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Summary

Finding reliable estimates of parameters of subpopulations (areas) in small area estimation studies is

an important problem especially when there exists few or no samples in some areas. Clustering small

areas based on the Euclidean distance between their corresponding covariates is proposed in order to get

smaller mean squared prediction error (MSPE) for the predicted values of small area means using the

area-level linear mixed models. To this end, we first propose a statistical test for an area-level data to

investigate the homogeneity of variance components among clusters. Then, we obtain the empirical best

linear unbiased predictor (EBLUP) of small area means by taking into account the difference between

variance components in different clusters. The performance of our proposed statistical test as well as the

effect of the clustering on the MSPE of small area means is studied using simulation studies. We also

obtain a second-order approximation to the MSPE of small area means and derive an estimator of MSPE

that is second order unbiased. The results show that the MSPE of small area means can be improved when

the variance components are different. The improvement in the MSPE is significant when the difference

between variance components is considerable. Finally, the proposed methodology is applied to a real

dataset.

Keywords: Combined clustering; Complete clustering; Empirical best linear unbiased predictor; Mean

squared prediction error; Simple clustering; Small area estimation.

1. Introduction

Consider a small area estimation problem where the ultimate goal is to predict area means with a

higher precision. Adding random effects into linear models reduces the bias of predictors of small
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area means while it increases their variability. It is a common practice in mixed-effect models to

assume homogenous random effects. However, there are many applications where such an assump-

tion is not valid, as the lurking variables affecting the response variable in different areas could

be different. In order to provide more realistic predictions of small area means, one might decide

to work with non-homogenous random effects. Recently, there has been several research in this

direction. For example, Maiti et al. (2011) considered the idea of clustering based on consequences

of differences between the covariate where they studied the effect of the poverty on the educational

performance of students in different school districts. In this application, small areas (school dis-

tricts) were clustered based on their poverty status and different regression models were assumed

for different clusters. Random effects of school districts belonging to the same cluster considered to

follow a Normal distribution with a different variance component due to the effect of socio-economic

status of families and areas on the students’ education.

In other works, Datta et al. (2011) and Datta and Mandal (2015) argued whether or not the

presence of the random effects in the small area estimation is necessary, especially, when the main

concern is the prediction of small area means. Datta et al. (2011) gave an example that showed

including random effects might not always be useful. In order to test how influential the presence

of the random effects in the area-level small area model is, they developed methodologies based on

frequentist approach. They also introduced a statistical test to decide whether the inclusion of the

random effect in the small area models is necessary. They concluded that including the random

effects in the model decreases the rate of convergence to the true value of the parameter in each

area. The decrease is significant specially when the sample size in areas, ni’s, are large. They

also pointed out that dropping the random effects can lead to more accurate point and/or interval

estimators, although the flexibility and adaptivity of the area-level (also called Fay-Herriot) model

might be lost. The disadvantage of this methodology is that the random effects will be eliminated

from all areas while it might be necessary to keep it for some areas. To address this issue, Datta and

Mandal (2015) had Bayesian view towards the presence of the random effects in the area-level small

area estimation. They implemented the spike and slab prior distribution for the random effect to

investigate whether it is necessary to include random effects in each small area. In particular, they

assumed that the random effects follow a non-degenerate and unique distribution with probability

p in the small area while it is absent from the modelling with probability 1 − p. Their method

addresses the disadvantage of the method proposed in Datta et al. (2011) and gives more flexibility
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to the area-level linear models.

Jiang and Nguyen (2012) considered heteroscedastic nested error regression model where they

treated each small area as a cluster with unknown sampling variance, σ2
ei, and unknown γ =

var(ui)/var(eij), where ui is the area-specific random effect, in order to give more flexibility to

small area models. Subsequently, they proposed some optimal method for the purpose of predic-

tion. Heterogeneity of the model proposed in Jiang and Nguyen (2012) is due to the heterogeneity

of the sampling variances and variance components in small areas while γ is assumed to be fixed.

Rigby and Stasinopoulos (2005) introduced generalized additive model for location, scale, and shape

(GAMLSS) in order to give more flexibility into modeling. GAMLSS defines different generalized

linear mixed models for different model parameters and uses the back-fitting algorithm to solve for

a proper model. Rigby and Stasinopoulos (2005) considered the same variance components for the

response variable. However, for the simplest case of the mean and the variance, GAMLSS does

not take into account the difference between variability of the response variable in clusters of small

areas.

In this work, we consider an area level model where we assume there is no access to unit level data

in areas (e.g., due to the confidentiality, etc.). The sampling variance is assumed to be known while

the variance of the random effects is unknown. As it is often the case, in observational studies,

there are different lurking variables in different clusters that affect the magnitude of random effects

and consequently, the bias of synthetic estimators. Clustering small areas with similar covariates in

terms of the Euclidean distance can be used to take into account the inherent differences between

areas and most likely increase the precision of the small area mean prediction. Note that this

inherent difference comes back to the features of small area and not covariates. There is also no

solid mathematical formula for the relationship between variance components and covariates (either

increase or decrease) in clusters.

We introduce clustering as a frequentist approach to give more flexibility to the Fay-Herriot model

while we do not omit random effects from small area means. Clustering small areas using the

hierarchical clustering technique based on the Euclidean distance between their corresponding co-

variates is proposed to construct different groups of small areas where inside each group, areas

are homogeneous and areas from different groups/clusters are non-homogenous. The idea comes

from the fact that in the regression analysis, when the covariates are close enough in terms of the
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Euclidean distance, we expect associated means of the response variable to be close. However, the

fluctuation around the regression line might be coming from different error sources due to differ-

ent lurking variables in clusters. The magnitude of these fluctuations might also differ. As an

example, consider evaluating the effect of the body mass index (BMI) on the waste circumference

for different groups based on age, sex, poverty, education and ethnicity. Here, it is reasonable to

expect small areas that are similar in terms of the Euclidean distance between their covariates show

similar pattern in terms of the random effects. Obviously, the trend of accumulating body fat for

underweight and obese people is different. So, one can easily consider different variance components

for different clusters. We start with an assumption that the random effect in each cluster follows a

Normal distribution with a different variance component to give more flexibility to the behaviour

of the random effects. We introduce a test statistic to test the null hypothesis of the equality of

variance components of the Normal distributions. If the null hypothesis is rejected, we implement

a modified version of Tukey’s method (Tukey, 1949) to combine some clusters. We assess the effect

of different distributions of random effects on the precision of small area means predictors using

the mean squared prediction error (MSPE) and study situations where the proposed methodology

results in more reliable predictors of small area means.

The outline of the paper is as follows. In Section 2, we review the general area-level model and study

clustering in small area estimation. In Section 3, we introduce a test statistic in order to evaluate

the assumption of homogeneity of variance components and prove some of its properties. Moreover,

we show how a modification of Tukey’s method can be used to combine some clusters. Using the

new distributional form of the random effects, we find the empirical best linear unbiased predictor

(EBLUP) of small area means in Section 4. We also obtain an approximation to the MSPE of the

EBLUP and derive an unbiased estimator of the MSPE up to a second order of approximation.

