
Spatial modelling of infectious diseases with covariate mea-
surement error

Leila Amiri
Department of Community Health Sciences, Rady Faculty of Health Sciences, University of
Manitoba, Canada.

Mahmoud Torabi
Department of Community Health Sciences, Rady Faculty of Health Sciences, University of
Manitoba, Canada
Department of Statistics, Faculty of Science, University of Manitoba, Canada.

Rob Deardon
Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Canada.
Faculty of Veterinary Medicine, University of Calgary, Canada.

Summary. In spatial infectious disease models, it is typical to assume that only distance be-
tween susceptible and infectious individuals is important for modelling, but not the actual spa-
tial locations of the individuals. Recently introduced geographically-dependent individual-level
models (GD-ILMs) can be used to also consider the effect of spatial locations of individuals
and the distance between susceptible and infectious individuals for determining the risk of
infection. In these models, it is assumed that the covariates used to predict the occurrence of
disease are measured accurately. However, there are many applications in which covariates
are prone to measurement error. For instance, to study risk factors for influenza, people with
low socio-economic status (SES) are known to be more at risk compared to the rest of pop-
ulation. However, SES is prone to measurement error. In this paper, we propose a GD-ILM
which accounts for measurement error in both individual-level and area-level covariates. A
Monte Carlo Expectation Conditional Maximization algorithm is used for inference. We use
models fitted to data to predict areas with high average infectivity rates. We evaluate the per-
formance of the proposed approach through simulation studies and by a real data application
on influenza data in Manitoba, Canada.
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1. Introduction

Measurements made with error are one of the most important concerns across a broad spectrum
of sciences from environmental to econometric studies, as well as public health applications. In
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spatial data analyses, several types of measurement error (ME) can be addressed. In some sit-
uations, for example, census-based data sets may not have exact addresses of individuals, with
location recorded according to some larger aggregated region (e.g., postal code). In such cases, it
is common to assign the location of the individual to the centroid of its assigned region, but this
procedure obviously generates a locational error. Arbia et al. (2016) referred to this situation as
the unintentional positional error. In addition, spatial and other covariates are often susceptible to
measurement error due to failure in measuring instrument or human reporting. Human reporting
error may arise due to self-reporting. For example, in the Canadian census, variable such as the
number of Indigenous people in each geographical area is typically based upon self-reported data
which prone to under-reporting. Depending on the nature of the ME covariates, various functional
and structural ME models can be used to deal with this problem.

In infectious disease analysis, a key concern is that the rate of infection varies across space
due to the geographical variation in socio-demographic characteristics, environmental risk factors,
health facilities and so on. It also depends upon the numbers of infected individuals, and their
distance from susceptible individuals. Addressing the effect of geographical variation, when it
proves an influential factor on disease dynamics, is necessary to build quality transmission models.
Such quality models can then be used to provide useful information about the spread of outbreaks
over time, which is used by policy makers to devise possible prevention strategies.

The spatial modelling of disease spread has become popular in recent years and has been studied
by many researchers; e.g., Meade and Earickson (2000), Kulldorff et al. (2005), Chis Ster and
Ferguson (2007), Deardon et al. (2010), Kwong and Deardon (2012), Brown et al. (2014), Pokharel
and Deardon (2016), Mahsin et al. (2020) and Amiri et al. (2021). Individual level models (ILMs)
and their extensions provide viable approaches to analyze complex heterogenity in the population.

The ILMs of Deardon et al. (2010) take the spatial dependence among individuals into account
by considering the distance between susceptible and infectious individuals. These models can also
incorporate risk factors associated with contracting the disease (susceptibility) and passing on the
disease (transmissibility). This model framework also allows for various spatial (and/or network-
based) separation measures to be taken into account. Such measures could be based upon the
Euclidean distance between individuals, or other measurements of spatial proximity between indi-
viduals such as distance by road. In particular, there are other measures such as Great Arc Length
that can be used, depending on the nature of the dataset. However, Euclidean distance is usually pre-
ferred if the distances are not over a large area (Waller and Gotway , 2004). Accordingly, Euclidean
distance has frequently been used for data analysis in the context of individual level modelling of
infectious diseases (Deardon et al., 2010; Chen et al., 2014). However, the ILMs of Deardon et al.
(2010) assume that the probability of disease transmission between two individuals depend only on
their spatial separation, not the location itself. The recent work of Mahsin et al. (2020) and Amiri
et al. (2021) involved models that allowed for the effect of the geographical location of individuals
as well as seperation distance. They generalized the ILMs of Deardon et al. (2010) to a new class
of geographically-dependent ILMs (GD-ILMs) to allow for the evaluation of the effect of spatially
varying social risk factors (e.g., education, social deprivation), environmental factors, as well as
unobserved spatial structure, upon the transmission of infectious disease. To incorporate spatially
defined random effects in the model, they used mixed effects for capturing the spatial correlation
via the well-known conditional autoregressive (CAR) model (Breslow and Clayton, 1993; Leroux
et al., 2000). Mahsin et al. (2020) set their models within a Bayesian framework using Markov
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chain Monte Carlo methods for statistical inference, and applied their approach to influenza data
from Calgary, Canada. Amiri et al. (2021) proposed a frequentist approach, using an Expectation
Conditional Maximization (ECM) algorithm for fitting GD-ILMs to analyze the spatial dynamics
of tuberculosis in Manitoba, Canada.

