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Abstract: Small area estimation plays an important role in making reliable inference for subpopulations (ar-
eas) for which relatively small samples or no samples are available. In model-based small area estimation
studies, linear and generalized linear mixed models have been used extensively assuming that covariates
are not subjected to measurement errors. Recently, there have been studies considering this problem under
the functional measurement error for covariates using the maximum likelihood method and the method of
moments. In this paper, we study the James-Stein estimator of the true covariate subject to the functional
measurement error. To this end, we obtain a new pseudo-empirical Bayes (PEB) predictor of small area
means based on the James-Stein estimator. Then, we show that the new PEB predictor is asymptotically
optimal. The weighted and unweighted jackknife estimators of the mean squared prediction error of the
new PEB predictor are also derived. Simulation studies are conducted to evaluate the performance of the
proposed approach. We observe that the PEB predictor based on the James-Stein estimator performs better
than those based on the maximum likelihood method and the method of moments. Finally, we apply the
proposed methodology to a real dataset. The Canadian Journal of Statistics xx: 1–24; 2015 c© 2015 Sta-
tistical Society of Canada

1. INTRODUCTION

Small area estimation is a statistical method to find estimates of means, totals or any other pa-
rameters associated with the quantity of interest in subpopulations. Depending on the number of
sample units from subpopulations (areas), we can have either “direct” or “indirect” estimates of
the parameters of interest. If there is enough sample units in the specific subpopulation to derive
estimates of parameters, they are called “direct” estimates. However, due to the cost and opera-
tional consideration, it is not always possible to sample enough data to get direct estimates. In
this case, “indirect” estimates of the parameters of interest can be obtained by borrowing infor-
mation from other areas through a linking model which formulates the relationship between the
auxiliary information and the mean of the response variable in areas (Rao, 2003).

Sometimes the auxiliary information of the model is subject to measurement error. In such
situations, it is natural to study small area estimation problem under measurement errors. To this
end, Ghosh and Sinha (2007), Datta et al. (2010) and Torabi (2011) studied the unit level regres-
sion model for small area estimation when the area level covariate is subject to the functional
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measurement error.
Consider a small area estimation problem, and let Ni be the known value of the population

size of the ith area, yij and Xij represent the value of the study variable and the covariate asso-
ciated with the jth unit in the ith area, respectively. We consider the case where Xij’s contain
measurement errors as one might not be able to precisely measure the true value of the area-
specific covariate. In particular, consider the following model

yij = b0 + b1xi + ui + eij , i = 1, . . . ,m, j = 1, . . . , Ni, (1)

with

Xij = xi + ηij , i = 1, . . . ,m, j = 1, . . . , Ni, (2)

where m, ui’s, ηij’s, and eij’s are the number of areas, the area-level random effects, the mea-
surement error and the random errors, respectively. Also, assume that eij’s, ηij’s and ui’s are
mutually independent. Furthermore, it is assumed that ui’s, ηij’s, and eij’s are independently

and identically distributed (i.i.d.) random variables with eij
i.i.d.∼ N(0, σ2

e), ηij
i.i.d.∼ N(0, σ2

η)

and ui
i.i.d.∼ N(0, σ2

u), where σ2
u, σ2

e and σ2
η are all unknown.

In this paper, the functional measurement error model is considered for the true area-specific
covariate xi’s. That is, the true area-specific covariates are unknown fixed parameters (Carroll
et al., 2010). If there is no measurement error in the covariate variables Xij , (1) and (2) reduce
to the unit level regression model (Battese et al., 1988).

In small area estimation, one interest is to estimate small area means, γi’s, which are defined
as follows

γi =

∑Ni

j=1 Yij

Ni
, i = 1, . . . ,m.

Assuming there is no selection bias, let {(yij , Xij), i = 1, . . . ,m, j = 1, . . . , ni}, be the ob-
served values of Yij and the covariates Xij where ni is the sample size from the ith area. The
best (or Bayes) predictor of γi under the squared error loss function using the observed values of
y
(1)
i = (yi1, yi2, . . . , yini) is given by

γ̂Bi = γ̂Bi (xi, φ)

= E(γi|y(1)
i )

= (1− fiBi)ȳi + fiBi(b0 + b1xi), (3)

where φ = (b0, b1, σ
2
u, σ

2
e), fi = 1− ni/Ni is the finite population correction factor, ȳi =

1
ni

∑ni

j=1 yij , and Bi = σ2
e/(σ

2
e + niσ

2
u) (Ghosh and Sinha, 2007).

To estimate the unknown xi’s, Ghosh and Sinha (2007), henceforth abbreviated GS, pro-
posed a pseudo-Bayes (PB) predictor of γi by replacing xi with its moment estimator, X̄i =
1
ni

∑ni

j=1Xij . Datta et al. (2010) suggested a new PB predictor of γi by using the maximum
likelihood (ML) estimates of xi’s, i.e.

x̃i(ψ) = X̄i +
b1σ

2
η(ȳi − b0 − b1X̄i)

σ2
e + niσ2

u + b21σ
2
η

, (4)

where ψ = (φ, σ2
η). Ghosh and Sinha (2007) and Datta et al. (2010), henceforth abbreviated DRT,

also obtained a pseudo-empirical Bayes (PEB) predictor of γi by using the method of moments
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estimators of ψ proposed by Ghosh and Sinha (2007).
In this paper, we propose to estimate the unknown xi’s by the James-Stein estimator as a

natural competitor to the ML and the method of moments estimators. The James-Stein estimator
can be used to estimate the mean vector of a multivariate normal distribution which is more
efficient than the ML estimate in terms of the sum of the weighted mean squared error,

E

[
m∑
i=1

Wi(γ̂i − γi)2
]
,

where m ≥ 3 and Wi’s are variance stabilizing constants (Efron and Morris, 1972). The James-
Stein estimator can be obtained as an empirical Bayes estimator, and it is robust against misspec-
ifying the prior distribution (Lehmann and Casella, 1998).

Whittemore (1989) previously proposed the James-Stein estimator for the linear regression
model, yi = b0 + b1xi + ei, where ei

i.i.d.∼ N(0, σ2
e), i = 1, . . . ,m, with the measurement er-

rors in the covariate. Following Efron and Morris (1972), one can temporarily use the prior
distribution N(µ, τ2), on the unknown xi’s in the measurement model Xi = xi + ηi with
ηi

i.i.d.∼ N(0, σ2
η) and known σ2

η , to obtain the James-Stein estimator, as an empirical Bayes esti-
mator, as follows

x̂i = B̂X̄ + (1− B̂)Xi i = 1, . . . ,m,

where B̂ = (m− 3)σ2
η/
∑m
i=1(Xi − X̄)2 and X̄ = m−1

∑m
i=1Xi.

In this paper, we use a similar idea to construct the James-Stein estimator of the true covariate,
xi, subject to the functional measurement error (see Carroll et al., 2010, Sec. 9.1.3 and Carroll
et al., 1999 for more details). To this end, in Section 2, we first obtain the James-Stein estimator
of the true area-specific covariate, xi, in the unit level regression model (1). In Section 3, a new
PEB predictor of the small area mean, γi, is constructed and its optimality is investigated. In
Section 4, the jackknife estimators of the mean squared prediction error (MSPE) of the proposed
PEB predictor of the small area mean are derived. The performance of the proposed approach
is evaluated through simulation studies in Section 5. The cross-sectional data from the New
Zealand population is analyzed in Section 6. Some concluding remarks are given in Section 7.
The Appendix is devoted to some of the proofs.