In Section 5, a real dataset is analyzed. Implementing the simulation studies, we evaluate the

performance of our proposed test statistic under different scenarios in Section 6. The precision of

our proposed approach in predicting small area means in terms of the MSPE is also assessed in this

section. In addition, we study the relative bias (RB) of the estimator of MSPE. Finally, we give

some concluding remarks in Section 7.
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2. Complete Clustering Approach in Area-Level Small Area

Model

Consider the following area-level regression model

yi = Xiβ + ui + ei, i = 1, . . . ,m, (2.1)

where yi is the variable of interest, Xi = (1,Xi1,Xi2, . . . ,Xip) is the vector of covariates, β =

(β0, β1, . . . , βp) is the vector of regression coefficients, m, ui’s, and ei’s are the number of areas,

the area-level random effects, and the random errors, respectively. Also, assume that ui’s are in-

dependent and identically distributed (i.i.d) from a N(0, σ2
u)-distribution, and ei’s are independent

with ei ∼ N(0,Di), where Di’s are all known and σ2
u is unknown. We assume that there is no sample

selection bias and the sampling design is not informative (Fay and Herriot, 1979; Pfeffermann and

Sverchkov, 2005, 2007).

Random effects ui’s in model (2.1) explain the lack of information provided by covariates about

small area means, θi = Xiβ + ui, for i = 1, . . . ,m. In (2.1), it is usually assumed that the variance

component, σ2
u, is the same for all areas. The magnitude of the random effect part, ui, depends on

how good the covariates explain small area means. In many applications, however, one might expect

random effects for areas with similar covariates in terms of the Euclidian distance, ∣∣Xi − Xj ∣∣2 =
√
∑
p
t=1(Xit −Xjt)

2, to show similar behaviour compared with random effects associated with other

areas. This motivates to use clustering to form different groups that contain similar small areas. So,

using the hierarchical clustering approach, we put small areas into different clusters, Cl, l = 1, . . . , k,

such that each cluster contains the most similar small areas in terms of the Euclidian distance

between the values of their corresponding covariates. In this paper, we also suggest to use a

different variance component, σ2
ul

, for l = 1, . . . , k, in different clusters. In other words, we assume

that ujl
i.i.d
∼ N(0, σ2

ul
) for jl ∈ Cl, the l’th cluster, and jl = 1, . . . , ncl , where ncl is the number of small

areas in the l’th cluster. Under this setting, model (2.1) can be represented as follows

yjl = Xjlβ + ujl + ejl , jl = 1, . . . , ncl , l = 1, . . . , k, (2.2)

where yjl and Xjl are the response variable and the covariate vector associated with the j’th element

in the l’th cluster, respectively. Also, ejl ∼ N(0,Djl) with known Djl ’s. Throughout the paper, we

call this the complete clustering approach where an optimal number of clusters, say k, is chosen
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such that there is no more significant changes in the distance between clusters for k∗ > k. This

makes the corresponding Fay-Herriot model more flexible in order to catch the true behaviour of

the random effects.

Although complete clustering separates small areas into more homogeneous clusters, still variance

components might be equal. If this happens, then (2.2) reduces to (2.1), and we refer to this as the

simple clustering. In Section 3, we test the assumption of equality of the variance components in

different clusters by introducing a test statistic and showing some of its asymptotic properties. We

might also have a situation where variance components are equal for some clusters, but not all. In

this case, we combine clusters with equal variance components and the method will be referred to as

the combined clustering approach. The MSPE of the simple, combined and complete methods will

be calculated in Section 6. As shown in Section 6, the complete and combined clustering approaches

lead to more precise predictions of θjl = Xjlβ + ujl , for jl = 1, . . . , ncl and l = 1, . . . , k in terms of the

MSPE compared with the one based on the usual area-level small area model (2.1).

3. Equality of Variance Components in Different Clusters

In this section, we introduce a test statistic to test the following hypothesis regarding the equality

of variance components in model (2.2)

H0 ∶ σ
2
u1 = σ

2
u2 = ⋅ ⋅ ⋅ = σ

2
uk
, vs. Ha ∶∼H0.

To this end, because of the difference between variance components and sampling variances under

the model (2.2), the Kolmogrov’s strong law of large numbers is used in order to define the test

statistic. Due to the complexity that the weighted least square estimate of β introduces into the

method of moments estimates of variance components, we use the ordinary least square (OLS) to

estimate β, where the consistency of β̂OLS under the model (2.2) is shown in Lemma 1. Using

β̂OLS, the modified method of moments estimators of variance components (MMM) are introduced

in Theorem 1. The asymptotic distributions of these estimators are also found, and the test statistic

is constructed accordingly.

Lemma 1. In model (2.2), let X = (X′
1, . . . ,X

′
m)′ and assume that X′X is full-rank, the columns

of X are independent, and the covariate matrix of X is independent of ujl’s and ejl’s. Then, the

OLS estimator of the regression coefficient, β̂OLS, is a consistent estimator of β.
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Proof. See the Appendix for the proof.

Theorem 1. Let

σ̂2
ul
= 1
ncl

ncl

∑
jl=1

((yjl −Xjl β̂OLS)
2 −Djl) (3.1)

and assume that ncl Ð→ ∞ as m Ð→ ∞, for l = 1, . . . , k. Under the assumptions of Lemma 1 and

the general model (2.2), the asymptotic distribution of σ̂2
ul

as mÐ→∞ is given by

σ̂2
ul
∼ N (σ2

ul
, 2
n2
cl

ncl

∑
jl=1

(σ2
ul
+Djl)

2) , l = 1, . . . , k. (3.2)

Proof. See the Appendix for the proof.

Remark 1. It is worth noting that the estimator of σ2
u in Theorem 1 is asymptotically unbiased.

Due to the positive nature of the variance component, σ2
ul

, for l = 1, . . . , k, the interest lies in getting

positive estimates of the variance component. As the underlying distribution in (3.2) is a Normal

distribution, it is likely that σ̂2
u becomes negative. However, one can easily show that for large ncl

(where mÐ→∞) the probability of observing a negative estimate is negligible, i.e.

Φ
⎛
⎜
⎝
−

σ2
ul
ncl

√
2∑

ncl
jl=1

(σ2
ul
+Djl)

2

⎞
⎟
⎠
Ð→ 0, (3.3)

provided that σ2
ul

and Djl, for jl = 1, . . . , ncl and l = 1, . . . , k, are bounded.

Remark 2. Estimators of σ2
ul

, for l = 1, . . . , k, proposed in (3.2) are based on the method of mo-

ments. They are unbiased and consistent estimators. However, their variances highly depend on

the number of small areas in each clusters. In order to guarantee a precise estimation of variance

components, we suggest to implement this method when the number of small areas is large enough

in different clusters.

Let σ̂2
u = (σ̂2

u1 , . . . , σ̂
2
uk

). Under the null hypothesis, H0 ∶ σ2
u1 = σ

2
u2 = ⋅ ⋅ ⋅ = σ

2
uk

= σ2
u, we have

σ̂2
u ∼ Nk (σ

2
0,Σ0) , (3.4)

where σ2
0 = (σ2

u, . . . , σ
2
u) and Σ0 = diag( 2

n2
c1
∑
nc1
j1=1

(σ2
u +Dj1)

2, . . . , 2
n2
ck
∑
nck
jk=1

(σ2
u +Djk)

2). Thus,

(σ̂2
u − σ

2
0)

′Σ−1
0 (σ̂2

u − σ
2
0) ∼ χ

2
k−p−1, (3.5)

and the P-value of the test is approximately equal to

P-value = P(χ2
k−p−1 > χ

2
0), (3.6)
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where χ2
0 = (σ̂2

u − σ̂
2
0)

′Σ̂−1
0 (σ̂2

u − σ̂
2
0), σ̂

2
0 = (σ̂2

0u, . . . , σ̂
2
0u), σ̂

2
0u =

1
k ∑

k
l=1 σ̂

2
ul

, and

Σ̂0 = diag( 2
n2
c1

nc1

∑
j1=1

(σ̂2
0u +Dj1)

2, . . . , 2
n2
ck

nck

∑
jk=1

(σ̂2
0u +Djk)

2) .