Although the spatial modelling of disease has been considered by many researchers, less atten-
tion has been paid to scenarios when covariates of interest are measured with error; this is even
more obviously the case in the context of disease transmission modelling. In the context of disease
mapping, Bernadinelli et al. (1997) suggested a Bayesian hierarchical spatial model, specifying
smoothing priors for both covariates with errors and for relative risks. They applied their proposed
model to data on insulin dependent diabetes mellitus incidence in Sardinia. Xia and Carlin (1998)
used a hierarchical model framework for the spatial-temporal mapping of Ohio lung cancer mor-
tality data when covariates are measured with error. Several alternative measurement error models
were fitted using a Metropolis within Gibbs algorithm. MacNab (2009) applied a Bayesian multi-
variate conditional autoregressive model to deal with covariate ME in the context of the analysis of
multivariate disease data and associated ecological risk factors. A new class of linear mixed models
for spatial data in the presence of covariate ME was also proposed by Li et al. (2009). They derived
asymptotic bias expressions for estimating regression coefficients, and showed that the regression
estimates obtained from the naive use of an error-prone covariate are attenuated, while the naive es-
timators of the variance components are inflated. They proposed a maximum likelihood approach
based on an EM algorithm to adjust for covariate ME. Their method performs well over various
spatial correlation structures, and they applied it to the famous Scottish lip cancer data set (Breslow
and Clayton, 1993). Le Gallo and Fingleton (2012) investigated the case of cross-sectional spatial
regression models with ME in the explanatory variables. They showed that ME in an independent
variable can lead to inconsistent ordinary least squares estimates. Huque et al. (2014) proposed a
parametric model and considered asymptotic bias associated with spatial regression analysis involv-
ing covariate ME. They showed that the presence of covariate ME can lead to parameter estimate
that are highly sensitive to the choice of spatial correlation structure. Huque et al. (2016) developed
a semi-parametric regression approach to obtain a consistent estimate of the true regression coeffi-
cients when covariates are measured with error. They mentioned that their method is robust since it
neither assumes that the covariate ME distribution is known, nor depends on any particular kind of
spatial correlation structure. Huque et al. (2014) and Huque et al. (2016) applied their methods to
data on ischaemic heart disease. Finally, Tadayon and Torabi (2019) introduced a class of spatial
models to account for covariate ME in non-Gaussian spatial data to allow for both heavy tails and
skewness in the response variable. They applied a Monte Carlo EM (MCEM) algorithm for the
estimation of parameters. Note that, all aforementioned papers focused on the spatial modelling of
non-communicable diseases. The only literature on the spatial modelling of infectious disease via
transmission models with ME in covariates appears to be Deardon et al. (2012) , who investigated
the effect of ME in the recorded spatial location of individuals. The proposed approach was applied
to the UK 2001 foot-and-mouth disease epidemic in which farmhouse locations were used as a
proxy for the location of animals, and so came with associated location error.

Influenza is a serious public health problem, ranked in the top ten of causes of death in Canada
with an average of 3,500 deaths annually (Public Health Agency of Canada, 2014). Influenza
viruses can be spread between humans through indirect and direct contact, as well as small aerosol
and large respiratory droplets. Although the contribution of each of these modes of transmission is
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not accurately known, it is clear that the distance between susceptible and infectious individuals is
a key factor to transmission. Further, and similar to other infectious diseases, influenza spread may
not be uniform across geographical areas, although biological mechanisms of spatial spread and
seasonality remain unclear (Lipsitch and Viboud, 2009; Fuhrmann, 2010). Numerous reports on the
spatial variation of influenza in various countries exist; for example, France (Boussard et al., 1996),
USA (Morris and Munasinghe, 1994; Viboud et al., 2006; Gog et al., 2014; Cordoba and Aiello,
2016), Canada (Crighton et al., 2008; Stark et al., 2012; Thompson et al., 2012; He et al., 2013),
Brazil (Alonso et al., 2007) and China (Yu et al., 2013). Eggo et al. (2011) also considered spatial
variation of influenza between England, Wales and the USA. It has also been shown in the literature
that environmental factors such as temperature, humidity, salinity, air pollution and solar radiation
(Alonso et al., 2007; Shaman et al., 2010; He et al., 2013; Yu et al., 2013), socio-economic status
(Silva et al., 2010; Thompson et al., 2012; Janjua et al., 2012), demographic variables (Sooryanarain
and Elankumaran, 2014) and population size (Bonabeau et al., 1998; Viboud et al., 2006; Stark et
al., 2012) appear to be important for influenza epidemic transmission dynamics.

In this paper, we use a GD-ILM model that describes the transmission of disease dynamics based
on both the spatial location of, and spatial distance between, individuals. In doing so, we extend
the GD-ILM framework to the case when covariates are subject to ME. We develop a Monte Carlo
Expectation Conditional Maximization (MCECM) algorithm for parameter estimation. Using the
proposed model, we analyze data on influenza over two weeks from January 2 to 15, 2018 in 25
geographic areas of Winnipeg, the capital of the province of Manitoba, Canada. We consider age
and socio-economic factor index (SEFI) as individual level covariates and Indigenous population
rate as an areal-covariate, assuming that both SEFI and Indigenous population rate maybe measured
with error. We employ our proposed model to predict the average number of new infections of
influenza in each geographic area of Winnipeg over time. Such quantities can be used to help better
target policy and infrastructure planning for the prevention and control of influenza.