2. A NEW PSEUDO-BAYES PREDICTOR

Following models (1) and (2), let

ȳi = b0 + b1xi + ui + ēi, (5)

and

X̄i = xi + η̄i, (6)

where ēi = 1
ni

∑ni

j=1 eij and η̄i = 1
ni

∑ni

j=1 ηij . Define Z̄∗i as a linear estimator of xi based on
X̄i and ȳi as follows

Z̄∗i =X̄i + hi(ȳi − b0 − b1X̄i)

=xi + hiui + hiēi + η̄i(1− hib1), i = 1, . . . ,m. (7)
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It is easy to show that Z̄∗i is an unbiased estimator of xi with

Z̄∗i |xi ∼ N

(
xi, h

2
i (σ

2
u +

σ2
e

ni
) +

σ2
η

ni
(1− hib1)2

)
.

We first obtain the best linear estimator of Z̄∗i by minimizing varhi(Z̄
∗
i |xi) with respect to hi. To

this end, by taking the derivative of varhi
(Z̄∗i |xi) with respect to hi, we have

hi

(
σ2
u +

σ2
e

ni
+ b21

σ2
η

ni

)
=
b1σ

2
η

ni
,

which results in the optimum value of hi as follows

h∗i =
b1σ

2
η

niσ2
u + σ2

e + b21σ
2
η

, i = 1, . . . ,m.

One can easily see that Z̄∗i using h∗i leads to the ML estimator of xi defined in (4).
To get the James-Stein estimator, the method described in Efron and Morris (1972, 1975) is

used by temporarily assuming that xi
i.i.d.∼ N(µ, τ2). Let σ2

0i =varh∗
i
(Z̄∗i |xi) and observe that

xi|Z̄∗i ∼ N
(

σ2
0i

σ2
0i + τ2

µ+
τ2

σ2
0i + τ2

Z̄i
∗
,
σ2
0iτ

2

σ2
0i + τ2

)
, i = 1, . . . ,m.

The Bayes estimator of xi under the quadratic loss function is

E(xi|Z̄∗i ) = Ciµ+ (1− Ci)Z̄∗i , i = 1, . . . ,m, (8)

where Ci = σ2
0i/(σ

2
0i + τ2). Now, the James-Stein estimator of xi is given by the empirical

Bayes estimate of E(xi|Z̄∗i ). To this end, we first need to estimate the unknown parameters τ2 and
µ. One can estimate τ2 using the marginal distribution of Z̄i

∗ ∼ N(µ, σ2
0i + τ2), i = 1, . . . ,m.

Efron and Morris (1975) gave an estimate of τ2 as the solution of

τ2 =

∑m
i=1((Z̄∗i − µ)2 − σ2

0i)Ii(τ
2)∑m

i=1 Ii(τ2)
, (9)

where Ii(τ
2) =

{
var(Z̄∗i − µ)2

}−1
= 1

2 (σ2
0i + τ2)−2 is the Fisher information of τ2 contained

in (Z̄∗i − µ)2.
In (9), (Z̄∗i − µ)2 is used to remove the effect of the non-centrality parameter. We also esti-

mate µ using its ML estimator, given by

Z̄∗ =

∑m
i=1

Z̄∗i
σ2
0i + τ2∑m

i=1

1

σ2
0i + τ2

.

Hence, the James-Stein estimator of xi is obtained as follows

xiJS = CiZ̄
∗ + (1− Ci)Z̄∗i , i = 1, . . . ,m. (10)
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The new PB predictor of γi, following (3), is then given by

γ̂PB
iJS = (1− fiBi)ȳi + fiBi(b0 + b1xiJS), i = 1, . . . ,m. (11)

Remark 1. In the structural measurement error, we have the assumption that xi
i.i.d∼

N(µx, σ
2
x), for i = 1, . . . ,m (Carroll et al., 2010). One can easily observe that the James-Stein

predictors of xi’s under the structural measurement error (assuming xi’s are random variables)
are equal to the James-Stein estimators of xi’s under the functional measurement error (assuming
xi’s are unknown fixed values). Note that, xi’s in the structural measurement error are predicted
while they are being estimated in the context of the functional measurement error.

We now derive the MSPE of γ̂PB
iJS in (11) as follows:

E(γ̂PB
iJS − γi)2 = E(γ̂PB

iJS − γ̂Bi )2 + E(γ̂Bi − γi)2

= (fiBib1)2


Cixi(di − 1) + Ci

∑
j 6=i

xjdj

2

+ σ2
0i (1 + Ci(di − 1))

2

+C2
i

∑
j 6=i

σ2
0jd

2
j

+ f2i

(
σ2
e(

(1−Bi)2

ni
+

1

Ni − ni
) +B2

i σ
2
u

)
(12)

≡ g1i(δ), i = 1, . . . ,m,

where

di =

1

(σ2
0i + τ2)∑m

j=1

1

(σ2
0j + τ2)

,

and δ = (b1, σ
2
u, σ

2
e , σ

2
η, (x1, . . . , xm))>.

In fact, MSPE(γ̂PB
iJS) in (12) is the measure of variability of γ̂PB

iJS where the model parameters
are known. However, δ is unknown and we need to estimate δ to obtain a pseudo-empirical Bayes
predictor of γi and to evaluate its optimality.

Remark 2. One can easily observe that the MSPE obtained in (12) depends on (x1, . . . , xm)>.
As m→∞, the dimension of the parameter space goes to infinity. However, using (10), we note
that (x1, . . . , xm)> can be obtained by estimating ψ and τ2 no matter how large m is. Also,
following the Bayesian view towards the functional measurement error, and by applying the
information provided in the prior distribution N(µ, τ2) in (12), we have

Ē(γ̂PB
iJS − γi)2 = E{E[(γ̂PB

iJS − γi)2|x1, . . . , xm]}

= (fiBib1)2

C2
i τ

2

1 +

m∑
j=1

d2j − 2di

+ σ2
0i (1 + Ci(di − 1))

2

+C2
i

∑
j 6=i

σ2
0jd

2
j

+ f2i

(
σ2
e(

(1−Bi)2

ni
+

1

Ni − ni
) +B2

i σ
2
u

)
,
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where Ē(γ̂PB
iJS − γi)2 is obtained using the total law of expectation with Ē being used for double

expectations.Thus, the unconditional MSPE, denoted by Ē(γ̂PB
iJS − γi)2 does not depend on the

specific values of xi’s.

3. PSEUDO-EB PREDICTOR

In this section, we first obtain a pseudo EB (PEB) predictor, γ̂PEB
iJS , of γi by using the method

of moments to estimate the model parameters. We then show that this PEB predictor is asymp-
totically optimal in the sense that 1

m

∑m
i=1 E(γ̂PEB

iJS − γ̂PB
iJS)2 → 0 as m→∞. To this end, sim-

ilar to Ghosh and Sinha (2007) and Datta et al. (2010), the method of moments estimator of
ψ = (b0, b1, σ

2
u, σ

2
e , σ

2
η), ψ̂, is used. Thus, we have the following consistent estimators (Ghosh

and Sinha, 2007)

σ̂2
η = MSWx, σ̂2

e = MSWy,

b̂1 =
MSBx

MSBx −MSWx
b̃1, b̂0 = ȳ − b̂1X̄,

and

σ̂2
u = max

{
0, {MSBy −MSWy − b̂21(MSBx −MSWx)}m− 1

gm

}
,

where

MSBy =
1

m− 1

∑m
i=1 ni(ȳi − ȳ)2, MSWy =

1

nT −m
∑m
i=1

∑ni

j=1(yij − ȳi)2,

MSBx =
1

m− 1

∑m
i=1 ni(X̄i − X̄)2, MSWx =

1

nT −m
∑m
i=1

∑ni

j=1(Xij − X̄i)
2,

nT =
∑m
i=1 ni, X̄ =

1

nT

∑m
i=1 niX̄i,

ȳ =
1

nT

∑m
i=1 niȳi, b̃1 =

∑m
i=1 niȳi(X̄i − X̄)