In Section 6, we evaluate the performance of (3.5) under different scenarios. The results indicate

that the test has a large power. However, the simulated values of the type I error are larger

than the significance level. Note that the distribution of (3.2) highly depends on the number of

small areas in each cluster. For larger clusters, it is expected to get more accurate estimates of

variance components. However, due to Theorem 1, estimates obtained from larger clusters might

be significantly different from estimates in smaller ones. In other words, the difference between the

information provided from clusters based on different small areas might result in the rejection of

the null hypothesis even though it is correct, which explains inflated observed type I error in our

simulation studies.

3.1. Combined Clustering Approach

If the null hypothesis of the equality of variance components is rejected, there might exist some

clusters that have the same variance components. In order to estimate fewer number of parameters,

one might consider combining such clusters. This is similar to what happens after rejecting the

null hypothesis in the ANOVA context. Tukey (1949) proposed a solution to this problem by using

combination of T- and F-tests. In this paper, we modify his approach to combine the clusters with

the same variance components. To this end, we take the following steps:

• We first sort the MMM estimates of the variance components.

• Considering (3.2) and conducting the T-test under the unequal variance set-up and using the

same significance level as in (3.6), we make groups of clusters. To this end, starting from

the cluster with the smallest variance estimate, we compare it with the one with the second

smallest variance estimates. If the null hypothesis of the equality of the related variance

components, using (3.2), is not rejected, we make a new group consisting of corresponding

clusters. Otherwise, we keep the cluster corresponding to the smallest variance component

as a group with a single element. Then, the second smallest number is compared with the

third smallest one. Similarly, if the null hypothesis of the equality is not rejected, we add
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the corresponding cluster to the group that the second cluster belongs to. Similar to Tukey

(1949), this process stops if all groups are constructed by one or two clusters. If not, we go

to the next step.

• For a group with the number of clusters larger than two, we find the maximum and the average

values of the MMM estimates of the variance components, σ̂2
max and σ̂2

mean, respectively.

Following Tukey (1949) and depending on the number of clusters in each group, say k′, we

construct a test statistic W as follows

W =
1

3
(0.25 +

1

ncmax

)

−1

(
σ̂2
max − σ̂

2
mean

var(σ̂2
max − σ̂

2
mean)

− 1.2 log10 k
′) , k′ > 3,

W =
1

3
(0.25 +

1

ncmax

)

−1

(
σ̂2
max − σ̂

2
mean

var(σ̂2
max − σ̂

2
mean)

− 0.5) , k′ = 3,

where ncmax is the number of small areas inside the cluster corresponding to σ̂2
max. Here

var(σ̂2
max − σ̂

2
mean) = (1 −

1

k′
)2var(σ̂2

max) + (
1

k′
)2 ∑

j≠jmax

var(σ̂2
j )

where jmax is the index related to the σ̂2
max and var(σ̂2

j )’s are obtained using the estimated

values of the variance in (3.2).

The aim is to see whether or not we can split a group of clusters into smaller ones. If W is

larger than the critical value of the standard Normal distribution for the two-sided test with

the level of significance in (3.6), we put the cluster corresponding to the maximum variance

component into a new group. We repeat this step for the new maximum if k′ > 2. If the new

maximum should be separated as well, we put it in the same group as the old one.

• When the number of clusters in a group remains the same in the previous step, depending on

the number of clusters inside a group, we test the assumption of the equality of the variance

components for the group with the size larger than two. If the size of the group is larger than

p+1, we implement the test statistic proposed in this paper. Otherwise, simultaneous T-tests

with the same significance level as in (3.6) for a small p are conducted. If the null hypothesis

is rejected, we split the group with an even number of clusters into subgroups of two clusters

by starting from the smallest MMM estimate and moving forward to the largest one. For the

odd number size, we let the last subgroup have three clusters and then test the assumption

of the equality of the variance components one more time. If the null hypothesis is rejected,

we make two new subgroups of two and one clusters starting from the cluster corresponding

to the smallest MMM estimate.
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After implementing the above algorithm, some of the clusters will be combined. Hence, in order to

estimate the MSPE, denoted by mspe, one needs to deal with fewer number of parameters. This

results in less variability due to the estimation of the model parameters into the estimation of small

area means and the corresponding MSPEs. In Section 6, it is shown that when there are clusters with

the same variance component, the combined clustering has the same performance as the complete

one in estimating small area means, but, significantly better than the simple clustering. However,

the results of Section 6 indicate that if the difference between variance components is huge, the

complete clustering performs better in estimating small area means compared with combined and

simple clustering approaches regardless of the number of parameters to be estimated.

In the next section the EBLUP of small area means are given. Following Prasad and Rao (1990),

we also provide an approximation to the MSPE of the EBLUP and derive an estimator of MSPE

of the EBLUP which is a second order unbiased approximation.

4. EBLUP and its MSPE Estimation

In this section, the BLUP of small area means and consequently, the EBLUP for the new distribu-

tional form of random effects are obtained. Following Henderson (1950), the BLUP of small area

means is given by

θ̃jl = Xjl β̃ + ũjl , (4.1)

where ũjl = GV−1(yjl −Xjl β̃), β̃ = (X′V−1X)
−1

(X′V−1y), y = (y1, . . . , ym), V = diag(V1, . . . ,Vk),

Vl = diag(σ2
ul
+D1l , . . . , σ

2
ul
+Dncl

), G = diag(G1, . . . ,Gk), Gl = σ2
ul

Incl
×ncl

, and I is the identity

matrix for jl = 1, . . . , ncl and l = 1, . . . , k. The MSPE of θ̃jl can be written as follows

MSPE(θ̃jl) = E(θ̃jl − θjl)
2

= g1jl(γ) + g2jl(γ),

where γ = (σ2
u1 , . . . , σ

2
uk

), g1jl(γ) is the j’th element of the l’th cluster on the diagonal of G−GV−1G,

g2jl(γ) = d′
jl
(X′V−1X)

−1
djl , d′

jl
= Xjl − b′

jl
Xjl , and b′

jl
is the j’th row of the l’th cluster of GV−1.

Due to unknown γ, θ̂jl ’s, the EBLUP of θjl ’s, are obtained for jl = 1, . . . , ncl and l = 1, . . . , k. To

this end, the MMM estimators of variance components are used in formula (4.1). The MSPE of the

10



EBLUP can be decomposed as

MSPE(θ̂jl) = E(θ̂jl − θjl)
2

= E(θ̃jl − θjl)
2 +E(θ̂jl − θ̃jl)

2 + 2E(θ̂jl − θ̃jl)(θ̃jl − θjl).

Under the normality assumption for random effects as well as the sampling error, the cross product

term is zero (Rao and Molina, 2015). Therefore

MSPE(θ̂jl) = g1jl(γ) + g2jl(γ) + g3jl(γ),

where

g3jl(γ) = trace((
∂b′

jl

∂γ
)V(

∂b′
jl

∂γ
)′var(γ)) , (4.2)

∂b′
jl

∂γ
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂b′jl1
∂σ2

u1

. . .
∂b′jlm
∂σ2

u1
∂b′jl1
∂σ2

u2

. . .
∂b′jlm
∂σ2

u2

⋮

∂b′jl1
∂σ2

uk

. . .
∂b′jlm
∂σ2

uk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k×m

,

and var(γ) = Σ0.