The structure of the article is as follows: Section 2 describes our model framework and for-
mulation. Model inference details are provided in Section 3. We investigate performance of the
proposed model through simulation study in Section 4. We analyze the influenza data in Section
5. Some concluding remarks are given in Section 6. Additional technical details, simulation study
and R codes, are provided in the Supplementary Materials.

2. GD-ILMs with covariates ME

The GD-ILMs proposed by Mahsin et al. (2020) and Amiri et al. (2021) are extensions of the
framework of ILMs of Deardon et al. (2010). The ILMs are designed to model the dynamics of
infectious disease transmission from infected to susceptible individuals in discrete time. Note that
these “individuals” may be persons, animals, or plants, but may also be aggregated units such
as regions or farms (e.g., Deardon et al., 2010). Here, we briefly review these models within a
susceptible-infected-removed (SIR) compartmental framework.

A discrete time SIR compartmental model allows an individual, i, to be in one of three sets
at any given time point t throughout the epidemic: i ∈ S(t) means individual i is susceptible to the
disease at time t; i ∈ I(t) means that individual i is infected and able to infect others (i.e., infectious)
at time t; and i ∈ R(t) means that individual i has been removed from the susceptible population at
time t, which could be due to death, recovery with acquired immunity or immunity via other means
(e.g. vaccination). Individuals move through these sets in the order S(.), I(.), R(.). At any given
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time, individuals have to be in one, and only one, of these sets. The following equation defines the
infection process under the GD-ILM framework, giving the probability of a susceptible individual,
i, i = 1, . . . ,n, at area g, g = 1, . . . ,G, entering the infectious state at time t +1 as,

P(i,g, t) = 1− exp
(
−ΩS(i,g) ∑

j∈I(t,g,ξ (g))
ΩT ( j,g)k(i, j)− ε(i,g, t)

)
, (1)

where: ΩS(i,g) is a susceptible function representing risk factors associated with a susceptible in-
dividual i in area g contracting the disease; ξ (g) is the set of neighboring areas that are adjacent
to area g; I(t,g,ξ (g)) is the set of infectious individuals at time t in the gth area and its neigh-
bouring areas; ΩT ( j,g) is a transmissible function representing risk factors associated with the
transmission of the disease from an infectious individual j in area g; k(i, j) is an infection kernel
that represents shared risk factors jointly associated with susceptible individual i and infectious in-
dividual j; ε(i,g, t) is a random sparks function, which represents infections not well-explained by
other model components. Here, the infection kernel is defined as k(i, j) = d−δ

i j where δ > 0 is the
spatial parameter and di j is the Euclidean distance between susceptible individual i and infectious
individual j.

In model (1), both ΩS(i,g) and ΩT ( j,g) can be used for modelling individual level covariates
(e.g., lifestyle factors) and areal level covariates (e.g., environmental factors). In this study, we
assume that ΩT ( j,g) = 1 which means that both individual- and areal- level covariates are not
considered in the transmissibility function, as we did not have this information for our influenza
data (see Section 5 for more details). To adjust for the effect of error-free covariates of interest in
the susceptibility function, ΩS(i,g) can be defined as,

ΩS(i,g) = exp(α +Z⊤
i β 1 +Z∗⊤

g β 2 +ug), (2)

where α is the intercept, Zi is a vector of p1 observed covariates associated with individual i with
corresponding parameters β 1 = (β11, . . . ,β1p1)

⊤, Z∗
g is a vector of q1 observed covariates associated

with area g with corresponding parameters β 2 = (β21, . . . ,β2q1)
⊤, and ug is a set of area-level spatial

random effects that can account for spatial variation in disease transmission rates between areas.
Spatial structure between the ug can be modeled with a Leroux conditional autoregressive (LCAR)
model (Leroux et al., 2000), or other CAR variants.

In ΩS(i,g) as defined in (2), it is assumed that the covariates are error-free, but this may not
be a valid assumption in many applications. For instance, it is well-known that data derived from
satellite imagery, which are increasingly used as covariates in infectious disease models, are subject
to measurement error (Kotchi et al., 2016). Another example is socioeconomic status (SES), often
obtained using principal component analysis and having the potential to be measured with error
(Thompson et al., 2012). We can incorporate both error-free covariates and covariates with ME in
ΩS(i,g) using,

ΩS(i,g) = exp(α +Z⊤
i β 1 +Z∗⊤

g β 2 +X⊤
i β 3 +X∗⊤

g β 4 +ug), (3)

where, Xi is a vector of p2 unobserved covariates of interest for individual i with associated param-
eters β 3 = (β31, . . . ,β3p2)

⊤, and X∗
g is a vector of q2 unobserved true covariates of interest for area

g with associated parameters β 4 = (β41, . . . ,β4q2)
⊤. However, as covariates Xi and X∗

g are measured
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with error we may observe Wi and Vg as surrogates to Xi (i = 1, . . . ,n) and X∗
g (g = 1, . . . ,G), respec-

tively. Assuming viable structural ME models in this context, in which covariates are considered as
random variables, we have

Wi = Xi +η i,

Vg = X∗
g +νg,

where, η i is assumed to have distribution Np2(0,Σηη) and νg has distribution Nq2(0,Σνν). It
is also assumed that η i is independent of Xi and νg is independent of X∗

g . Further, we assume
Xi ∼ Np2(µx,Σxx) and X∗

g ∼ Nq2(µx∗ ,Σx∗x∗). We assume that µx, µx∗ , Σηη and Σνν are unknown,
and Σxx and Σx∗x∗ are known to avoid identifiability issues as both terms (true ME covariate and
ME random error) capture variation at the same level (individual and areal level). Note that, the
assumption of known variance is typical in the ME literature, with previous literature/information
regarding covariates with an ME mechanism being used for determining the known variances (e.g.,
see Carroll et al., 2006). Note further that, we may also have ME covariates at the both individual
and areal level in the transmissibility function (ΩT ( j,g)). However, we did not consider this func-
tion in our model as we did not have this information in our influenza data (Section 5). In general,
we expect that by properly accounting for the ME covariates in the infectious disease model, the
effects of risk factors (covariates) in the transmission risk will be more accurately captured (see
Section 5 for more details).