(m− 1)MSBx
,

and gm = nT −
∑m
i=1 n

2
i /nT . The PEB predictor of γi is then given by

γ̂PEB
iJS = (1− fiB̂i)ȳi + fiB̂i(̂b0 + b̂1x̂iJS), i = 1, . . . ,m,

where B̂i and x̂iJS are estimated values of Bi and xiJS obtained by replacing consistent estimates
of parameters. For asymptotic optimality of the proposed PEB predictor, we need the following
assumptions from Ghosh and Sinha (2007)

(i) max
1≤i≤m

ni ≤ k0 <∞, (ii)
1

m− 1

m∑
i=1

ni(xi − x̄)2 → c (> 0) asm→∞. (13)

Theorem 3 establishes the asymptotic optimality of γ̂PEB
iJS . In this paper, following Ghosh and

Sinha (2007) and Datta et al. (2010), we refer to the optimality in the sense of Robbins (1956).
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Theorem 1. Under the assumptions (13), γ̂PEB
iJS is asymptotically optimal in the sense that

1

m

m∑
i=1

E(γ̂PEB
iJS − γ̂PB

iJS)2 → 0, asm→∞, (14)

where the expectation is with respect to random variables X,Y, and xiJS, (i = 1, . . . ,m).

Proof. See the Appendix for the proof. �

To get a measure of the variability of γ̂PEB
iJS , we calculate MSPE(γ̂PEB

iJS ) which is represented
as

MSPE(γ̂PEB
iJS ) = E(γ̂PB

iJS − γi)2 + E(γ̂PEB
iJS − γ̂PB

iJS)2 + 2E(γ̂PB
iJS − γi)(γ̂PEB

iJS − γ̂PB
iJS), (15)

where E(γ̂PB
iJS − γi)2 = g1i(δ). Note that, in (15), E(γ̂PEB

iJS − γ̂PB
iJS)2 + 2E(γ̂PB

iJS − γi)(γ̂PEB
iJS − γ̂PB

iJS)
which comes from the variability of the model parameters estimation is unknown. In Section 4,
using the jackknife method, we present an estimate of MSPE(γ̂PEB

iJS ).

4. THE JACKKNIFE ESTIMATION OF MSPE(γ̂PEB
IJS )

To find an estimator of

MSPE(γ̂PEB
iJS ) = E(γ̂PEB

iJS − γi)2,

we follow Jiang et al. (2002), Chen and Lahiri (2002) and Datta et al. (2010) using the weighted
and unweighted jackknife methods. Let

M1i : = E(γ̂PB
iJS − γi)2 = g1i(δ),

M2i : = E(γ̂PEB
iJS − γ̂PB

iJS)2,

and

M3i := E(γ̂PB
iJS − γi)(γ̂PEB

iJS − γ̂PB
iJS).

We have

MSPE(γ̂PEB
iJS ) = M1i +M2i + 2M3i. (16)

Due to the structure of M3i, it is not easy to find the explicit form of M3i. As it is shown
in Theorem 3, γ̂PEB

iJS is asymptotically optimal for γPB
iJS in the sense of Robbins (1956). Using

Theorem 3 and the Cauchy-Schwarz inequality, similar to Ghosh and Sinha (2007), we have

E

(
1

m

m∑
i=1

∣∣(γPB
iJS − γi)(γ̂PEB

iJS − γPB
iJS)
∣∣) ≤ 1

m

m∑
i=1

[
E1/2(γPB

iJS − γi)2E1/2(γ̂PEB
iJS − γPB

iJS)2
]

≤ max
1≤i≤m

E1/2(γPB
iJS − γi)2

[
1

m

m∑
i=1

E1/2(γ̂PEB
iJS − γPB

iJS)2

]
→ 0, asm→∞.
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Knowing the mean of some positive terms goes to zero in limit implies that each term goes to
zero in limit. So, we have

E1/2(γ̂PEB
iJS − γPB

iJS)2 → 0, asm→∞,

for i = 1, . . . ,m. Thus, as

M3i ≤ E
∣∣(γPB

iJS − γi)(γ̂PEB
iJS − γPB

iJS)
∣∣ ≤ max1≤i≤mE1/2(γPB

iJS − γi)2E1/2(γ̂PEB
iJS − γPB

iJS)2,

we have M3i → 0, as m→∞, for i = 1, . . . ,m. Therefore, we ignore the cross product term
M3i, similar to Ybarra and Lohr (2008) and Datta et al. (2010), and use the approximation

MSPE(γ̂PEB
iJS ) ≈M1i +M2i, (17)

in the jackknife method. However, we address the magnitude of the ignored term, M3i, in the
simulation study (Section 5). In particular, we found that (17) is quite accurate for the proposed
predictor γ̂PEB

iJS .
To find the jackknife estimator of MSPE(γ̂PEB

iJS ), denoted by mspeJ , let

M̂1iJ = g1i(δ̂)−
m∑
l=1

wl[g1i(δ̂−l)− g1i(δ̂)],

and

M̂2iJ =

m∑
l=1

wl(γ̂
PEB
iJS,−l − γ̂PEB

iJS )2,

where δ̂−l is obtained by removing observations of the lth area, l = 1, . . . ,m, and finding the
model parameters estimate by using the information of other areas. Note that γ̂PEB

iJS,−l is also
PEB predictor of γi without using the information of lth area. Finally, weight wl, l = 1, . . . ,m,
can be either 1− X̄>l (

∑m
t=1 X̄tX̄

>
t )−1X̄l, where X̄l = (1, X̄l)

>, or (m− 1)/m leading to the
weighted (Chen and Lahiri, 2002) or unweighted (Jiang et al., 2002) jackknife estimators of
MSPE(γ̂PEB

iJS ), respectively. Hence, the mspeJ is defined in either case as

mspeJ = M̂1iJ + M̂2iJ , (18)

noting that the mspeJ is a nearly unbiased estimator of MSPE(γ̂PEB
iJS ) if and only if M3i ≈ 0.

Similarly, we use mspewJ to show the weighted jackknife estimator of MSPE(γ̂PEB
iJS ).

5. EMPIRICAL RESULTS

In this section, we first provide a numerical study to compare the performance of the MSPE of
the proposed pseudo-Bayes predictor γ̂PB

iJS with those obtained by GS and DRT. We then conduct
a simulation study to evaluate the relative efficiency of the proposed PEB predictor, γ̂PEB

iJS , com-
pared with the GS estimator, γ̂PEB

iGS , the DRT estimator, γ̂PEB
iDRT and the naive estimator (henceforth

abbreviated NAI), γ̂PEB
iNAI. The NAI estimator is obtained in the absence of the measurement er-

ror (Battese et al., 1988). The performance of the proposed jackknife estimator, mspeJ , is also
evaluated and compared with its competitors based on the GS, DRT and NAI methods.