Prasad and Rao (1990) gave the second order MSPE estimation of small area means as the

measure of the variability of the EBLUP as follows

mspe(θ̂jl) ≈ g1jl(γ̂) + g2jl(γ̂) + 2g3jl(γ̂), (4.3)

where γ̂ is the consistent estimates of γ and g1jl(γ̂), g2jl(γ̂), g3jl(γ̂), d̂jl ,
̂∂b′
jl
/∂γ, and v̂ar(γ) = Σ̂0

are obtained by substituting γ̂ in their original definition. Let V̂l = diag(σ̂2
ul
+D1l , . . . , σ̂

2
ul
+Dncl

) and

Ĝl = σ̂2
ul

Incl
×ncl

, for l = 1, . . . , k. Accordingly, let V̂ = diag(V̂1, . . . , V̂k) and Ĝ = diag(Ĝ1, . . . , Ĝk).

Note that Prasad and Rao (1990) proposed (4.3) for the consistent estimators of γ. As the MMM

estimates of the variance components are consistent, we use them for the purpose of data analysis

and simulation studies.

It is worth mentioning that the magnitude of g3jl depends on the number of variance components

in the model. So, the more parameters we have in the model, the larger g3jl will be. However, the

magnitude of g1jl and g2jl decrease significantly such that we gain improvement in terms of the

overall MSPE. To evaluate the performance of the estimator of MSPE, we use the relative bias

(RB) as the measure of the precision.
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5. Real Data Analysis

In this section, we use the National Health and Nutrition Examination Survey (NHANES) for

2011-2012 as a unit-level dataset to predict the waist circumference based on the Body Mass Index

(BMI). Vague (1947) showed that there is a high association between the waist circumference and

cardiovascular disease, type 2 diabetes, and also hypertension. He concluded that “apple shaped

obesity” observed in men is a high-risk obesity while the “gynoid obesity”, often found in women,

has a lower risk.

The data is categorized to small domains using the following variables:

• Age groups as 20.00 − 33.00, 33.00 − 48.00, 48.00 − 48.56, 48.56 − 63.00, 63.00 − 80.00.

• Gender as male and female.

• Education as the highest grade or level of education completed by adults 20 years and older

grouped as less than 9th grade education, 9 − 11th grade education (includes 12th grade and

no diploma), High school graduate/GED, some college or associates (AA) degree, and college

graduate or higher.

• Ethnicity as Mexican, other hispanic, non-hispanic white, non-hispanic black, non-hispanic

Asian, and Other race -including multi racial.

• Poverty groups as 0.00 − 0.97, 0.97 − 1.88, 1.88 − 2.41, 2.41 − 4.03, 4.03 − 5.00.

We consider the mean of the waist circumference of people belonging to a small area as the response

variable, yi, while the mean of their BMI’s as the covariate, xi. The units inside each small area

are used to obtain the sampling variance, Di. To this end, we propose the following method which

is an extension of the method in Wang and Fuller (2003).

Suppose we have enough sampled units, ni, such that the regression line yij = β0 + β1xij +ui + eij

is estimable, where eij is the sampling error, ni > 1 is the number of sampled units in each small

area, and j = 1, . . . , ni. Let

yi = β0 + β1xi + ui + ei,

where ei =
1
ni
∑
ni
j=1 eij, xi =

1
ni
∑
ni
j=1 xij, and yi =

1
ni
∑
ni
j=1 yij, and i = 1, . . . ,1362. First, the interest

lies in the estimation of the sampling variance, σ2
ei

. An unbiased estimate of the sampling variance

12



inside the small area, σ̂2
ei

, is given by

1

ni − 1

ni

∑
j=1

((yij − yi)
2 − β2

1(xij − xi)
2) . (5.1)

Note that β1 is unknown. In order to fit a regression line in each area, at least two sampled units

are required. As there are small areas with only one sample unit, we use the overall regression line

obtained from the complete data to estimate σ̂2
e . Consequently, the sampling variance for the mean

of the response variable in each area is given by

Di =
σ̂2
ei

ni
. (5.2)

Di’s ranges from 4.58 × 10−16 to 61.63. There are 519 small areas with ni = 1 where the overall

regression line is used to estimate Di = 61.63.

Figure 1: The effect of number of clusters on within groups sums of squares in the k-means clustering

There are a few approaches to cluster small areas. For example, the k-means clustering is

an approach that minimizes the Euclidian distance of the covariate from the mean of covariates

belonging to a cluster (Hartigan and Wong, 1979). Another approach is to use the hierarchical

clustering (Ward Jr, 1963) based on the Lance-Williams algorithm through the squared Euclidian

distance between covariates. The Silhouette method (Rousseeuw, 1987) also gives the suitable

number of clusters based on the average of silhouettes. It is worth mentioning that we do not look

for the optimal number of clusters (i.e. the smallest number of clusters) as the aim is to have small

areas inside a cluster that are as similar as possible. Hence, we choose the number of clusters such

that the distance between clusters does not change significantly after that. Even if the number of

clusters are far from the optimum value, using Tukey’s method, we can always combine clusters

which are not significantly different. So, as Figure 1 shows, we cluster small areas in 7 groups using

13



the hierarchical clustering and model the data as

yjl = β0 + β1xjl + ujl ,

where jl = 1, . . . , ncl , l = 1, . . . ,7 and nc = (165,521,333,64,252,9,18). Figure 2 shows the boxplot of

the response variable in different clusters. As we observe, the variance of clusters is different. The

MMM estimates of the variance components are (11.40,0.36,2.87,4.05,1.76,420.77,36.17). The

assumption of the equality of the variance components is rejected with χ2
4 = 90.80 with the corre-

sponding p-value of zero. The residual is defined as

εjl = yjl − θ̂jl

where θ̂jl is obtained using (4.1) and substituting the unknown parameters from either simple

or complete clustering methods for jl = 1, . . . , ncl , l = 1, . . . ,7. Figures 3 and 4 show boxplots

of the residual variable belonging to different clusters using the simple and complete methods,

respectively. After implementing the complete clustering, the behaviour of residuals in different

clusters is more homogenous in Figure 4. By using Tukey’s method, we have 5 combined clusters

where the modified number of small areas in clusters are nc = (165,521,649,9,18) with the variance

components (11.40,0.36,2.89,420.77,36.17).
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Figure 2: The boxplot of the response variable (waist circumference) in different clusters after

implementing the hierarchical method.
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Figure 3: The boxplot of the residual variable belonging to different clusters after implementing the

simple method (Fay-Herriot model).
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Figure 4: The boxplot of the residual variable belonging to different clusters after implementing the

complete method.

Using the complete clustering approach, explained in (2.2) where we derived estimates of variance

components using (3.1), we observe more than 49% improvements over the simple approach (Fay-

Herriot Model) in the mspe in 70% of small areas. In 10.00% of small areas, the mspe of the
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simple clustering approach is up to 62.24 times more than the mspe of the complete clustering

approach. On average we get the mspe of the simple clustering approach up to 12.43 times more

than the complete clustering approach. After implementing Tukey’s method (Section 3.1), there is

over 75% improvement in 70% of small areas. The complete and combined clustering approaches

have the same performance in over 80% of small areas in terms of the mspe. In order to compare

the performance of the proposed methods with the simple clustering approach, we first calculate

the mspe of the complete clustering, mspec, combined clustering, mspecb, and the simple approach,

mspes. Then, mspes/mspec, mspes/mspecb, and mspecb/mspec are calculated. An overall comparison

of three methods is given in Table 1.

As the MMM estimates of the variance components are significantly different, the usage of either

the complete or combined clustering schemes are justifiable. However, the MMM estimates of the

variance components for three clusters, 2.87, 4.05, 1.76, are very close. Because of this similarity,

the combined clustering scheme merges the corresponding clusters.