To find the spatial random effects in (3) within the Leroux CAR framework, the distribution
function of u is defined as

u ∼ NG(0,Σu), (4)

where, the generalized inverse of Σu is defined as Σ−
u = σ−2[(1 − λ )IG + λF ] (Noble , 1966),

in which σ2 and λ quantify dispersion and spatial dependence, respectively. A larger value of
λ ∈ [0,1] indicates a higher degree of spatial dependence. This specification yields two extreme
cases: (i) λ = 0 implies completely independent random effects, and (ii) λ = 1 implies an intrinsic
conditional auto-regressive model (Besag et al., 1991). IG is an identity matrix of dimension G, and
F is a G×G matrix reflecting the neighborhood structure. Typically, neighbors are those areas that
share a common boundary. Here, elements of F are given by

fgg′ =

 mg, g = g′,
−1, g ∼ g′,
0, otherwise.

where, mg is the number of neighbors of area g, and g∼ g′ means that areas g and g′ have a common
boundary.

We consider the following version of a GD-ILM when covariates are measured with error:

P(i,g, t) = 1− exp
(
− exp(α +Z⊤

i β 1 +Z∗⊤
g β 2 +X⊤

i β 3 +X∗⊤
g β 4 +ug) ∑

j∈I(t,g,ξ (g))
d−δ

i j

)
. (5)

We call it a neighbourhood restricted model, in which we assume that disease transmission can
occur both within each area, and also between neighboring areas. The motivation behind the pro-
posed model is to examine whether the disease can be transmitted to neighbors. However, allowing
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transmission between non-neighbiring areas would greatly increase the computational burden since
the set I(t) is much larger than I(t,g,ξ (g)).

For this model, the average infection rate at time point t for area g is calculated as

Ψg(t) = n−1
gt

ngt

∑
i=1

P(i,g, t),

where, ngt is the number of individuals in the gth area at time t which may change over time. This
measure can be used to quantify infection risk in different areas over time.

3. Monte Carlo Expectation-Maximization algorithm

Let Θ = {α,β 1,β 2,β 3,β 4,δ ,µx,µ
∗
x ,Σηη ,Σνν ,σ ,λ} be the set of model parameters. The ECM

algorithm of Meng and Rubin (1993) is a popular method for estimating parameters when we
have latent variables. Each iteration of an ECM algorithm consists of E and CM steps. The E-step
involves the computation of the conditional expectation of the complete data log-likelihood given
the observed data under the current parameter values. In the CM-step, the parameters are updated
by maximizing the expectation function of the E-step. Let Xp2×1,X∗

q2×1 and uG×1 be the vectors of
the unobservable variables. Let y = (y111, . . . ,ynGT G) be a vector of binary variables in which yitg
is the event that a susceptible individual i in area g is infected at time t. Under an ECM setting,
we denote yo = (y;w;v) as the observed data and yc = (y;w;v;x;x∗;u) as the complete data. The
complete-data likelihood function is given by

L (Θ;yc) = f (y|x,x∗,u) f (w|x) f (v|x∗) f (x) f (x∗) f (u),

where the probability distribution function of y given x,x∗ and u based on (5) is

f (y|x,x∗,u) =
T

∏
t=1

{
∏

i∈S(t+1,g)

G

∏
g=1

(
1−P(i,g, t)

)1(Mit=g)
∏

i∈I(t+1,g,ξ (g))\I(t,g,ξ (g))

G

∏
g=1

(
P(i,g, t)

)1(Mit=g)
}
,

in which, S(t+1,g) is the set of all susceptible individuals at time t and area g, I(t+1,g,ξ (g))\I(t,g,ξ (g))
is the set of all newly infected individuals at time t in the location g and its neighbouring areas, and
1(Mit = g) is an indicator function such that for i = 1, . . . ,n, t = 1, . . . ,T , g = 1, . . . ,G,

1(Mit = g) =
{

1, ith individual at time t is in gth area,
0, otherwise.

Also, w|x ∼ Np2(x,Σηη) and v|x∗ ∼ Nq2(x
∗,Σνν).