Following Ghosh and Sinha (2007) and Datta et al. (2010), we assume that the responses
yij for the population units and the observed covariates which contain measurement errors are
generated from the model given by (1) and (2) with σ2

η = 25, σ2
u = 16, σ2

e = 100, b1 = 2,
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b0 = 100. The population has N = 3950 units spread across 20 areas of sizes Ni given by
50, 250, 50, 100, 200, 150, 50, 150, 100, 150, 100, 50, 300, 350, 400, 200, 250, 300, 350,
and 400. The sample sizes (ni) within areas are taken to be 1, 5, 1, 2, 4, 3, 1, 3, 2, 3, 2,
1, 6, 7, 8, 4, 5, 6, 7, and 8, respectively. We also generate xi’s ranging from a uniform dis-
tribution between 191 to 199 given by x = (197, 198, 197, 192, 192, 195, 192, 196, 194, 192,
191, 197, 191, 193, 199, 198, 194, 199, 191, 196), and treat them fixed through the simulation
study. We conduct the simulation study for R = 5000 iterations and for each iteration, we gen-
erate small area population Y

(r)
i = (y

(r)
i1 , y

(r)
i2 , . . . , y

(r)
iNi

) and associated simple random samples

(y
(r)
i1 , . . . , y

(r)
ini

) and (X
(r)
i1 , . . . , X

(r)
ini

), i = 1, . . . ,m, r = 1, . . . , R, independently.

5.1. Efficiency of PB Estimators
We first evaluate the performance of the proposed PB estimator and compare it with the GS, NAI,
and DRT estimators based on their MSPE’s.
The MSPE of the GS predictor γ̂PB

iGS can be obtained from the equation (3.5) of GS as follows

MSPE(γ̂PB
iGS) = f2i

[
σ2
e

{
(1−Bi)2

ni
+

1

Ni − ni

}
+B2

i σ
2
u +

b21B
2
i σ

2
η

ni

]
,

while the NAI estimator gives

MSPE(γ̂PB
iNAI) = f2i

[
σ2
e

{
(1−Bi)2

ni
+

1

Ni − ni

}
+B2

i σ
2
u

]
.

Similarly, the MSPE(γ̂PB
iDRT) can be obtained from the equation (2.5) of DRT given by

MSPE(γ̂PB
iDRT) =

f2i σ
2
e(1−Ai)
ni

+
1

Ni
fiσ

2
e ,

where Ai = σ2
e/(σ

2
e + niσ

2
u + b21σ

2
η).

Table 1 reports the values of MSPE(γ̂PB
i ) based on the James-Stein estimator given by (12),

and the estimators based on the DRT and GS methods. The relative efficiency of γ̂PB
iJS over γ̂PB

iDRT,
defined by MSPE(γ̂PB

iDRT)/MSPE(γ̂PB
iJS), ranged from 93.90% to 193.15%, and the relative effi-

ciency of γ̂PB
iJS over γ̂PB

iGS ranged from 102.43% to 312.33%. In particular, our results confirm that
in small areas with a very small number of samples, the James-Stein estimator is more efficient
than the corresponding estimators based on the GS and DRT methods. One can also notice that
the NAI method results in the smallest values of MSPE(γ̂PB), however, as we show in Section
5.2, the EMSPE and the relative bias associated with this method are the largest ones among
all methods considered in this paper. This is because the NAI method does not account for the
measurement errors in the auxiliary variables (see Section 5.2 for more details).

The James-Stein estimator dominates the ML estimator in terms of the sum of the weighted
MSPE, that is,

m∑
i=1

WiE(γ̂PB
iJS − γi)2 ≤

m∑
i=1

WiE(γ̂PB
iDRT − γi)2,

with different weighting schemes as presented in Table 2. It means that although the MSPE(γ̂PB
iJS)

in some areas is slightly greater than the corresponding MSPE(γ̂PB
iDRT) which is based on the ML

estimates of xi’s, however, the sum of the weighted MSPE(γ̂PB
iJS) is smaller than the correspond-

ing sum of the weighted MSPE(γ̂PB
iDRT).
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TABLE 1: : Numerical values of the MSPE of γ̂PB
iGS, γ̂PB

iJS and γ̂PB
iDRT and the empirical MSPE of γ̂PEB

iGS , γ̂PEB
iJS , γ̂PEB

iDRT and γ̂PEB
iNAI

MSPE EMSPE

Area ni γ̂PB
iGS γ̂PB

iJS γ̂PB
iDRT γ̂PB

iNAI γ̂PEB
iGS γ̂PEB

iJS γ̂PEB
iDRT γ̂PEB

iNAI

1 1 86.58 27.72 53.54 15.21 204.50 30.79 60.29 42.63

2 5 14.86 12.46 12.74 8.93 49.44 13.92 15.27 14.02

3 1 86.58 27.72 53.54 15.21 185.36 30.16 56.97 41.33

4 2 40.18 21.71 28.30 12.62 89.90 24.65 32.89 26.31

5 4 18.79 14.04 15.41 9.86 52.38 15.40 18.07 15.73

6 3 25.65 14.43 19.76 11.04 54.59 16.51 22.22 17.82

7 1 86.58 30.47 53.54 15.21 196.91 33.20 60.72 43.54

8 3 25.65 14.97 19.76 11.04 55.05 16.88 22.10 17.98

9 2 40.18 17.56 28.30 12.62 85.08 20.35 32.04 23.73

10 3 25.65 17.00 19.76 11.04 74.50 19.13 23.32 19.86

11 2 40.18 25.59 28.30 12.62 120.66 26.55 31.87 26.73

12 1 86.58 27.72 53.54 15.21 182.17 30.77 59.18 41.13

13 6 12.33 11.19 10.93 8.17 55.20 12.48 13.32 12.71

14 7 10.58 8.97 9.60 7.53 31.04 10.20 11.20 10.34

15 8 9.29 9.07 8.59 6.98 50.56 10.10 10.70 10.37

16 4 18.79 14.74 15.41 9.86 64.02 16.29 17.82 16.29

17 5 14.86 10.93 12.74 8.93 37.31 12.60 14.60 12.92

18 6 12.33 11.64 10.93 8.17 57.54 12.94 13.59 13.06

19 7 10.58 9.86 9.60 7.53 50.77 10.77 11.52 11.05

20 8 9.29 8.05 8.59 6.98 24.68 9.16 9.84 9.26

As indicated in (10), the James-Stein estimator employs the information from the data in two
ways. First, it combines the information in X̄i and ȳi (i = 1, . . . ,m), called Z̄∗i . Then, it uses
the information of all areas to estimate each area covariate, xiJS (i = 1, . . . ,m). This method
improves the GS and the naive estimator in terms of combining the information of X̄i and ȳi
(i = 1, . . . ,m). It also has an advantage over the DRT estimator as it utilizes the information of
the whole dataset to estimate the specific area covariate.

5.2. Simulation Study
In this section, we conduct a simulation study to evaluate the performance of the new PEB pre-
dictor, γ̂PEB

iJS . To this end, we first compute γ(r)i ’s based on the small area populations in the rth
iteration. Then, we find γ̂PEB(r)

iJS , γ̂PEB(r)
iGS , γ̂PEB(r)

iDRT , and γ̂PEB(r)
iNAI from the sample units. In order

to find the pseudo-empirical Bayes, model parameters are also estimated using the consistent
estimators defined in Section 3. Table 3 shows the model parameters estimates and their cor-
responding biases and mean squared errors (MSE). The empirical MSPE of γ̂PEB

i for different
methods (γ̂PEB

iJS , γ̂PEB
iGS , γ̂PEB

iDRT, and γ̂PEB
iNAI) is defined as

EMSPE(γ̂PEB
i ) =

1

R

R∑
r=1

(γ̂
PEB(r)
i − γ(r)i )2.
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TABLE 2: : Numerical values of the weighted MSPE of γ̂PB
GS , γ̂PB