Table 1: The comparison between the complete, combined, and simple clustering in terms of the

quantiles of their corresponding mspe

complete over simple combined over simple complete over combined

Minimum 0.00 0.00 0.28

1-decile 0.86 1.00 0.90

2-decile 1.00 1.06 0.94

3-decile 1.49 1.75 0.98

4-decile 2.59 2.95 1.00

5-decile 3.06 3.14 1.00

6-decile 5.48 7.29 1.00

7-decile 10.95 11.08 1.00

8-decile 15.09 11.14 1.00

9-decile 62.24 62.22 1.17

Maximum 62.65 62.64 1.60

Mean 12.43 12.39 0.98

Figures 5 and 6 present the mspe and predicted values of small area means, respectively.
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Figure 5: Histogram of the mspe’s: (a) the complete clustering method, (b) the combined clustering

method, (c) the simple method

Figure 6: Histogram of predicted small area means: (a) the complete clustering method, (b) the

combined clustering method, (c) the simple method

6. Simulation Studies

In this section, we consider different scenarios of the sampling variances, Djl ’s, and the variance

components, σ2
ul

’s, for jl = 1, . . . , ncl and l = 1, . . . , k to evaluate the performance of the test statistic.

We also design simulation studies to see the performance of the proposed method in the reduction of

the MSPE. To this end, the empirical MSPE (EMSPE) of small area means using different clustering

schemes is calculated. Further, we evaluate the performance of the complete and combined clustering

approaches on the estimation of MSPE, mspe, using RB. In Section 5, an unbiased estimator of the

sampling variance inside the small area was proposed. We assess the performance of this estimator

using simulation studies.
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6.1. Evaluating the test statistic and the effect of the complete and

combined clustering on EMSPE and mspe

For the purpose of simulation studies, we use an area-level dataset regarding the prescription costs

from Union Régionale des Caisses d’Assurance Maladie (URCAM) of the Midi-Pyrénées Region

in the south-west of France, during the period January-December, 1999. The dataset consists of

m = 268 cantons (a type of administrative division of a country) that are considered as small areas

and the goal is to predict the average prescription cost in each area. In general, cantons are relatively

small in terms of population size when compared to counties, departments, or provinces. Because

of the confidentiality issue and the privacy concerns, the data set is only available in the area-level

format. This dataset has been used by Cressie et al. (2005, 2006) to assess the performance of their

proposed estimators in the context of the spatial model. Kang et al. (2009) also considered this

dataset in a spatial analysis to predict the average prescription amount in each canton.

In this work, we consider small area estimation to conduct the simulation studies using this

dataset. The area-level small area model provides an appropriate link between different small areas

in order to aggregate the information from all small areas to predict the small area mean. The idea

is different from Kang et al. (2009) as in the spatial model, cantons are considered to be dependent

while in our set-up we assume that they are independent. Following Kang et al. (2009), we use

the percentage of patients over 70 years as the covariate in each canton. We consider the average

prescription amount in each canton as the response variable.

Cantons can be clustered based on the percentage of patients over 70 years. We expect patients

in similar aging groups to have reasonably similar prescription costs as they need similar number

of follow-up visits, etc. Another important factor is the type of medication that is taken by the

patient. Apparently, people in similar aging groups need similar supplementary treatments (Speros,

2009).

Similar to the approach in Section 5, we initially obtain k = 10 number of clusters. However,

using Tukey’s method, at the end of the analysis, we get an updated number of clusters.

Consider nc = (33,37,32,14,34,65,4,13,18,18). Let xjl denote the j’th covariate in the l’th

cluster for jl = 1, . . . , ncl and l = 1, . . . , k. Throughout this section, different scenarios for Djl ’s

and σ2
ul

’s are considered. Generally, Djl ’s are generated from a uniform distribution with different
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ranges, U(0.25,0.5), U(0.25,1.5), U(0.25,2.5), and U(0.25,3.5), for jl = 1, . . . , ncl and l = 1, . . . , k.

The response random variable is simulated following two steps. First, let θjl ∼ N(Xjlβ,σ
2
ul
) where

Xjl = (1, xjl) and β = (2.8093,0.0059) that is obtained by regressing the prescription cost on the

percentage of patients over 70 years. We also choose different and arbitrary sets of σ2
ul

to evaluate

the performance of the MMM estimates, the hypothesis testing procedure, and three methods of

clustering, complete, combined, and simple, on EMSPE and mspe. Then, yjl ∼ N(θjl ,Djl), for

jl = 1, . . . , ncl and l = 1, . . . , k. We generate R = 5000 simulations of the response random variables.

In Theorem 1, the MMM estimate of the variance components is introduced. Throughout this

chapter, we work with the MMM estimates of the variance components rather than their Restricted

Maximum Likelihood (REML) estimates to predict small area means and also estimate the MSPE.

We performed simulation studies in order to compare our proposed estimates of the variance compo-

nents with the REML estimates of the variance components (Cressie, 1992; Rao and Molina, 2015)

in terms of mean squared error (MSE). The aim is to show although MMM estimator of the vari-

ance components are based on the method of moments, their performance is comparable to REML

estimates of the variance components. Tables 2 and 3 show that the two methods have almost the

same performance using the MSE criterion. As Table 3 shows the MSE’s for the same value of

the variance component are different since we have different cluster sizes even for two clusters with

the same variance components. According to Tables 2 and 3, we expect to get a smaller MSE of

variance components for larger cluster sizes.

Table 2: MSE of the REML and MMM estimates for different variance components

σ2
u 1 8 25 5 64 10 49 36 40 13

nc 33 37 32 14 34 65 4 13 18 18

MSE REML 0.07 2.38 27.00 2.67 159.23 2.03 767.33 123.32 118.05 12.91

MSE MMM 0.09 2.37 26.57 2.73 155.73 2.03 702.52 119.69 112.03 12.80

Table 3: MSE of the REML and MMM estimates for similar variance components in some clusters

σ2
u 1 8 25 25 64 25 49 40 40 13

nc 33 37 32 14 34 65 4 13 18 18

MSE REML 0.07 2.39 27.01 58.25 159.25 12.15 772.09 152.07 118.75 13.02

MSE MMM 0.10 2.40 26.60 55.83 155.78 12.08 704.98 147.54 112.08 12.83
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In order to calculate the power of the proposed test, the value of the test statistic is calculated

for each simulated response variable. After finding the corresponding p-value, we reject the null

hypothesis of the equality of variance components if p-value is less than the predetermined level

of significance (α = 0.05). The average of the number of times that the null hypothesis is rejected

when the alternative hypothesis is correct is used to evaluate the power of the test. Table 4 gives

the power of the test under different set-ups.

As it is shown in Table 4, when the difference between Djl ’s and σ2
ul

’s gets larger, the test becomes

more powerful. Moreover, when the similarities between the σ2
ul

’s, for l = 1, . . . , k, increase, the power

of the test decreases. Generally, removing clusters from the analysis may increase or decrease the

power of the test (Table 5). For instance, looking at the second row of Table 5, removing the

smallest cluster with four small areas increases the power. As this cluster has the same variance

component as the eighth one, we expect to have a higher power because of more distinct values of

the variance components for the remaining clusters. Obviously, removing a large cluster decreases

the power of the test more significantly. The simulation study indicates that in this scenario the

test rejects the null hypothesis more than the predetermined significance level α = 0.05 (Table 6).

As it is explained in Section 2, this is due to the fact that the precision of the estimate of the σ2
ul

’s,

for l = 1, . . . , k depends highly on the number of small areas in each cluster. In our set-up, the 7’th

cluster contains four small areas while the 6’th cluster contains 65 small areas. So, even though the

variance components are the same in both, the null hypothesis of the equality might be rejected

because of the difference between nc6 and nc7 .