Let Θ
(k) denote the current estimate at the (k)th iteration. The next value, Θ

(k+1), is obtained by
maximizing the following conditional expectation with respect to Θ

E(logL (Θ;yc)|yo,Θ
(k)). (6)

3.1. E-step via the Metropolis-Hastings sampler
The expectation in equation (6) is taken with respect to f (x,x∗,u|yo,Θ). So, if we want to obtain
its closed form we need f (x,x∗,u,yo|Θ) and f (yo|Θ). Since direct calculation of f (yo|Θ) is not
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possible for the models considered here, we approximate the expectations via the MCEM algorithm
proposed by Wei and Tanner (1990). We replace the maximization step in the MCEM algorithm by
conditional maximization (CM) steps leading to an MCECM algorithm. The MCECM algorithm
consists of the following steps:
Step 1: Select an initial value Θ

(0) for the ECM sequence,
Step 2: In the (k+1)th iteration of the ECM algorithm, random samples{
(x(k+1)

1 ,x∗1
(k+1),u(k+1)

1 ),(x(k+1)
2 ,x∗2

(k+1),u(k+1)
2 ), . . . ,(x(k+1)

L ,x∗L
(k+1),u(k+1)

L )
}

are generated from

f (x,x∗,u|yo;Θ
(k)) via the Metropolis-Hastings algorithm (Metropolis et al., 1953) as follows (steps

(a) to (c)):
At the lth (l = 1, . . . ,L) iteration of the Metropolis-Hastings algorithm with current values x(k+1)

l ,

x∗l
(k+1) and u(k+1)

l ,

(a) For drawing x(k+1)
l+1 , we choose f (x|w) as a candidate density and f (x|y;w;v;x∗l

(k+1);u(k+1)
l )

as the target density given by f (x|y;w;v;x∗l
(k+1);u(k+1)

l ) ∝ f (y|x;x∗l
(k+1);u(k+1)

l ) f (x|w) where
x|w=w0 ∼Np2(µx+Σxx(Σxx+Σηη)

−1(w0−µx),ΣxxΣηη(Σxx+Σηη)
−1). We generate a xnew

from f (x|w) and r1 from a Uniform(0,1) distribution. Calculate acceptance probability ρ1 =
f (y|xnew,x∗l

(k+1),u(k+1)
l ;Θ(k))

f (y|x(k+1)
l ,x∗l

(k+1),u(k+1)
l ;Θ(k))

and set x(k+1)
l+1 = xnew if r1 ≤ ρ1 and x(k+1)

l+1 = x(k+1)
l otherwise.

(b) For x∗l+1
(k+1), we define f (x∗|v) as a candidate density and f (x∗|y;w;v;x(k+1)

l ,u(k+1)
l ) as the

target density where f (x∗|y;w;v;x(k+1)
l ;u(k+1)

l ) ∝ f (y|x(k+1)
l ;x∗;u(k+1)

l ) f (x∗|v), where x∗|v =
v0 ∼ Nq2(µ

∗
x +Σx∗x∗(Σx∗x∗ +Σνν)

−1(v0 −µ∗
x),Σx∗x∗Σνν(Σx∗x∗ +Σνν)

−1). We generate a x∗new
from f (x∗|v) and r2 from a Uniform(0,1) distribution. The acceptance probability is calculated

as ρ2 =
f (y|x(k+1)

l ,x∗new,u
(k+1)
l ;Θ(k))

f (y|x(k+1)
l ;x∗k+1,l ;u

(k+1)
l ;Θ(k))

and if r2 ≤ ρ2 then accept the x∗new, x∗l+1
(k+1)= x∗new, else reject

the x∗new, x∗l+1
(k+1) = x∗l

(k+1).

(c) For u(k+1)
l+1 , we define f (u) as a candidate density and f (u|y;w;v;x(k+1)

l ;x∗l
(k+1)) as the tar-

get density where f (u|y;w;v;x(k+1)
l ;x∗l

(k+1)) ∝ f (y|x(k+1)
l ;x∗l

(k+1);u) f (u). We generate a unew
from f (u). Also, r3 is generated from a Uniform(0,1) distribution. The acceptance probability

is: ρ3 =
f (y|x(k+1)

l ,x∗l
(k+1),unew)

f (y|x(k+1)
l ,x∗l

(k+1),u(k+1)
l )

and u(k+1)
l+1 = unew if r3 ≤ ρ3 and u(k+1)

l+1 = u(k+1)
l otherwise.

Step 3: Assuming ℓ as the log-likelihood, E(ℓ(Θ;yc)|yo,Θ) is approximated as

E(ℓ(Θ;yc)|yo,Θ) =
1
L

L

∑
l=1

ℓ(Θ;y;w;v;x(k+1)
l ;x∗l

(k+1);u(k+1)
l ) (7)

and then Θ
(k+1) can be obtained by maximizing (7) with respect to (w.r.t.) Θ.

The details of the CM-steps are provided in Appendix A of the Supplementary Materials. Using the
CM-steps we get updated model parameters at iteration (k+ 1), and continue this procedure until
all model parameters converge. Also, standard errors of model parameters estimate are provided in
Appendix B.
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4. Simulation study

In this section, we detail a simulation study to evaluate performance of the proposed GD-ILM in
the presence of areal and individual level covariates with ME. This model is ascertained in terms
of parameter estimation and its overall ability to capture infectious disease dynamics. We employ
two distinct sets of simulations: one for data generated in a scenario where areas are defined by an
irregular grid, and another where areas are defined by a regular grid. Simulation results based on
the regular grid are provided in Appendix C of the Supplementary Materials.

4.1. Irregular grid
Winnipeg, the capital of the province of Manitoba in Canada, which has 25 geographic areas (called
local geographic areas: LGAs), is used for generating data under the irregular scenario. We sim-
ulate the locations (i.e. latitude and longitude) of n = 445 individuals within the 25 LGAs of
Winnipeg. These locations are drawn using the Generalized Random Tesselation Stratified (GRTS)
spatial sampling technique using the spsurvey R package (Kincaid et al., 2019). The geographical
locations of the sampled individuals within each LGA are illustrated in Figure 1.

