
β4 -0.282 (0.155) -0.283 (0.145) -0.418 (0.206) -0.285 (0.168)
σ2
η 0.816 (0.190) 0.814 (0.178) 0.905 (0.250) 0.823 (0.200)

λη 0.975 (0.029) 0.973 (0.027) 0.973 (0.029) 0.965 (0.032)
σ2
δ 0.117 (0.013) 0.116 (0.011) 0.313 (0.031) 0.121 (0.021)

σ2
η0 0.926 (0.218) 0.925 (0.199) 3.118 (0.643) 0.923 (0.232)
σ2
t 0.213 (0.003) 0.214 (0.003) 0.003 (0.003) 0.224 (0.004)

1 2 3 4 5 60.
0

0.
6

number of clones (K)

va
lu

es

Figure 3. Data cloning convergence diagnostics for the children asthma visits to hospital in the province of
Manitoba, Canada. The standardized eigenvalues converge to zero as the number of clones (K) increases

this manuscript unless otherwise stated. As shown in Table 2, the results are not sensitive to the number of
knots in our data analysis.

For a diagnostic analysis, we adopt and calculate the deviance residual (McCullagh and Nelder, 1989)
as

dit = sgn(yit − µ̂c
it)

[
2
{
yit log(

yit
µ̂c
it

)− yit + µ̂c
it

}]1/2
,

where

sgn(z) =

 1 z > 0
0 z = 0
−1 z < 0

,

note that the deviance residual formula was originally proposed for the generalized linear models. Figure
4 gives the residuals versus predicted diagnostic plot based on the MLE approach. It is clear from Figure 4
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Table 2. Sensitivity of our results to the number of knots (3, 6, and 10) for the cases of MLE and HB
(using uniform distribution as prior for the standard deviations), children asthma visits to hospital in the
province of Manitoba, Canada, during the period April 2006 to March 2010

Estimate (Standard error)

Parameter MLE HB

3 knots 6 knots 10 knots 3 knots 6 knots 10 knots
β1 -0.112 (0.149) -0.113 (0.165) -0.111 (0.169) -0.108 (0.173) -0.125 (0.175) -0.118 (0.174)
β2 -0.325 (0.219) -0.327 (0.204) -0.326 (0.209) -0.334 (0.212) -0.376 (0.223) -0.344 (0.210)
β3 -0.011 (0.198) -0.010 (0.211) -0.011 (0.208) -0.011(0.223) -0.029 (0.243) -0.021 (0.229)
β4 -0.283 (0.145) -0.281 (0.156) -0.282 (0.153) -0.285 (0.168) -0.349 (0.183) -0.265 (0.172)
σ2
η 0.814 (0.178) 0.815 (0.191) 0.816 (0.183) 0.823 (0.200) 0.845 (0.232) 0.803 (0.226)

λη 0.973 (0.027) 0.974 (0.029) 0.973 (0.027) 0.965 (0.032) 0.973 (0.034) 0.943 (0.032)
σ2
δ 0.116 (0.011) 0.114 (0.014) 0.115 (0.013) 0.121 (0.021) 0.145 (0.031) 0.109 (0.021)

σ2
η0 0.925 (0.199) 0.923 (0.217) 0.924 (0.215) 0.923 (0.232) 0.943 (0.243) 0.915 (0.235)
σ2
t 0.214 (0.003) 0.212 (0.003) 0.213 (0.003) 0.224 (0.004) 0.256 (0.003) 0.238 (0.004)
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Figure 4. The deviance residuals versus predicted diagnostic plot of children asthma visits based on MLE
approach

that there is no serious lack of fit in our model; noting that those observations with large predicted values
in Figure 4 belong to Winnipeg health region (area 56, largest population) with relatively large number
of children asthma visits to hospital, and there is a stripy effect in the left side which could be due to the
excess of zeros or small counts. Note that very small and positive values were given to yit if they were 0
to avoid the error in calculation of dit.