Table 4: The power of the test statistic for different values of σ2
ul

’s and Dj’s

Djl

σ2
u U(0.25,0.5) U(0.25,1.5) U(0.25,2.5) U(0.25,3.5)

(1,8,25,5,64,10,49,36,40,13) 1 1 1 1

(1,8,25,25,64,25,49,40,40,13) 1 1 1 1

(1,1,2,4,2.5,4,3,3,5,6) 1 0.97 0.90 0.86

(1.5,1.5,2.4,6,4,4,5.9,4,6,4) 0.96 0.89 0.79 0.74

(0.1,0.5,0.2,0.5,0.25,0.4,0.49,0.3,0.4,0.13) 0.50 0.26 0.19 0.22

(0.1,0.1,0.2,0.15,0.25,0.3,0.12,0.3,0.09,0.13) 0.36 0.21 0.17 0.20

We also perform simulation studies in order to evaluate the performance of our proposed method
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Table 5: The effect of removing clusters on the power of the test statistic for the case of σ2
u =

(1,1,2,4,2.5,4,3,3,5,6)

Djl

U(0.25,0.5) U(0.25,1.5) U(0.25,2.5) U(0.25,3.5)

Removing the largest cluster 0.99 0.95 0.87 0.82

Removing the smallest cluster 1 0.98 0.92 0.87

Removing two largest clusters 0.94 0.87 0.75 0.70

Removing three largest clusters 0.95 0.89 0.78 0.72

Removing four largest clusters 0.69 0.60 0.53 0.48

Table 6: The percentage of times the null hypothesis is rejected by mistake

Djl

σ2
u U(0.25,0.5) U(0.25,1.5) U(0.25,2.5) U(0.25,3.5)

(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1) 0.14 0.15 0.13 0.13

(1,1,1,1,1,1,1,1,1,1) 0.15 0.16 0.15 0.18

(1.2,1.2,1.2,1.2,1.2,1.2,1.2,1.2,1.2,1.2) 0.15 0.16 0.15 0.18

(2,2,2,2,2,2,2,2,2,2) 0.15 0.15 0.14 0.15

(3,3,3,3,3,3,3,3,3,3) 0.15 0.16 0.15 0.18

(20,20,20,20,20,20,20,20,20,20) 0.15 0.16 0.15 0.16

in terms of the EMSPE. To this end, we calculate the EBLUP of small area means, θ̂
(r)
jl

’s, by finding

the MMM estimates of the variance components and substituting them in (4.1). The EMSPE is

given as follows

EMSPE(θjl) =
1
R

R

∑
r=1

(θ̂
(r)
jl

− θ
(r)
jl

)2, for jl = 1, . . . , ncl and l = 1, . . . , k.

where θ
(r)
jl

is the small area mean in the r′th iteration. Figures 7 and 8 show the EMSPE obtained

using different methods for different set-ups.

We compare the EMSPE of the and complete an combined clustering, EMSPEc and EMSPEcb,

with the simple method, EMSPEs, by finding for e.g. the following ratio for each small area

EMSPEs

EMSPEc

.

Values larger than one indicate that the complete clustering reduces the true MSPE for small
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Figure 7: Histogram of the EMSPE for σ2
u = (1,8,25,5,64,10,49,36,40,13): (a) simple, (b) com-

bined, and (c) complete methods.
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Figure 8: Histogram of the EMSPE for σ2
u = (1,8,25,25,64,25,49,40,40,13): (a) simple, (b) com-

bined, and (c) complete methods.

areas. We find the ratios of EMSPEs

EMSPEcb
and EMSPEcb

EMSPEc
to compare EMSPE of the combined version of

the clustering, EMSPEcb, after implementing Tukey’s method, with the simple method and the

complete clustering.
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We observe that when σ2
l ’s are highly different, the improvement in either EMSPEc or EMSPEcb

over the simple clustering becomes larger. Dealing with σ2
u = (1,8,25,5,64,10,49,36, 40,13), the

improvement for the complete clustering gets up to 67% with the minimum of −8% compared to the

simple approach. We get larger improvements for areas belonging to clusters with variance compo-

nents far from their overall average (25.1) while the negative improvement shows a scattered pattern.

For combined clusters, we gain up to 49% improvement with the minimum of −10% compared to

the simple approach. Also, the complete clustering performs better than the combined one for up to

18% and the minimum of −2%. Similar to the complete clustering scheme, in the case of combined

clustering, the larger improvement happens for areas belonging to clusters with variance compo-

nents far from the overall average. Table 7 summarizes the results for σ2
u = (1,8,25,5,64,10,49,36,

40,13).

Table 7: Comparison of EMSPE of predictors of small area means using different approaches based

on their deciles: (a) EMSPEs

EMSPEc
, (b) EMSPEs

EMSPEcb
, (c) EMSPEcb

EMSPEc
when σ2

u = (1,8,25, 5,64,10,49,36,40,13) and

Djl ∼ Uniform(0.25,0.5).

(a) (b) (c)

Minimum 0.92 0.90 0.97

1-decile 0.99 0.98 0.99

2-decile 0.99 0.99 1.00

3-decile 1.00 0.99 1.00

4-decile 1.00 1.00 1.00

5-decile 1.01 1.01 1.00

6-decile 1.02 1.01 1.00

7-decile 1.03 1.03 1.01

8-decile 1.04 1.04 1.02

9-decile 1.19 1.14 1.04

Maximum 1.67 1.49 1.18

Mean 1.05 1.03 0.92

In order to have a numerical evaluation of the performance of (4.3), we use the RB defined by

RBjl =
E(mspejl)

EMSPEjl

− 1 for jl = 1, . . . , ncl and l = 1, . . . , k. (6.1)

where E(mspejl), for jl = 1, . . . , ncl and l = 1, . . . , k, is the average of obtained values from (4.3) over
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R = 5000 iterations. Tables 8 and 9 give the summary statistics of the RB and variance of the EM-

SPE for different approaches when σ2
u = (1,8,25,5,64,10,49,36,40,13) andDjl ∼ Uniform(0.25,0.5).

Our findings indicate that we get small RB for three approaches. In particular, the value of ∣RB∣

is less than 0.55, 0.57, 0.57 for the complete, combined, and simple clustering methods. All three

methods have almost the same performance in terms of the variance of mspe. Our analysis shows

the simple, combined, and complete clustering methods have the same performance in terms of the

coefficient of variation of mspe.

Table 8: The summary statistics for the RB of the estimator of MSPE of small area means using

different approaches for σ2
u = (1,8,25,5,64, 10,49,36,40,13): (a) the complete clustering approach,

(b) the combined clustering approach, and (c) the simple approach

(a) (b) (c)

Minimum -0.34 -0.34 -0.34

1-decile -0.16 -0.17 -0.16

2-decile -0.12 -0.12 -0.11

3-decile -0.07 -0.08 -0.08

4-decile -0.04 -0.05 -0.03

5-decile 0.00 -0.01 0.00

6-decile 0.02 0.02 0.04

7-decile 0.08 0.08 0.07

8-decile 0.12 0.12 0.12

9-decile 0.20 0.20 0.20

Maximum 0.55 0.56 0.57

Mean 0.01 0.01 0.01

We now consider the simulation studies for Djl ∼ Uniform(0.25,0.5) and σ2
u =(1, 8, 25, 25, 64, 25,

49, 40, 40, 13) to evaluate to what extend the difference between the variance components affects

the estimator of the MSPE. We gain improvement in terms of the EMSPE by using clustering based

on the covariate (Table 10). The maximum improvement of 66% for the complete clustering and

the minimum of −4% are obtained compared to the simple approach. For the combined version,

the maximum improvement of 62% and the minimum of −4% are obtained compared to the simple

approach. Also, the complete clustering performs better than the combined one for up to 10%

and the minimum of −4%. Similar to Table 7, we are not able to determine a specific trend for
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Table 9: Comparison of mspe of predictors of small area means using different approaches based on

deciles of their variance: (a) mspec, (b) mspecb, (c) mspes when σ2
u = (1,8,25,5,64, 10,49,36,40,13)

and Djl ∼ Uniform(0.25,0.5).