We generate 500 epidemic data sets for the model defined in (5), where Zi and Z∗
g with corre-

sponding coefficients β1 and β2, are the observed true individual level and areal level covariates,
respectively, and are generated from a normal distribution with mean 0 and variance 1. The un-
observed true individual and areal level covariates Xi and X∗

g with corresponding coefficients β3
and β4, respectively, are also generated from a normal distribution with µx = 0, µx∗ = 0 (they are
unknown and need to be estimated) and variances 1. The above covariates represent standardized
covariates such as age and SES. We generate the observed error-prone version of Xi, Wi = Xi +ηi
in which ηi ∼ N (0,σ2

η), and then X∗
g , V ∗

g = X∗
g +νg in which νg ∼ N (0,σ2

ν ). For simplicity we
assume that σ2

ν = σ2
η with three different values: {0.30,0.70,1.20} to show various scales of ME

variability in the model consistent with variability that is seen in real data. In this model, the in-
tercept and regression coefficients are (α,β1,β2,β3,β4)

⊤ = (0,1,1,1,1)⊤. These true parameters
also represent typical disease dynamic and also the range of excess in ME covariates. The spatial
random effects, u, are generated from a multivariate normal distribution with mean vector 0 and

covariance matrix Σu = σ2
[(

(1−λ )I+λF
)]−1

with σ = 0.50. Two different values of the spatial
dependence parameter, λ ∈ {0.50,0.80}, are also considered, resulting in scenarios with different
levels of areal spatial correlation. We also assume that the transmission parameter δ = 2.50, and
the distance measure di j between individuals i and j is the Euclidean distance. The epidemic begins
when one individual is randomly selected as infectious in each LGA at t = 1. The epidemics are
run for a maximum of tmax = 20 time points and the length of the infectious period (γI) is set to be
constant for all individuals, with infectious individuals remaining infectious for γI = 3 time units
before moving to the removed state. The true transmission and infectious period parameters above
are chosen to appropriately reflect disease dynamic of influenza (see Section 5 for more details).

We also provide a naive analysis which ignores the ME covariates. For this naive analysis, we
simply replace X and X∗ with W and V , respectively, and analyze the data using the conventional
method for error-free covariates. Table 1 reports the simulation results obtained for both proposed
and naive models. Under the proposed model, the covariate coefficient estimates are generally un-
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biased. However, the spatial overdispersion (σ ) and spatial dependency (λ ) estimates show some
bias, which maybe due to the number of LGAs. The accuracy of the estimates, both in terms of bias
and standard error, remains consistent for the proposed model even with increasing ME variances.
However, in the case of the naive model, we observe that the biases are considerable for most pa-
rameters. In addition, the performance of the naive model gets worse with increasing ME variances.
We also increased the spatial dependency from 0.50 to 0.80 and observed similar behavior (Table
1). The inferential performance of both the proposed and naive models is also shown in Figure 2
when σ2

ν = σ2
η = 0.30 and λ = 0.50. To monitor the convergence of the MCECM algorithm, the

evolvement of log-likelihood values for one typical replicate when σ2
η = σ2

ν = 0.30 and λ = 0.50 is
displayed in Figure 3 (similar results are obtained for other replications). This plot shows that the
process converges very quickly. It is worth mentioning that, in our simulation study, the average
run time for each simulation on a system equipped with a 2.3 GHz Intel Core i9 processor and 16
GB of memory was 20 minutes. Note that, we used a high performance computing (HPC) facility
and ran the simulations in parallel, as is typical in the modern setting.



11

Figure 1

Fig. 1. Geographical locations of each sampled individual in 25 LGAs of Winnipeg, Manitoba,
Canada.

Fig 2

Fig. 2. Estimated parameters based on proposed and naive models in the case of σ2
η = σ2

ν = 0.30
and λ = 0.50.
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Fig 3

Fig. 3. Convergence of the MCECM iterations for log-likelihood values for one of the simulated data
set in the case of σ2

η = σ2
ν = 0.30 and λ = 0.50.
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5. Data analysis

The main influenza viruses that cause seasonal outbreaks in humans are influenza A and B. In-
fluenza is transmitted by droplets, spreading through sneezing or coughing, as well as through con-
tact with contaminated surfaces. We apply our proposed model to analyze daily influenza data in
Winnipeg between January 2 to 15, 2018, routinely collected by Manitoba Health. This is window
of data collection that would be of interest to public and policy-makers in the context of forecasting,
for example. Here, we consider influenza caused by influenza viruses types A (ICD9: 4871A) or B
(ICD9: 4871B).

The city of Winnipeg consists of 11 Regional Health Authorities (RHAs) which is further di-
vided into 25 LGAs. The city map is also decomposed down to 758 dissemination areas (DAs),
which are the smallest standard geographical area defined in Canada, with an average population
of 400 to 700 people in each DA (Statistics Canada, 2016). Here, we assume that each DA is an
individual unit and we consider the spread of disease through them (Mahsin et al., 2020 used a sim-
ilar idea to analyze influenza data in Calgary, Canada). Each influenza patient is geocoded to one
of the 758 DAs and 25 LGAs using their six digit postal codes at the time of influenza diagnosis.
For each individual DA, the first time that an influenza patient is reported within a DA is defined
as the DA’s infection time. Hence, a DA is considered susceptible prior to the DA’s infection time.
This is a typical assumption in the context of infectious disease modelling (and in particular in the
SIR framework), and as we do not have data on the true first infection time in each DA, seems a
reasonable assumption here. For simplicity, we also assumed that the effect of the day-of-the-week
on reporting is ignorable. The Centers for Disease Control and Prevention (CDC) report that people
with flu are most contagious in the first three to four days after their illness begins. So, we assume
an SIR model with an infectious period of 3 days (γI = 3) days for each DA. Note that, one can
allow the infectious period to vary between individuals by introducing another random variable into
the model. However, this would add additional, and substantial, compartmental complexity to the
model. We use the centroid location of each individual DA as its (x,y) location. It is worth men-
tioning that based on the SIR framework, each DA can be infected only once during the two weeks,
which is a feasible assumption from the literature. Among the 758 individual DAs, 196 DAs were
infected during the two weeks of the study, of which 34 were infected on the first day (January 2,
2018). The infected DAs over this time period under the SIR framework are shown in Figure 4.
The geographical distribution of the incidence rate (i.e., the number of cases divided by the total
population) of influenza through the 25 LGAs of Winnipeg is presented in Figure 5a.