JS , γ̂PB
DRT, and γ̂PB

NAI and the weighted EMSPE of γ̂PEB
GS , γ̂PEB

JS , γ̂PEB
DRT, and

γ̂PEB
NAI for different weight schemes

Weighted MSPE Weighted EMSPE

Weighting Schemes γ̂PB
GS γ̂PB

JS γ̂PB
DRT γ̂PB

NAI Weighting Schemes γ̂PEB
GS γ̂PEB

JS γ̂PEB
DRT γ̂PEB

NAI

Wi =
1/(σ2

u+
σ2
e
Ni

)

∑
i 1/(σ2

u+
σ2
e
Ni

)

32.76 16.54 23.06 10.64 Wi =
1/(σ̂2

u+
σ̂2
e
Ni

)

∑
i 1/(σ̂2

u+
σ̂2
e
Ni

)

83.78 18.33 26.15 20.87

Wi =
Ni∑
i Ni

19.77 12.92 15.38 9.10 Wi =
Ni∑
i Ni

59.03 14.41 17.87 15.36

Wi =
1
m

33.78 16.79 23.64 10.74 Wi =
1
m

86.08 18.64 26.88 21.34

Wi =
1/σ2

0i∑
i 1/σ2

0i
20.96 13.29 16.11 9.27 Wi =

1/σ̂2
0i∑

i 1/σ̂2
0i

63.15 15.17 19.32 16.35

In addition, we decompose EMSPE(γ̂PEB
i ) as

EMSPE(γ̂PEB
i ) = M1i +M2i + 2M3i,

where

M1i =
1

R

R∑
r=1

(γ̂
PB(r)
i − γ(r)i )2,M2i =

1

R

R∑
r=1

(γ̂
PEB(r)
i − γ̂PB(r)

i )2,

and

M3i =
1

R1

R∑
r=1

(γ̂
PB(r)
i − γ(r)i )(γ̂

PEB(r)
i − γ̂PB(r)

i ).

Table 1 gives the empirical MSPE of the PEB predictors. One can easily observe that the
James-Stein predictor outperforms other methods in most areas. The relative efficiency of the
PEB based on the James-Stein estimator over its counterpart based on the ML estimator ranges
from 105.06% to 195.78%. Also, the relative efficiency of the PEB based on the James-Stein
estimator over the PEB based on the method of moments ranges from 269.60% to 664.11%.
Finally, the relative efficiency of the PEB based on the James-Stein estimator over the NAI esti-
mator ranges from 100.00% to 138.44%. Table 2 gives the corresponding values of the weighted
EMSPE of PEB predictors for different weight schemes.

TABLE 3: : The estimated values of the parameters and their corresponding biases and MSEs

b0 b1 σ2
e σ2

u σ2
η

Parameter Estimate -356.65 4.34 100.21 13.83 24.92

Bias 564.92 2.90 14.81 14.01 3.70

MSE 290057746.75 7609.13 346.54 283.31 21.77

As we discussed in Section 4, the jackknife estimator of MSPE(γ̂PEB
i ) is nearly unbiased if

M3i ≈ 0 (i = 1, . . . ,m). Table 4 gives the decomposition of the EMSPE for the James-Stein,
DRT, GS and NAI predictors. The James-Stein approach gives relatively small values of M3i

compared to the GS and the NAI predictors, and it is similar to the DRT predictor.
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We have also studied the performance of the weighted and unweighted jackknife estimators
of MSPE(γ̂PEB

i ), denoted by mspewJ and mspeJ , of the proposed PEB predictor, γ̂PEB
iJS , and

similar estimators for DRT, GS and NAI methods. The relative bias (RB) of MSPE estimators,
mspe, is given by

RB =
E(mspe)

EMSPE
− 1,

where for example to calculate the RB of the weighted jackknife estimation of MSPE(γ̂PEB
iJS ) for

area i we have

E(mspe) =
1

R

R∑
r=1

mspe
(r)
iwJ(γ̂

PEB
iwJS).

Table 5 presents the RB of the weighted and unweighted jackknife estimators of MSPE(γ̂PEB
i )

for GS, the James-Stein, DRT, and the naive predictors. The absolute value of the RB of the
weighted and unweighted jackknife estimators of MSPE(γ̂PEB

iJS ) is less than 12% for all areas.
On the other hand, the absolute value of the RB of the weighted and unweighted jackknife
estimators of MSPE(γ̂PEB

iDRT) is less than 15% for all areas while the NAI estimators result in the
larger RBs. Interestingly, based on our simulation studies, weighted and unweighted jackknife
methods perform very similar in terms of the RB.

TABLE 4: : The values of the components of the EMSPE of γ̂PEB
GS , γ̂PEB

JS , γ̂PEB
DRT, and γ̂PEB

NAI

Area ni M1GS M2GS M3GS M1JS M2JS M3JS M1DRT M2DRT M3DRT M1NAI M2NAI M3NAI

1 1 88.58 92.54 11.69 27.94 3.64 -0.39 54.76 6.42 -0.44 88.61 30.43 -38.20

2 5 15.16 32.67 0.81 12.67 2.30 -0.52 12.90 2.33 0.02 15.15 7.37 -4.25

3 1 87.42 79.37 9.29 28.15 3.25 -0.62 53.25 5.80 -1.04 87.47 29.05 -37.60

4 2 40.38 44.51 2.50 22.81 3.31 -0.73 28.89 4.04 -0.02 40.39 17.77 -15.92

5 4 18.65 30.72 1.50 13.88 2.30 -0.39 15.31 2.39 0.19 18.63 8.32 -5.61

6 3 26.16 22.61 2.91 14.59 1.90 0.01 19.86 2.10 0.13 26.13 10.08 -9.19

7 1 89.57 88.73 9.30 31.21 3.72 -0.87 54.78 6.45 -0.26 89.64 31.69 -38.89

8 3 25.58 24.01 2.73 14.97 2.07 -0.08 19.63 2.31 0.08 25.60 10.43 -9.02

9 2 39.91 36.02 4.58 17.87 2.56 -0.04 28.42 3.23 0.19 39.92 15.48 -15.83

10 3 26.24 40.16 4.05 17.41 2.67 -0.47 20.18 2.88 0.13 26.23 11.34 -8.86

11 2 39.40 76.02 2.62 25.24 3.84 -1.26 27.36 4.60 -0.04 39.47 18.86 -15.80

12 1 85.91 78.02 9.12 28.53 3.58 -0.68 53.07 6.63 -0.26 85.83 30.53 -37.61

13 6 12.30 42.94 -0.03 11.18 2.25 -0.48 10.86 2.28 0.09 12.30 6.36 -2.97

14 7 10.58 18.52 0.97 8.99 1.35 -0.07 9.58 1.38 0.12 10.58 3.98 -2.11

15 8 9.17 42.12 -0.37 9.00 1.97 -0.43 8.50 2.06 0.07 9.17 4.59 -1.70

16 4 18.42 42.53 1.53 14.74 2.51 -0.48 15.01 2.61 0.10 18.39 9.29 -5.70

17 5 14.55 19.12 1.82 11.08 1.53 -0.01 12.75 1.60 0.13 14.56 5.53 -3.59

18 6 12.50 45.59 -0.28 11.81 2.43 -0.65 11.02 2.51 0.03 12.48 6.64 -3.03

19 7 10.18 40.34 0.13 9.60 2.03 -0.43 9.17 2.07 0.14 10.18 5.08 -2.10

20 8 9.11 13.99 0.79 8.04 1.15 -0.02 8.53 1.17 0.07 9.10 3.14 -1.49
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TABLE 5: : Percent relative bias of the jackknife estimators of MSPE and the bias of different PEB estimators of the γi’s

Relative Bias of mspe(γ̂i) Bias of γ̂i
Area ni GSw GSuw JSw JSuw DRTw DRTuw NAIw NAIuw GS JS DRT NAI