(a) (b) (c)

Minimum 0.0008 0.0010 0.0012

1-decile 0.0013 0.0014 0.0014

2-decile 0.0016 0.0016 0.0016

3-decile 0.0018 0.0019 0.0019

4-decile 0.0021 0.0021 0.0023

5-decile 0.0023 0.0025 0.0026

6-decile 0.0027 0.0028 0.0030

7-decile 0.0031 0.0031 0.0035

8-decile 0.0037 0.0037 0.0039

9-decile 0.0040 0.0040 0.0043

Maximum 0.0048 0.0048 0.0047

Mean 0.0026 0.0026 0.0028

the negative improvement. The highest amount of improvement happens for small areas with the

variance component far from the overall average (σ2
u1 = 1). Tables 11 and 12 give the summary

statistics for the RB and variance of the estimation of the MSPE using different approaches when

σ2
u = (1,8,25,25,64,25,49,40,40,13). The complete and combined clustering have similar perfor-

mance with the ∣RB∣ ≤ 0.56 while the simple approach results in ∣RB∣ ≤ 0.57. All three methods

have almost the same performance in terms of the variance of mspe. Our analysis shows the simple,

combined, and complete clustering methods have the same performance in terms of the coefficient

of variation of mspe.

6.2. Assessing the performance of the proposed estimator of Di

In Formula (5.2), we proposed an estimator of Di’s for the unit level data. In order to evaluate

the performance of this estimator, we implement simulation studies. The estimated values of the

parameters from Section 5 and also its covariate matrix are used to generate the response variable

(waist circumference). We have 1362 small areas with 519 of them having one sample unit. We
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Table 10: Comparison of the EMSPE of predictors of small area means using different ap-

proaches based on their deciles: (a) EMSPEs

EMSPEc
, (b) EMSPEs

EMSPEcb
, (c) EMSPEcb

EMSPEc
when σ2

u = (1,8,25,

25,64,25,49,40,40,13) and Djl ∼ Uniform(0.25,0.5).

(a) (b) (c)

Minimum 0.96 0.96 0.96

1-decile 0.99 0.99 0.99

2-decile 0.99 0.99 1.00

3-decile 1.00 1.00 1.00

4-decile 1.00 1.00 1.00

5-decile 1.00 1.00 1.00

6-decile 1.01 1.01 1.00

7-decile 1.01 1.01 1.00

8-decile 1.03 1.02 1.01

9-decile 1.20 1.17 1.01

Maximum 1.66 1.62 1.10

Mean 1.04 1.04 0.96

consider the MMM estimates of the variance components, (0.36,2.87,4.05,1.76,11.40,420.77,36.17),

as well as the estimated Di’s ranging from 4.58 × 10−16 to 61.63 in order to generate the data. In

each iteration, the sampling variance of the mean of the response variable in each small area is

calculated. Figure 9 shows the true and estimated values of Di’s using Formula (5.2). Figure 9

displays that Formula (5.2) underestimates the sampling variance, but, in general, it gives reliable

estimates. As we explained in Section 5, for small areas where the regression line cannot be defined,

we use the overall regression line obtained from all sampled units. Mathematically, (5.1) is an

unbiased estimator of σ2
e . Expanding (5.1) results in

1
ni−1

[2β̂1
ni

∑
j=1

(xij − xi)(eij − ei) +
ni

∑
j=1

(eij − ei)
2] . (6.2)

We perform simulation studies to check the magnitude of the first term in (6.2), 1
ni−1

[2β1∑
ni
j=1(xij −

xi)(eij − ei)]. Figure 10 shows the histogram of this term for all small areas which is almost zero.

This indicates that the error of neglecting the first term in (6.2) is negligible.
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Table 11: The summary statistics for the RB of the estimator of MSPE of small area means using

different approaches for σ2
u = (1,8,25,25,64, 25,49,40,40,13): (a) the complete clustering approach,

(b) the combined clustering approach, and (c) the simple approach

(a) (b) (c)

Minimum -0.34 -0.34 -0.34

1-decile -0.16 -0.16 -0.16

2-decile -0.12 -0.11 -0.12

3-decile -0.07 -0.07 -0.08

4-decile -0.04 -0.04 -0.04

5-decile 0.00 -0.01 0.01

6-decile 0.02 0.03 0.04

7-decile 0.08 0.08 0.07

8-decile 0.13 0.12 0.12

9-decile 0.20 0.20 0.20

Maximum 0.56 0.56 0.57

Mean 0.01 0.01 0.01

Figure 9: (a) histogram of the true Di’s vs. (b) histogram of the estimates of Di’s

7. Concluding Remarks

In small area estimation, the ultimate goal is to find reliable estimates of parameters of small areas

while only a few or no sampled units are available in some areas. Using a model-based approach,

a link between different small areas is made to take into account the information from other small
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Table 12: Comparison of mspe of predictors of small area means using different approaches based on

deciles of their variance: (a) mspec, (b) mspecb, (c) mspes when σ2
u = (1,8,25, 25,64,25,49,40,40,13)

and Djl ∼ Uniform(0.25,0.5).

(a) (b) (c)

Minimum 0.0009 0.0009 0.0012

1-decile 0.0013 0.0013 0.0014

2-decile 0.0016 0.0016 0.0017

3-decile 0.0019 0.0019 0.0020

4-decile 0.0021 0.0021 0.0023

5-decile 0.0024 0.0024 0.0026

6-decile 0.0027 0.0027 0.0030

7-decile 0.0032 0.0032 0.0035

8-decile 0.0037 0.0037 0.0039

9-decile 0.0042 0.0042 0.0043

Maximum 0.0048 0.0048 0.0047

Mean 0.0026 0.0026 0.0028

Figure 10: Histogram of the neglected terms in estimation of σ2
ei

’s given in (6.2).

areas for the purpose of prediction. In this paper, the main interest lies in predicting small area

means while the precision of the predictor is quantified using the mspe.

Clustering small areas using the Euclidean distance between covariates is proposed. The goal is

to get more accurate predictions of small area means. To this end, a hypothesis test is conducted

after implementing hierarchical clustering of covariates to check the assumption of the equality

28



of variance components in different clusters. Our results indicate that the test has a high power

with inflated type I error. Following Tukey (1949), we combine some clusters with similar variance

components. Small area means are predicted by either taking into account the difference between

variance components in clusters, complete or combined clustering schemes, or using the simple

method (Fay-Herriot model) of the equality of variance components in all clusters. In order to

compare the performance of the new predictors with the simple predictor of small area means,

the EMSPE of three methods are calculated using simulations. The results show improvement

in terms of the EMSPE specially when the difference between variance components is significant.

The simulation studies (not shown here) indicate of the superiority of the complete and combined

clustering methods not only over the usual Fay-Herriot model, but also over the direct estimator of

small area means.

A real data set is also analyzed corresponding to the unit level model. In order to make it the area

level model and implement the methodologies developed here, we obtain the mean of the response

variable and the covariate. Using the complete clustering approach, mspe, the estimated MSPE, is

on average 19.40 times smaller than mspe obtained using the simple method. The estimated values

of variance components for this dataset are significantly different. Tukey’s method is implemented

and similar clusters in terms of the variance components are merged. We propose to consider

the combined clustering for this data set due to the reduction in the number of clusters after

implementing Tukey’s method.