One of the main features of DC is also the ability to predict the random effects. To have better under-
standing of the estimated spatial risk profile, we obtain the adjusted children asthma visits ratio, µc

it/eit,
using DC, which provides a spatial risk profile. Figure 5 presents maps of the estimated spatial effects
based on the fitted model, where the areal risk factor of children asthma visits corresponds to, for example,
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the months of April in 2006 and 2008. The overall spatial pattern suggests that some areas in the south
and many areas in the north-central part of the province have relatively high children asthma visits ratio.
Generally, the spatial pattern does not change much over time; although some RHADs had higher children
asthma visits ratio estimate in 2008 compared to 2006 (e.g., RHADs 10, 32, and 40) and some RHADs
had lower children asthma visits ratio estimate in 2008 compared to 2006 (e.g., RHADs 29, 30, and 38).
More investigation may be needed to explore the reasons for seemingly higher children asthma visits in
these areas compared to other parts of the province.
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Figure 5. Adjusted children asthma visits ratio for the spatial effects of the areal asthma risks in April for
selected years 2006 and 2008; Manitoba children asthma data, April 2006-March 2010

We also provide the areal children asthma visits ratio estimate obtained from fitting the spatio-temporal
mixed model given by exp(S(t) + ηi + δit). Figure 6 plots the fitted children asthma visits ratio with
corresponding 95% prediction intervals, for example, for areas (regions) 2, 5, 42, and 56 using the DC
method. The crude ratio estimates are yit/eit, and are also plotted in Figure 6. We indeed chose two regions
with extreme population sizes; region 42 with least population and region 56 with largest population. As
expected in Figure 6, our children asthma visits ratio estimates provide smoothed estimates while crude
ratios are very unstable over time particularly for region 42 with low population size. In general, a specific
pattern in estimated log ratio over time for an area would suggest that the underlying children asthma visits
rate in that area has also the same pattern relative to the provincial average.
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Figure 6. Fitted children asthma visits ratio to hospital for selected areas (regions) 2, 5, 42, and 56 during
the period April 2006 to March 2010. The solid black line represents fitted ratios with blue and red lines
as 95% prediction bands; the dashed line is crude ratio

4.2 Simulation study

We conduct a simulation study to evaluate and compare the performance of ML estimates, via DC ap-
proach, with the HB method using a scenario similar to our children asthma dataset. More specifically,
data are generated from the model (7) with the parameters set close to those obtained in the analysis of
the children asthma dataset; β1, β2, β3, β4, σ

2
η, λη, σ

2
δ , σ

2
η0 and σ2

t are listed in Table 3. The neighborhood
structure and the population sizes are exactly as for the asthma dataset, noting that we use nit (population
at area i and time t) rather than eit in the model (7). Estimates are obtained using DC and HB analyses
of 1, 000 datasets generated from the model (7) where the non-informative priors are used for the fixed
effects, and gamma distribution for the variance components.

Table 3 presents the bias values of the model parameters estimate, the empirical standard errors of model
parameters estimate, and the model-based standard errors of the estimate parameters. In the case of DC
method, the estimates are fairly unbiased, and it seems that their standard errors are estimated reasonably
well unlike the HB approach. Overall, it seems that DC approach, which yields to MLE, provides better
point estimates and standard errors for this data analysis compared to the HB approach.

We also study the performance of the estimated disease rate, DRit = exp(S(t) + ηi + δit), by pro-
viding corresponding coverage probabilities using the DC and HB approaches. Table 4 shows the average
coverage probabilities of prediction intervals of the disease rates (DRit) over areas and time for the both
DC and HB methods. The proposed approach also performs very well (and slightly better than the HB
method) in terms of average coverage probabilities of the disease rates.
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Table 3. Bias values, model-based standard errors, and empirical standard errors of the estimate parame-
ters; MLE and HB methods based on 1,000 simulated datasets

MLE HB
Parameter Bias Standard error Bias Standard error

MLE Empirical HB Empirical
β1 = −0.10 -0.0003 0.165 0.169 -0.0011 0.213 0.171
β2 = −0.30 0.0004 0.197 0.204 0.0014 0.261 0.213
β3 = −0.01 -0.0004 0.200 0.215 0.0006 0.268 0.230
β4 = −0.30 -0.0002 0.158 0.153 -0.0011 0.209 0.155
σ2
η = 0.80 0.0003 0.187 0.186 0.0013 0.246 0.191

λη = 0.95 0.0001 0.027 0.026 0.0012 0.026 0.031
σ2
δ = 0.10 0.0003 0.012 0.011 0.0014 0.030 0.021

σ2
η0 = 0.90 0.0002 0.216 0.215 0.0008 0.641 0.222
σ2
t = 0.20 0.0003 0.003 0.003 0.0007 0.003 0.005