1 1 –683.51 -684.50 -7.18 -6.74 7.68 7.16 -12.18 -11.69 9.46 4.44 6.10 5.18

2 5 204.20 204.35 4.01 4.17 7.71 7.78 17.32 17.58 4.63 2.98 3.12 2.98

3 1 -713.26 -713.66 -6.17 -5.74 14.13 13.59 -9.90 -9.46 9.20 4.40 5.94 5.09

4 2 -579.42 -581.18 -5.63 -5.45 6.25 5.94 5.45 5.73 6.62 3.98 4.57 4.10

5 4 -60.77 -62.44 4.28 4.44 7.26 7.18 19.17 19.41 4.98 3.13 3.36 3.15

6 3 -1069.78 -1071.91 6.11 6.38 6.48 6.18 21.59 21.80 5.35 3.23 3.75 3.37

7 1 -478.40 -480.36 -11.48 -11.11 8.12 7.59 -13.37 -12.95 9.54 4.62 6.17 5.27

8 3 -1119.88 -1122.37 5.32 5.58 7.87 7.59 20.87 21.10 5.34 3.27 3.74 3.37

9 2 -772.00 -774.38 5.64 5.95 6.38 5.98 13.66 13.89 6.44 3.59 4.51 3.89

10 3 -308.56 -310.60 -0.81 -0.65 5.88 5.71 12.62 12.85 5.74 3.50 3.84 3.56

11 2 36.61 35.57 -6.33 -6.22 12.94 12.70 6.24 6.57 6.93 4.15 4.47 4.14

12 1 -525.68 -526.03 -6.82 -6.40 10.13 9.59 -9.12 -8.70 9.32 4.44 6.09 5.11

13 6 1572.66 1572.53 6.54 6.70 10.38 10.58 16.70 16.96 4.52 2.80 2.89 2.84

14 7 -207.99 -208.51 7.21 7.46 7.78 7.81 21.40 21.58 3.78 2.56 2.67 2.58

15 8 1846.38 1849.17 11.21 11.48 12.28 12.73 18.63 19.00 4.08 2.54 2.62 2.57

16 4 371.57 371.88 1.62 1.76 10.47 10.44 16.87 17.13 5.04 3.24 3.36 3.24

17 5 -669.14 -671.01 3.91 4.16 5.53 5.40 21.84 22.02 4.30 2.84 3.06 2.87

18 6 1121.81 1123.59 5.78 5.94 9.81 10.09 15.51 15.85 4.62 2.87 2.93 2.89

19 7 1008.16 1007.53 11.37 11.58 13.37 13.58 20.22 20.45 4.26 2.60 2.70 2.64

20 8 -371.06 -372.12 6.66 6.95 7.81 7.89 21.12 21.31 3.48 2.41 2.50 2.43

Table 5 also shows the empirical bias of the different PEB predictors. The PEB predictors
based on the James-Stein estimate of the true area covariate is approximately equal to the bias
of the NAI estimator. DRT and GS have larger biases in estimating the MSPE(γ̂i). Figure 1
illustrates the EMSPE and bias of the different PEB predictors.

6. APPLICATION

In this section, we apply the proposed approach using a cross sectional study in New Zealand to
predict the diastolic blood pressure using the cholesterol level. The data frame contains 10529
observations on 58 variables including age, sex, height, weight, and education. In this study we
focus on 222 Maori or Asian female observations. This dataset is available as xs.nz in the
VGAMdata package in R.
To apply our proposed methodology, we first group the underlying population (i.e., the female)
based on the age (16-32, 32-42, 42-52, and 52-88), Body Mass Index (BMI) (12.80-23.53, 23.53-
25.86, 25.86-28.68, 28.68-88.43), ethnic (Maori or Asian), and smoking status (0 or 1). This
results in 43 small areas with the number of samples in areas, denoted by ni, i = 1, . . . , 43,
ranges from 0 to 15, with 3 areas having no samples. We assume the sampling error of the
covariate in each small area to be negligible in comparison with the measurement error and this
seems to be a reasonable assumption due to our refine grouping. Hence, we consider the xi’s as
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FIGURE 1: : EMSPE and bias of γ̂PEB
iJS (dashed line), γ̂PEB

iDRT (solid line) and γ̂PEB
iNAI (dot line) for the different areas

the true mean of the cholesterol level in each area. The idea is to predict the average diastolic
blood pressure in each area assuming that the cholesterol level of each individual is measured
with error. To model this measurement error problem, the cholesterol levels of individuals in each
area are assumed to be close to the average cholesterol level of the corresponding area with some
error. It is worth noting that one can also use the data set to predict the diastolic blood pressure of
each individual, however this is not of general interest in the context of the small area estimation
and the problem will be studied in a separate work. Figure 2 shows the diastolic blood pressure
versus the cholesterol level. We use equations (1) and (2) to model the data where Xij is the
observed value of the cholesterol level and Yij is the diastolic blood pressure for the j’th person
in the i’th small area.
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FIGURE 2: : Diastolic Blood Pressure versus Cholesterol
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Using the method of moments, we get b̂0 = 24.62, b̂1 = 9.86, σ̂2
e = 93.39, σ̂2

u = 26.07, and
σ̂2
η = 0.97. In this data setXij’s vary from 2 to 10 while Yij’s vary from 40 to 100. The estimated

values of the diastolic blood pressure means, γ̂i, using different approaches are given in Figure
3.

FIGURE 3: : � , , • . . . , and # . are corresponding to γ̂PEB
iJS , γ̂PEB

NAIVE, γ̂PEB
GS , and γ̂PEB

DRT

For the small areas with no sample units, we use γ̂PEB
iDRT = b̂0 as the DRT estimate of the true

area covariate does not exist. The same will be used for γ̂PEB
iGS , while for the James-Stein method,

a natural estimator is γ̂PEB
iJS = b̂0 + b̂1x̂iJS. We get γ̂PEB

iJS = 74.54 for areas with no sample units.
Finally, Figure 4 presents the weighted and unweighted jackknife estimates of MSPE(γ̂PEB

i ) for
different methods.

FIGURE 4: : � , , • . . . , and # . are corresponding to γ̂PEB
iJS , γ̂PEB

NAIVE, γ̂PEB
GS , and γ̂PEB

DRT

Based on our result, there are areas with the high diastolic blood pressure. These areas belong
to areas with overweight women. The smoking status does not have a significant effect on the
diastolic blood pressure, while Age is also an influential factor as older women with larger BMI
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suffer more from the high diastolic blood pressure.

7. CONCLUSION

In this paper, we obtained a new pseudo-empirical Bayes (PEB) predictors of small area means
based on the James-Stein estimate of the true area-specific covariate for a unit level regression
model with the functional measurement error. Our findings show that the James-Stein estimate
of the true covariate performs better than the PEB of γi based on the ML estimate and also
method of moment in terms of the weighted and unweighted mean squared prediction error.
Specifically, if the range of the true area-specific covariate is small, the PEB based on the James-
Stein performs very well which can be easily justified using the structure of the James-Stein
estimator. We performed several simulation studies (not shown here) and observed that the PEB
predictor based on the James-Stein estimate always dominates the corresponding PEB predictors
(GS and DRT) in terms of MSPE(γ̂PEB

i ) in small areas with one sample unit even if the range of
the true area-specific covariate is large. In addition, the James-Stein method results in a predictor
of the small area means for areas with no samples while at least one sampled unit is required to
construct γ̂PEB

iGS and γ̂PEB
iDRT, respectively.