We also consider some covariates that may contribute to the occurrence of diagnosis and/or trans-
mission. Compared to younger age groups, adults aged 65 years or older tend to be at higher risk
of influenza-related complications, hospitalization or deaths (Simonsen et al., 2007). Hence, for
each individual DA, we consider the rate of people aged 65 years and above (i.e., the number of
cases divided by the total population) obtained from the 2016 Canadian census as an observed in-
dividual level covariate. Figure 5b shows proportion of the population aged 65 years or over in
each Winnipeg LGA. Further, there are some studies that have shown that SES has an important
impact on influenza occurrence and spread (e.g., Sooryanarain and Elankumaran, 2014). ÓSullivan
and Bourgoin (2010) conducted a review of the literature and found that greater socio-economic
disadvantage leads to greater risk of infection and severe outcomes. Therefore, we use the afore-
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Fig 4

Fig. 4. Influenza epidemics across the 25 LGAs of Winnipeg form January 2 to 15, 2018. Suscepti-
ble, newly infected and removal individual DAs are denoted by grey, red and blue dots, respectively.
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Fig 5

(a) Incidence rate

Incidence rate

0.000 to 0.083
0.083 to 0.208
0.208 to 0.263
0.263 to 0.316
0.316 to 0.429

(b) 65 years old or over

65 years old or over 

0.105 to 0.137
0.137 to 0.178
0.178 to 0.200
0.200 to 0.232

(c) SEFI

SEFI

−1.311 to −0.572
−0.572 to 0.097
0.097 to 1.070
1.070 to 2.145

(d) Indigenous rate

Indigenous rate

0.049 to 0.087
0.087 to 0.161
0.161 to 0.239
0.239 to 0.434

Fig. 5. Geographical distribution of influenza incidence rate, and some demographic covariates
(proportion of people aged 65 years and up, SEFI and Indigenous rate) based on the 2016 Cana-
dian Census data.



17

mentioned socioeconomic factor index (SEFI), which is defined based upon on the four Census
variables (income, unemployment, education, single parent), as a covariate. The SEFI factor scores
are standardized factor scores derived at the DA level using a principal component analysis of those
four variables, with lower SEFI scores indicating lower levels of SES. The SEFI scores of the 25
areas in Winnipeg are shown in Figure 5c. Results show that just over half (52.2%) of the variation
across these variables is explained by this factor index. Therefore, it is likely that the SEFI score
as a time measure of SES is subject to ME, and is treated as such in the models. There is also an
evidence to suggest that Indigenous populations are more prone to become infected with influenza
in Canada (Silva et al., 2010; Janjua et al., 2012). Based on data from the 2016 Canadian census,
the city of Winnipeg has the largest Indigenous population of any major city in Canada, with 12.2%
of the Winnipeg population identifying themselves as Indigenous people. Hence, the proportion of
people self identifying as Indigenous population in each LGA was extracted from the 2016 Census.
Since the Indigenous status is self-reported, it may also be prone to ME, perhaps with a high chance
of under-reporting. Figure 5d shows the rate of Indigenous people in each LGA as an area-level
covariate, note that we estimate σ2

x and σ2
x∗ as 0.80 and 0.15 using SEFI and Indigenous data.

The results of our analysis are given in Table 2. In addition to fitting the proposed model, we
also analyze the data with a naive model which ignores ME. It is evident from Table 2 that senior
people (age 65 and up) are more at risk from influenza compared to other age groups. In addition,
in the case of proposed model, we observe that the covariates Indigenous and SEFI make signif-
icant contributions to the model, indicating that Indigenous people and people with low SES are
also more at risk of getting influenza. However, in the case of the naive model, we observe that
Indigenous people and people with low SES are less at risk (but not statistically significantly) from
influenza, a result which is contrary to the literature. This implies that if one ignores the effects of
ME in the data analysis, here it may lead to wrong conclusions. We also observe that the estimated
value of the spatial parameter is around 2.2, which indicates that spatial distance is an important
factor in the transmission of influenza between DAs. It is also evident from Table 2 that our in-
fluenza data are spatially correlated at the health region level, as the spatial dependency (λ ) and
spatial dispersion (σ2) parameters are statistically significant. We also observe that the ME vari-
ances are statistically significant, again suggesting that the results of the naive model are likely not
reliable. The average infectivity rates for the 25 LGAs in Winnipeg over the study period (17 time
points) under both models are displayed in Figure 6. Under the ME model, we observe that central
parts of Winnipeg tend to have high infectivity rates. It is also evident that the LGAs predicted
to have higher infectivity rates of influenza differ between the proposed and naive models, again
suggesting that ignoring ME may lead to misleading conclusions.