Table 4. Coverage probabilities of confidence intervals of the DRit averaged over areas and time (DR),
with confidence coefficients 0.90, 0.95, 0.98, and 0.99 for the MLE and HB methods based on 1,000 sim-
ulated datasets

DC HB
Parameter Confidence coefficient Confidence coefficient

0.90 0.95 0.98 0.99 0.90 0.95 0.98 0.99
DR 0.894 0.946 0.978 0.989 0.892 0.943 0.975 0.986

5 Conclusion

In many applications, there are situations that spatial and temporal count data have excess zeros. For in-
stance, in our application, more than 50% of our monthly children asthma visits to hospital per area had
0 values. In this paper, we proposed a zero-inflated spatio-temporal model to account for spatial and tem-
poral variations from excess zero counts. The model accommodated a CAR model for the spatial random
effects and B-spline smoothing over the temporal effects. We also proposed to use the DC method which
yields to MLE to estimate the model parameters, and also to predict the disease incidence ratios over space
and time. The advantage of DC approach is that the prediction (and prediction intervals) of the smoothing
incidence ratios over space and time is easily obtained.

We adjusted our expected number of children asthma visits to hospital by an important factor of gen-
der. The model can be also easily extended to include some covariates directly, which may be required
for some applications. Overall, it was suggested by the model estimates that the high children asthma
incidences ratio were mainly located in some parts in the south and many parts in the north-central part of
the province. These findings may represent real increases or different distributions of important covariates
that are unmeasured and unadjusted for in our modeling. Further investigation is needed to explore these
findings.
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Appendix

Proof of Theorem 1: Proof of this Theorem closely follows the lines of Lele et al. (2010). Let L(α;y) =∫
f(y|v,α1)g(v|α2)dv is the likelihood function of the data vector Y = (Y 11, ...,Y IT )

T . We also as-
sume that there is a bounded function as a function of α. Let π(α) is the prior distribution on the parameter
space ϑ. Let πK(α|y) = LK(α;y)π(α)

C(K,y) where C(K,y) =
∫
LK(α;y)π(α)dα < ∞. Following Lele et

al. (2010), we assume the following three assumptions: (A1) the function L(·) has a local maximization
at α∞ and L(α∞) > 0 and π(α∞) > 0 where α∞(= α̂) is defined as the MLE. (A2) the function
π(·) is continuous at α∞ and function L(·) has continuous second derivatives in a neighborhood of α∞

and D2L(α∞) = ∂2

∂α∂αT logL(α;y)|α=α∞ is strictly negative definite. (A3) for any δ > 0, we have
γ(δ) := sup{L(α;y) : ||α − α∞|| > δ} < L(α∞). We also define Σ1/2 = {−D2L(α∞)}−1/2

and for δ > 0 there is N(δ) := {α : ||Σ−1/2(α − α∞)|| < δ}. Since Σ1/2 is positive definite,
this defines a system of neighborhoods of α∞. Also, let αK is a random variable on Rp with density
function πK(·) and define standardized variable ΨK =

√
KΣ−1/2(αK − α∞) with density function

hK(α) = |Σ1/2|
Kp/2 πK(α∞ + 1√

K
Σ1/2α) where p is the dimension of α. Without loss of generality, we as-

sume that L(α∞) = 1 which is a standardized likelihood function where the computation of the posterior
distribution πK(α|y) will be invariant to such standardization as LK(α;y) is involved in both numerator
and denominator of πK(α|y). Hence, Σ1/2 = {−D2L(α∞)}−1/2 is the square root of the inverse of the
Fisher information matrix due to D2L(α∞) = D2 logL(α∞).

The proof of Theorem 1 is based on two main results: we first show that under the assumptions (A1) and
(A2), LK(α∞ + 1√

K
Σ1/2α) converges to exp(−||α||2/2) uniformly on bounded sets of α as K goes to

∞. To that end, we fix δ0 > 0 so small such that D2L(α) is continuous on the neighborhood N(δ0). For
every α in this neighborhood, there is some α+ on the line segment joining α and α∞ so that by using
Taylor’s expansion, we can have

L(α) = L(α∞) +DL(α∞)(α−α∞) +
1

2
(α−α∞)T (D2L(α+))(α−α∞)

= 1− 1

2
(α−α∞)T (−D2L(α+))(α−α∞). (8)