We used the jackknife method to get weighted and unweighted jackknife estimators of
MSPE(γ̂PEB

iJS ). Our simulation results showed that these estimates perform well in terms of the
relative bias of mspe(γ̂PEB

iJS ). Also, in our simulation studies (not shown here) we observed that
the jackknife estimation of the MSPE has a large variance. Thus, we suggest to use this method
with caution. This is specially important if one uses other measures of performance for the jack-
knife estimators such as the coefficient of variation. It is worth mentioning that, although the
weighted and unweighted jackknife estimators of the MSPE have almost the same performance
in terms of RB, we suggest using the weighted jackknife method as it results in a smaller vari-
ance. Further, using the result obtained from the simulation studies, the larger the sample size is
in an area, the more similar performance different PEB’s show. But, the total number of the areas
does not have significant effect on the MSPE or EMSPE of the PEB predictors. Based on our
simulation studies, we observed that the estimates of the model parameters using the method of
moments (Ghosh and Sinha, 2007) do not perform well.
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Proof of Theorem 1. Straightforward calculation shows that

1

m

m∑
i=1

E
(
γ̂PEB
iJS − γ̂PB

iJS

)2
=

1

m

m∑
i=1

E
(
fi(Bi − B̂i)(ȳi − b0 − b1xiJS)− fiB̂i(b0 + b1xiJS) + fiB̂i(̂b0 + b̂1x̂iJS)

)2
=

1

m

m∑
i=1

E
(
fi(Bi − B̂i)(ȳi − b0 − b1xi − b1(xiJS − xi)

+fiB̂i((̂b0 − b0) + (̂b1 − b1)x̂iJS + b1(x̂iJS − xiJS))
)2

≤ 5

m

m∑
i=1

E
(
f2i (Bi − B̂i)2(ȳi − b0 − b1xi)2 + f2i (Bi − B̂i)2b21(xiJS − xi)2

+f2i B̂
2
i (̂b0 − b0)2 + f2i B̂

2
i (̂b1 − b1)2x̂2iJS + f2i B̂

2
i b

2
1(x̂iJS − xiJS)2

)
≤ 5

m

m∑
i=1

E
(

(Bi − B̂i)2(ȳi − b0 − b1xi)2 + (Bi − B̂i)2b21(xiJS − xi)2

+(̂b0 − b0)2 + (̂b1 − b1)2x̂2iJS + b21(x̂iJS − xiJS)2
)
. (1)

The first inequality is due to the well-known partial sums moment inequality (e.g., DasGupta,
2008)

E|
n∑
i=1

Xi|p ≤ np−1
n∑
i=1

E|Xi|p, p > 1, (2)

while the second inequality follows from fi ≤ 1 and B̂i ≤ 1, i = 1, . . . ,m. Under the assump-
tion (13) and the consistency of σ̂2

u and σ̂2
e , we have

|Bi − B̂i| =
∣∣∣∣ σ2

e

σ2
e + niσ2

u

− σ̂2
e

σ̂2
e + niσ̂2

u

∣∣∣∣
=

∣∣∣∣ni(σ̂2
u(σe − σ̂2

e) + σ̂2
e(σ̂2

u − σ2
u))

(σ2
e + niσ2

u)(σ̂2
e + niσ̂2

u)

∣∣∣∣
≤ k0
σ2
e + σ2

u

(|σ̂2
e − σ2

e |+ |σ̂2
u − σ2

u|)→ 0, asm→∞. (3)

Thus

max
1≤i≤m

|Bi − B̂i|2 → 0, as m→∞. (4)
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In addition,

max
1≤i≤m

|Bi − B̂i| ≤
k0

σ2
e + σ2

u

(σ̂2
e + σ2

e + σ̂2
u + σ2

u)

≤ k0 +
k0

σ2
e + σ2

u

(MSBy + MSWy). (5)

Furthermore,

m−1
m∑
i=1

E(ȳi − b0 − b1xi)2 = m−1
m∑
i=1

(σ2
u +

σ2
e

ni
)

≤ σ2
u + σ2

e = O(1). (6)

Also,

1

m

m∑
i=1

|Bi − B̂i|2(ȳi − b0 − b1xi)2 ≤ max
1≤i≤m

|Bi − B̂i|2
1

m

m∑
i=1

(ȳi − b0 − b1xi)2. (7)

Now, from (4) and (6), we have

1

m

m∑
i=1

|Bi − B̂i|2(ȳi − b0 − b1xi)2
p→ 0 as m→∞. (8)

To use the Dominated Convergence Theorem (DCT), first note that by using (7), (2) and the
Cauchy-Schwarz inequality, we obtain

E

[
1

m

m∑
i=1

|Bi − B̂i|2(ȳi − b0 − b1xi)2
]

≤ E

[
max

1≤i≤m
|Bi − B̂i|2

1

m

m∑
i=1

(ȳi − b0 − b1xi)2
]

≤

√√√√E

(
max

1≤i≤m
|Bi − B̂i|2

)2

E

(
1

m

m∑
i=1

(ȳi − b0 − b1xi)2
)2

≤

√√√√E

(
max

1≤i≤m
|Bi − B̂i|

)4

E

(
1

m

m∑
i=1

(ȳi − b0 − b1xi)4
)
. (9)

Also,

E

(
1

m

m∑
i=1

(ȳi − b0 − b1xi)4
)

= 3
1

m

m∑
i=1

(σ2
u +

σ2
e

ni
)2

≤ 3(σ2
u + σ2

e)2 = O(1). (10)
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As (5) shows E
(

max1≤i≤m |Bi − B̂i|
)4

is integrable. Therefore

E

(
1

m

m∑
i=1

|Bi − B̂i|2(ȳi − b0 − b1xi)2
)
→ 0, as m→∞.

In the next step, we show

1

m

m∑
i=1

E
[
(Bi − B̂i)2(xiJS − xi)2

]
→ 0, as m→∞. (11)

By using the Cauchy-Schwarz inequality and (5), we show that

1

m

m∑
i=1

E(xiJS − xi)4 (12)

is finite. To this end, since xiJS, 1 ≤ i ≤ m, follows a normal distribution, we have

E(x4iJS) <∞, 1 ≤ i ≤ m. (13)

Also, (12) is finite from (2). Now using DCT, (11) follows easily.
To show E(̂b0 − b0)2 → 0, as m→∞, we first write

E(̂b0 − b0)2 = E
[
var(̂b0|X) + (E(̂b0|X)− b0)2

]
. (14)

Note that

var(̂b0|X) = var(ȳ − b̂1X̄|X)

= var(ȳ) + var(̂b1|X)X̄2 − 2X̄cov(ȳ, b̂1|X)

=

∑m
i=1 ni(σ

2
e + niσ

2
u)

n2T
+ var(̂b1|X)X̄2 − 2X̄

MSBx
MSBx −MSWx

∑m
i=1 n

2
i (X̄i − X̄)var(ȳi)

nT (m− 1)MSBx

≤ σ2
e + k0σ

2
u

nT
+ var(̂b1|X)X̄2 − 2

X̄
∑m
i=1 ni(X̄i − X̄)(σ2

e + niσ
2
u)

(MSBx −MSWx)(m− 1)nT
, (15)

where X is the vector of covariates with measurement error. Ghosh and Sinha (2007) showed
that

var(̂b1|X) ≤ σ2
e + k0σ

2
u

m− 1

MSBx
(MSBx −MSWx)2

(16)

By (15) and (16), we have var(̂b0|X) = O(m−1). Noting that

E

(
σ2
e + k0σ

2
u

m− 1

MSBx
(MSBx −MSWx)2

+
σ2
e + k0σ

2
u

nT
− 2

X̄
∑m
i=1 ni(X̄i − X̄)(σ2

e + niσ
2
u)