This paper uses clustering in small area estimation based on similarity of covariates in small areas in

order to better account the inherent differences between areas and most likely increase the precision

of the small area mean prediction. We developed our methodology based on a linear mixed model.

Extending the results of this paper to generalized linear mixed models is of great importance and will

be studied in our future work. In addition, as Theorem 1 shows, it is possible to obtain a negative

estimate for the variance component using our proposed estimator. Addressing this limitation is of

importance and will make the proposed methodology more general. Another future work of interest

is extending the results of this paper to linear mixed models with discrete covariates while clustering

is done by using other similarity measures such as the Gower distance.
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A. Appendix

Proof of Lemma 1. Note that

β̂OLS = (X′X)−1X′y,

where y = (y1, . . . , ym). First, we rewrite β̂OLS as follows

β̂OLS = (X′X)−1X′(Xβ + δ)

= β + (X′X)−1X′δ,

where δ = (u1 + e1, . . . , um + em)′. Now, β̂OLS is a consistent estimator of β, if (X′X)−1X′δ
p
Ð→ 0 as

mÐ→∞. To show this, note that

(X′X)−1X′δ = ( 1
mX′X)−1( 1

mX′δ)

= ( 1
mX′X)−1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
m ∑

k
l=1∑

ncl
jl=1

δjl
1
m ∑

k
l=1∑

ncl
jl=1

Xjl1δjl

⋮

1
m ∑

k
l=1∑

ncl
jl=1

Xjlpδjl

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let Sjli = Xjlδjl and i = 1, . . . , p, and assume that Xjli ∼ Xi, for jl = 1, . . . , ncl , l = 1, . . . , k, where

E(Xi) = µi and var(Xi) = σ2
i . Since X and δ are independent, we have

E(Sjli) = E(Xjli)E(δjl) = 0,

and,

var(Sjli) = var(E(Sjli∣Xjli)) +E(var(Sjli∣Xjli))

= 0 +E(X2
jli
(σ2

ul
+Djl))

= (µ2
i + σ

2
i )(σ

2
ul
+Djl).

30



On the other hand, ∃M > 0 such that σ2
ul
+Dj ≤M for jl = 1, . . . , ncl and l = 1, . . . , k. One can easily

show that

1
m2

k

∑
l=1

ncl

∑
jl=1

var(Sjli) =
1
m2 (µ

2
i + σ

2
i )(

k

∑
l=1

nclσ
2
ul
+

k

∑
l=1

ncl

∑
jl=1

Djl) <∞,

Using the Kolmogrov’s strong law of large numbers, we have

1
m

k

∑
l=1

ncl

∑
jl=1

Sjli
a.s.
Ð→ 0.

This implies 1
m ∑

k
l=1∑

ncl
jl=1

Xjliδjl
p
Ð→ 0 as m Ð→ ∞. Using similar arguments, it is easy to show

(X′X)−1
p
Ð→ constant as mÐ→∞, which completes the proof.

Proof of Theorem 1. Note that

yjl ∼ N(Xjlβ,σ
2
ul
+Djl), (A.1)

for jl = 1, . . . , ncl , l = 1, . . . , k. Considering small areas that belong to the l’th cluster, we have

E(yjl −Xjlβ)
2 = σ2

ul
+Djl ,

for jl = 1, . . . , ncl , l = 1, . . . , k which leads to the following estimator of σ2
ul

σ̂2
ul
= 1
ncl

ncl

∑
jl=1

[(yjl −Xjlβ)
2 −Djl].

Let Zjl = (yjl −Xjlβ)
2 −Djl for jl = 1, . . . , ncl , l = 1, . . . , k. It is easy to show that

E(Zjl) = σ
2
ul

and var(Zjl) = 2(σ2
ul
+Djl)

2.

As Zjl ’s are not identically distributed, in order to find the asymptotic distribution of σ̂2
ul

, we check

the Lindeberg’s condition (Billingsley, 2008). Let s2ncl
= ∑

ncl
jl=1

var(Zjl). The interest is to show the

following

lim
ncl
Ð→∞

1
s2ncl

ncl

∑
jl=1

E ((Zjl − σ
2
ul
)21∣Zjl

−σ2
ul
∣>εsncl

) = 0, (A.2)

where ε > 0 and 1 is the indicator function. To this end, we first expand the expectation term. Let
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t = (yjl −Xjlβ). Based on (A.1), we have

E ((Zjl − σ
2
ul
)21∣Zjl

−σ2
ul
∣>εsncl

) = 2∫
∞

√
εsncl

+σ2
ul
−Xjl

β

(t2 −Djl − σ
2
ul
)
2

√
2π(σ2

ul
+Djl)

exp(−
t2

2(σ2
ul
+Djl)

)dt

= 2∫
∞

√
εsncl

+σ2
ul
−Xjl

β
t4

1
√

2π(σ2
ul
+Djl)

exp(−
t2

2(σ2
ul
+Djl)

)dt

− 4(σ2
ul
+Djl)∫

∞

√
εsncl

+σ2
ul
−Xjl

β
t2

1
√

2π(σ2
ul
+Djl)

exp(−
t2

2(σ2
ul
+Djl)

)dt

+ (σ2
ul
+Djl)

2
∫

∞

√
εsncl

+σ2
ul
−Xjl

β

1
√

2π(σ2
ul
+Djl)

exp(−
t2

2(σ2
ul
+Djl)

)dt

= 2

⎡
⎢
⎢
⎢
⎢
⎣

−t3

√
(σ2

ul
+Djl)

2π
exp(−

t2

2(σ2
ul
+Djl)

)

⎤
⎥
⎥
⎥
⎥
⎦

∞

√
εsncl

+σ2
ul
−Xjl

β

+ 2(σ2
ul
+Djl)

⎡
⎢
⎢
⎢
⎢
⎣

−t

√
(σ2

ul
+Djl)

2π
exp(−

t2

2(σ2
ul
+Djl)

)

⎤
⎥
⎥
⎥
⎥
⎦

∞

√
εsncl

+σ2
ul
−Xjl

β

+ 3(σ2
ul
+Djl)

2(1 −Φ(
√
εsncl

+ σ2
ul
−Xjlβ)). (A.3)

As it was mentioned, Djl ’s and σ2
ul

are bounded in the small area estimation for jl = 1, . . . , ncl and

l = 1, . . . , k. Let M0 = max{Djl andσ2
ul

; jl = 1, . . . , ncl , l = 1, . . . , k}. So, (A.2) is less than

lim
ncl
Ð→∞

1
s2ncl

(exp(− 1
4M0

εsncl
) [

ncl

∑
jl=1

exp ((σ2
ul
−Xjlβ)

2 + 2
√
εsncl

(σ2
ul
−Xjlβ))(

√
M0

π (
√
εsncl

+ σ2
ul
−Xjlβ)

3

+4

√
M3

0

2π
(
√
εsncl

+ σ2
ul
−Xjlβ)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

+ lim
ncl
Ð→∞

1
s2ncl

12M2
0

ncl

∑
jl=1

(1 −Φ(
√
εsncl

+ σ2
ul
−Xjlβ)) . (A.4)

Noting that sncl
Ð→∞ as ncl Ð→∞, (A.4) goes to zero. Thus, (A.2) holds. Since σ̂2

ul
= 1
ncl
∑
ncl
jl=1

Zjl ,

the asymptotic distribution of σ̂2
ul

easily obtained as follows

σ̂2
ul
∼ N (σ2

ul
, 2
n2
cl

ncl

∑
jl=1

(σ2
ul
+Djl)

2) ,

as ncl Ð→∞.
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