So, for large K, we have α∞+ 1√
K
Σ1/2α in N(δ0) and also L(α∞+ 1√

K
Σ1/2α) = 1−αT (Σ1/2)T {−D2L(αK)}Σ1/2α

2K

for some αK on the line segment joining α∞ + 1√
K
Σ1/2α and α∞. We can also choose δ(ϵ) < δ0 (for

ϵ > 0) so small for α ∈ N(δ(ϵ)) such that D2L(α) is negative definite and ||(Σ1/2)T (−D2L(α))Σ1/2 −
Ip|| ≤ ϵ. Also, in general, for 0 ≤ x, y ≤ K, we have: |(1 − x

K )K − (1 − y
K )K | ≤ |x − y| and

|(1 − y
K )K − exp(−y)| ≤ y2

K . For M > 1 and 0 < ϵ < 1 and let K ≥ max(( M
δ(ϵ) )

2,M2). Hence, for

||α|| < M we have αK ∈ N(δ(ϵ)), so with x = 1
2α

T (Σ1/2)T (−D2L(αK))Σ1/2α and y = ||α||2/2,
we get

|LK(α∞ +
1√
K

Σ1/2α)− exp(−||α||2

2
)| ≤ ϵM2

2
+

M4

4K
, (9)

which shows that LK(α∞ + 1√
K
Σ1/2α) converges to exp(−||α||2/2) uniformly on bounded sets of α

as K goes to ∞. There are some immediate results based on (9). We can now conclude that π(α∞ +
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1√
K
Σ1/2α)LK(α∞ + 1√

K
Σ1/2α) converges to π(α∞) exp(−||α||2/2) uniformly on bounded sets. We

can also have π(α∞)|Σ1/2|(2π)p/2 ≤ lim infK C(K,y)Kp/2 where there is a constant D > 0 such that
1

C(K,y) ≤ DKp/2.

The second main result is to show the following three are equivalent: (a) ΨK ⇒ N(0, Ip) which is
convergence in distribution to a Normal random variable. (b) the density hK(·) converges point-wise to a
multivariate standard Normal density function. In other words, C(K,y)Kp/2 −→ π(α∞)|Σ1/2|(2π)p/2.
(c) αK ⇒ δα∞ where δα∞ indicates a degenerate distribution at α∞. To show (a) ⇒ (b), we can write
the density hK(·) as:

hK(α) =
|Σ1/2|

Kp/2C(K,y)
π(α∞ +

1√
K

Σ1/2α)LK(α∞ +
1√
K

Σ1/2α).

By (a), we have the following on the bounded Borel set B :

1

(2π)p/2

∫
B

exp(−||α||2/2)dα = lim
K

|Σ1/2|
C(K,y)Kp/2

∫
B

π(α∞+
1√
K

Σ1/2α)LK(α∞+
1√
K

Σ1/2α)dα.

On the other hand, using (9):

lim
K

∫
B

π(α∞ +
1√
K

Σ1/2α)LK(α∞ +
1√
K

Σ1/2α)dα = π(α∞)

∫
B

exp(−||α||2/2)dα.

Hence, we can conclude that C(K,y)Kp/2 −→ π(α∞)|Σ1/2|(2π)p/2 as K goes to ∞, and consequently
hK(α) −→ 1

(2π)p/2
exp(−||α||2/2). We also now show (c) ⇒ (b). For any ϵ > 0, we can find δ > 0 such

that α ∈ N(δ) which implies (using (8)): L(α) < 1 − 1
2 (1− ϵ)(α− α∞)TΣ−1(α − α∞) and π(α) ≤

(1 + ϵ)π(α∞). Also, from (c), we can assume that K is large enough to have 1 − ϵ ≤
∫
N(δ)

πK(α)dα.

We can then show that C(K,y)Kp/2 ≤ (1 − ϵ)−1(π(α∞) + ϵ)|Σ1/2|(2π)p/2. So, by letting K −→ ∞
and ϵ −→ 0, we have lim supK C(K,y)Kp/2 ≤ π(α∞)|Σ1/2|(2π)p/2. Other parts (e.g., (a) ⇒ (c) or
(b) ⇒ (a)) are either obvious or easy to show. Then, an immediate result is that αK ⇒ δα∞ which is also
based on the three assumptions (A1-A3).

Hence, we can get the main result of the convergence of data-cloning algorithm ΨK =
√
KΣ−1/2(αK−

α∞) ⇒ N(0, Ip) under the three assumptions (A1)-(A3), which completes the proof of Theorem 1.
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