(MSBx −MSWx)(m− 1)nT

)
,

is finite, we have

E(var(̂b0|X))→ 0, asm→∞. (17)
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Using orthogonal transformation introduced by Ghosh and Sinha (2007),

E(E(̂b0|X)− b0)2 = E(E(ȳ)− E(̂b1|X)X̄ − b0)2

= E

(
b0 + b1x̄− b1X̄

∑m
i=1 niX̄i(xi − x̄)

(m− 1)(MSBx −MSWx)
− b0

)2

= b21E

(
x̄−

∑m
i=1 niX̄i(xi − x̄)

(m− 1)(MSBx −MSWx)
X̄

)2

= b21E

(
x̄−

Z1Z2(
∑m
i=1 ni(xi − x̄)2)

1
2

(m− 1)(MSBx −MSWx)

√
nT

)2

, (18)

where (Z1, Z2, . . . , Zm)> = C(
√
n1X̄1, . . . ,

√
nmX̄m)>, and C is an orthogonal matrix with

first two rows given by

(√
n1
nT

, . . . ,

√
nm
nT

)
,

and

( √
n1(x1 − x̄)√∑
ni(xi − x̄)2

, . . . ,

√
nm(xm − x̄)√∑
ni(xi − x̄)2

)
.

Moreover,

x̄−
Z1Z2(

∑m
i=1 ni(xi − x̄)2)

1
2

(m− 1)(MSBx −MSWx)

√
nT −→ 0,

as m→∞. Under (13), Z2√
m−1 →

√
c, MSBx −MSWx → c and X̄→ x̄. Similar to Ghosh and

Sinha (2007), under the uniform integrability argument, E(E(̂b0|X)− b0)2 → 0.
Next, we need to show that E((̂b1 − b1)2 1

m

∑m
i=1 x̂

2
iJS)→ 0 as m→∞. Using the Cauchy-

Schwarz inequality, we have

E((̂b1 − b1)2
1

m

m∑
i=1

x̂2iJS) ≤

√√√√E(̂b1 − b1)4E

(
1

m

m∑
i=1

x̂2iJS

)2

(19)

≤

√√√√E(̂b1 − b1)4E

(
1

m

m∑
i=1

x̂4iJS

)
, by Cr inequality. (20)
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Moreover,

(̂b1 − b1)4 =

(
MSBx

MSBx −MSWx

∑m
i=1 niȳi(X̄i − X̄)∑m
i=1 ni(X̄i − X̄)2

− b1
)4

≤

(
1

(m− 1)(MSBx −MSWx)

m∑
i=1

niȳi(X̄i − X̄)− b1

)4

≤ 8

( 1

(m− 1)(MSBx −MSWx)

m∑
i=1

niȳi(X̄i − X̄)

)4

+ b41

 . (21)

Again, by the Cauchy-Schwarz inequality for integration and (21) we get

E

(
1

(m− 1)(MSBx −MSWx)

m∑
i=1

niȳi(X̄i − X̄)

)4

≤

√
E

(
1

MSBx −MSWx

)8

E

(∑m
i=1 niȳi(X̄i − X̄)

(m− 1)

)8

. (22)

By (2) and independency of ȳi and (X̄i − X̄), we have

1

(m− 1)8
E

(
m∑
i=1

niȳi(X̄i − X̄)

)8

≤ m7

(m− 1)8

m∑
i=1

E
(
n8i ȳ

8
i (X̄i − X̄)8

)
≤ k80m

7

(m− 1)8

m∑
i=1

E
(
ȳ8i
)

E
(
X̄i − X̄

)8
<∞.

The last inequality is due to the fact that ȳi and X̄i − X̄ follow the normal distribution. Be-

cause
1

(MSBx −MSWx)8
p→ 1

c8
, as m→∞, similar to Ghosh and Sinha (2007),

E

(
1

(MSBx −MSWx)8

)
→ 1

c8

as m→∞, under the uniform integrability argument. Therefore, (22) is finite, and DCT implies
E(̂b1 − b1)4 → 0. If E( 1

m

∑m
i=1 x̂iJS)4 <∞, then E((̂b1 − b1)2 1

m

∑m
i=1 x̂

2
iJS)→ 0. Note that

x̂4iJS = (Ĉi
̂̄Z∗ + (1− Ĉi) ̂̄Z∗i )4

≤ 8(Ĉ4
i
̂̄Z∗4 + (1− Ĉi)4 ̂̄Z∗4i ), by Cr inequality. (23)

As 0 ≤ Ci ≤ 1, i = 1, . . . ,m, one can easily show that

̂̄Z∗4i ≤ 8(X̄4
i + (ȳi − (ȳ − b̂1(X̄i − X̄)))4)

≤ 8X̄4
i + 216(ȳ4i + ȳ4 + b̂41(X̄i − X̄)4), by Cr inequality. (24)
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Using the Cauchy-Schwarz inequality for the expectation and similar to (22), E(̂b81) <∞. Thus,

E( ̂̄Z∗4i ) <∞. In addition, E( ̂̄Z∗pi ) <∞, for p = 1, 2, 3. Also, we have

̂̄Z∗4 =
(
∑m
i=1

̂̄Z∗i /(σ̂2
0i + τ̂2))4

(
∑m
i=1 1/(σ̂2

0i + τ̂2))4

=

∑m
i=1

∑m
j=1

∑m
k=1

∑m
l=1 ω̂ijkl

̂̄Z∗i ̂̄Z∗j ̂̄Z∗k ̂̄Z∗l∑m
i=1

∑m
j=1

∑m
k=1

∑m
l=1 ω̂ijkl

, (25)

where ω̂ijkl = (σ̂2
0i + τ̂2)−1(σ̂2

0j + τ̂2)−1(σ̂2
0k + τ̂2)−1(σ̂2

0l + τ̂2)−1. Now, using (25), we can
easily observe that

E( ̂̄Z∗4) = E

∑m
i=1

∑m
j=1

∑m
k=1

∑m
l=1 ω̂ijkl

̂̄Z∗i ̂̄Z∗j ̂̄Z∗k ̂̄Z∗l∑m
i=1

∑m
j=1

∑m
k=1

∑m
l=1 ω̂ijkl


= E( max

1≤i≤m
̂̄Z∗i )4

≤ E( max
1≤i≤m

̂̄Z∗4i ).

From (24), we can simply find a bound for ̂̄Z∗4i , i = 1, . . . ,m. Therefore, noting that mean of
finite numbers is finite and using (2) and (23) gives

E

(
1

m

m∑
i=1

x̂iJS

)4

<∞. (26)

To prove the last part of (1), first, we claim x̂iJS
p→ xiJS as m→∞. Note that the method of

moments estimate of variance components gives consistent estimates of the parameter. Thus, it
remains to prove τ̂2 is a consistent estimator of τ2.

As Small and Yang (1999) pointed out, based on Crowder (1986), the estimating equations
always have one consistent root so, we need to show that (9) has a unique solution. Determining
the exact number of roots is not possible due to complicated mathematical form of (9). To this
end, we rely on numerical evaluations of (9) by plotting it for each run of the simulation. Numer-
ical studies with different dataset show that there exist only one positive root for this function.
Finally, using (2), we have

E

(
1

m

m∑
i=1

(x̂iJS − xiJS)2

)
≤ E

(
2

m

m∑
i=1

x̂4iJS

)
+ E

(
2

m

m∑
i=1

x4iJS

)
.

As xiJS’s are normally distributed, E( 2
m

∑m
i=1 x

4
iJS) <∞. By (26), E( 2

m

∑m
i=1 x̂

4
iJS) <∞. Now,

using DCT the result is obtained and this completes the proof.
�
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