6. Conclusion

In this paper, we developed a framework of GD-ILMs that incorporates individual level and areal
level covariates in which some, or all, are measured with error. Of course, the addition of mea-
surement errors to the model introduces further identifiability issues to the epidemic model which
already suffers from over-parametrization. However, despite this, we showed how we can carry out
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Table 2
Table 2. Model parameter estimates and their standard errors (S.E.) for the
proposed and naive models; Influenza data in Winnipeg, Canada, from Jan-
uary 2 to January 15, 2018.

Proposed Naive
Parameter Est. S.E. Est. S.E.
Intercept 0.048 0.031 0.191 0.048

Age 3.234 0.295 4.786 0.225
Indigenous 1.052 0.161 -0.810 0.384

SEFI 0.467 0.151 -0.003 0.076
δ 2.150 0.033 2.192 0.036
σ 0.665 0.019 1.054 0.046
λ 0.575 0.119 0.597 0.116

µIndig 0.072 0.089 — —
σ2

ν 0.101 0.028 — —
µSEFI -0.105 0.032 — —

σ2
η 0.432 0.022 — —

Fig 6
Proposed Naive

Average infectivity rate (x e−3)
0.000 to 0.072
0.072 to 0.141
0.141 to 0.174
0.174 to 0.236
0.236 to 1.377
1.377 to 2.477

Fig. 6. Predicted average rate of infectivity based on the proposed and naive models for influenza
data in Winnipeg, Canada, from January 2 to 15, 2018.
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parameter estimation via the MCECM algorithm. We also showed how the estimation of regression
coefficients can be affected by ignoring ME. Simulation results indicated that the estimated param-
eters for naive model which ignore ME can be highly biased, while the parameters in the proposed
ME model were estimated reasonably well. In addition, we observed that the bias under the naive
model became worse with increasing ME variances.

We also fitted the proposed ME GD-ILM to influenza data collected by Manitoba Health from
January 2 to 15, 2018 on patients diagnosed with influenza type A or B, in the city of Winnipeg
in the province of Manitoba, Canada. We used the 2016 Census to extract important individual-
and area-level covariates. The results showed that individual DAs with more elderly people are
most at risk of contraction of influenza. We also observed that Indigenous people with coefficient
1.052 (SE=0.161) and people with low SES with coefficient 0.467 (SE=0.151) are more at risk of
being infected with influenza when ME was accounted for. We presented maps of influenza risk
throughout the 25 Winnipeg geographic areas through average infectivity rates (Figure 6). Such
information could help policymakers to make effective practical healthcare decisions, perhaps tar-
getting resources at areas which have high average infectivity rates during the course of an ongoing
influenza (or other disease) outbreak.

There are some topics that may be of interest for future work. One can expand our proposed
model to study SEIR (susceptible-exposed-infected-removed) and SEIRS (susceptible-exposed-
infected-removed- susceptible) frameworks that allow us to consider an infectious disease with
a different event history. For instance, in the context of influenza and COVID-19, it is plausible to
use our model within the SEIR, rather than SIR framework, as it has been shown that individuals
go through a latent period (exposed state) of several days after infection before becoming infec-
tious (see e.g., te Beest et al., 2015). As is typical in epidemic models (e.g., Deardon et al., 2010),
our model does not assume a fully susceptible population at time zero. However, one could treat
initial infection as a latent variable to be estimated. Further, in our proposed model, the infectious
period for each individual was assumed to be constant, and the removal time of individuals known.
These assumptions can be relaxed, considering removal times and infectious periods as unknown
variables that need to be estimated. Further, in this study, we used a power-law distance kernel, but
that can be replaced by alternative kernels such as an exponential distance kernel (see, for example,
Chen et al., 2014). The GD-ILMs fitted in this paper were set in discrete time. In future work, this
model can be extended to the continuous time case. This can be done using an MCECM algorithm
similar to that proposed in this paper, or via some alternative computational approaches which have
been implemented for spatial ILMs, such as the Gaussian process emulation methods of Pokharel
and Deardon (2016) or data-sampled likelihood approximation of Malik et al. (2016). Moreover,
we assumed that covariate measurement error, and their corresponding random errors are Gaussian.
These Gaussian distributions can be replaced with, for example, t or skew t distributions depending
on the nature of data. It may also be of interest to study our proposed model from a Bayesian per-
spective (De Angelis et al., 1998), although this would likely come with increased computational
costs.
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Figure 1: Geographical locations of each sampled individual in 25 LGAs of Winnipeg, Mani-

toba, Canada

Figure 2: Estimated parameters based on proposed and naive models in the case of σ2
η = σ2

ν =
0.30 and λ = 0.50.

Figure 3: Convergence of the MCECM iterations for log-likelihood values for one of the sim-
ulated data set in the case of σ2

η = σ2
ν = 0.30 and λ = 0.50.

Figure 4: Influenza epidemics across the 25 LGAs of Winnipeg form January 2 to 15, 2018.
Susceptible, newly infected and removal individual DAs are denoted by grey, red and blue dots,
respectively.

Figure 5: Geographical distribution of influenza incidence rate, and some demographic covari-
ates (proportion of people aged 65 years and up, SEFI and Indigenous rate) based on the 2016
Canadian Census data.

Figure 6: Predicted average rate of infectivity based on the proposed and naive models for in-
fluenza data in Winnipeg, Canada, from January 2 to 15, 2018.
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