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Abstract

Small area estimation has become a very active area of research in statistics. Many models studied in small area
estimation focus on one or more variables of interest from a single survey without paying close attention to the nature
of the covariates. It is useful to utilize the idea of borrowing strength from covariates to build a model which combines
two (or multiple) surveys. In many real applications, there are also covariates measured with errors. In this paper,
we study a nested error linear regression model which has multiple unit- or area-level error-free covariates, possibly
come from administrative records, and multiple area-level covariates subject to structural measurement error where
the data on the latter covariates are obtained from multiple surveys. In particular, we derive empirical best predictors
of small area means and estimators of mean squared error of the predictors of small area means. Performance of the
proposed approach is studied through a simulation study and also by a real application.

Keywords: Conditional distribution; Jackknife; Linear mixed model; Mean squared prediction error; Measurement
error

1. Introduction

Sample surveys are generally conducted to provide reliable estimates of finite population parameters such
as totals, means, counts, quantiles, etc. for the nation, census regions or states. In recent years, there has been
increasing demand to get such estimates for smaller sub-populations (small areas), such as counties or age-sex-race
demographic groups, due to their growing use in formulating policies and programs, allocating government funds,
regional planning, marketing decisions at local level, and other uses. However, sample sizes within small areas are
often too small to warrant the use of traditional area-specific direct estimates.

Different methods have been proposed in the literature to produce reliable estimates of characteristics of interest
for small areas and to obtain measures of error associated with such estimates. These include, among others, the
use of synthetic, composite and/or model-based estimators (Jiang and Lahiri [11]; Datta [5]; Pfeffermann [13]; Rao
and Molina [15]; Jiang [10] ch. 4). Model-based estimators which borrow strength from related areas have been
extensively used in small area estimation (Rao and Molina [15]). In particular, such small area models may be clas-
sified into two broad types: (i) Area-level models that relate design-based small area direct estimates to area-specific
covariates; such models are used if unit-level data are not available. (ii) Unit-level models that relate the unit values
of a study variable to associated unit-level covariates with known covariates area means (obtained, possibly, from
administrative records) and area-specific covariates. A comprehensive account of model-based small area estimation
under area-level and unit-level models is given by Rao and Molina [15]. In this paper, we focus on empirical best
(EB) predictors of small area means under a unit-level nested error linear regression model with measurement errors
in some area-level covariate values.
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Battese et al. [3] and Prasad and Rao [14] used a unit-level nested error linear regression model where the
covariates are measured without errors. However, there are many circumstances where the covariates are subject
to measurement error. In a pioneering paper, Ghosh et al. [8] proposed a nested error linear regression model with a
single area-level covariate, which is an area-level covariate subject to structural measurement error (SME). The best
predictors (BPs) of small area means obtained by these authors do not account for measurement error variation in the
observed covariates, and the EB predictors are then constructed by replacing the unknown model parameters in their
derived BPs by estimators obtained using the method of moments. Ghosh and Sinha [9] studied a similar setup, again
with an area-level covariate, which is subject to functional measurement error (FME). However, the observed values
of the covariate are not properly weighted in the prediction of small area means obtained in these two papers. Torabi
et al. [18] and Datta et al. [6] derived more efficient predictors of small area means by appropriate weighting of the
observed values of the covariate into the prediction, which was done by conditioning on the observed values of the
(random) covariate and the observed data on the response. Arima et al. [1] studied hierarchical Bayes (HB) estimation
under the model with the area-level covariate subject to SME, by choosing suitable priors on the model parameters.
Torabi [16] and Torabi [17] studied EB estimation using survey weights under the nested error model with the area-
level covariate subject to functional and structural measurement errors, respectively. Ybarra and Lohr [19] and Arima
et al. [2] studied area-level models with covariates subject to functional measurement error. In the aforementioned
papers dealing with unit-level models, both the response and the observed covariate values are assumed to come from
the same survey.

In this paper, our goal is to predict the population mean of outcome of interest for each small area with data
collected from more than one cross-sectional survey. From the main survey we collect data of the form {yi j,wi j :
i = 1, . . . ,m; j = 1, . . . , ni} on the response variable yi j and error-free covariates wi j = (wi j1, . . . ,wi jp)>, where m
is the number of small areas, ni is the sample size in the ith area, and p is the number of error-free covariates.
Note that if one or more error-free covariates are area-level covariates, we can absorb those within the vector wi j.
Estimation method for the model parameter for wi j that we propose in Section 3 is equally applicable for area-level
covariates. From the other external surveys, we collect data on other surrogate covariates Xi`, ` = 1, . . . , q, in the form
{Xi`k : i = 1, . . . ,m; ` = 1, . . . , q; k = 1, . . . , ti`}, where from the `th survey a sample of size ti` from the Ti` population
units in small area i is observed. The corresponding population mean of the lth covariate in area i is denoted by
xi`. Units selected in the external surveys are usually different, and the units on which we make measurement of y
and w may not uniquely link to units in an external survey on which we are making measurements on covariates
Xi`, ` = 1, . . . , q. It is anticipated that the area mean γi = N−1

i
∑Ni

j=1 yi j, (i = 1, . . . ,m), where Ni is the population
size of the ith small area, is related to covariates through true area-level covariates means xi`, . . . , xiq. However, the q
population means, xi`, (` = 1, . . . , q), for the m small areas are typically unknown. We need to estimate them from the
unit-level samples {Xi`k : i = 1, . . . ,m; ` = 1, . . . , q; k = 1, . . . , ti`}.

We use the area-level covariate xi = (xi1, . . . , xiq)> to specify a unit-level population model for the response values
yi j as

yi j = β0 + β>1 wi j + β>2 xi + vi + ei j (i = 1, . . . ,m; j = 1, . . . ,Ni). (1)

Further, we specify a measurement error model on the observed covariate values Xi`k as

Xi`k = xi` + ηi`k (i = 1, . . . ,m; ` = 1, . . . , q; k = 1, . . . , ti`), (2)

where xi
i.i.d.
∼ N(µx,Σx) for the SME and xi is fixed but unknown for the FME, assuming that the model (2) is appropri-

ate for simple random sampling within each of the q independent survey. In this paper, our focus is on the SME, and
the FME will be studied in a separate manuscript. Further, the random errors ei j, measurement errors ηi`k, and the area-
level random effects vi are assumed to be mutually independent with ei j

i.i.d.
∼ N(0, σ2

e), ηi`k
ind.
∼ N(0, σ2

η`), (` = 1, . . . , q),

and vi
i.i.d.
∼ N(0, σ2

v). We expect that the sample sizes, ti`, from the other surveys are equal or larger than ni (ti` ≥ ni).
In general, we use the notation φ which collectively includes the unknown model parameters β0,β1,β2,µx,Σx, σ

2
v , σ

2
e ,

and σ2
η, where σ2

η = (σ2
η1, . . . , σ

2
ηq).

Based on the available data d = {(yi j,wi j) : i = 1, . . . ,m; j = 1, . . . , ni; Xi`k : i = 1, . . . ,m; ` = 1, . . . , q; k =

1, . . . , ti`} and the model specified by (1) and (2), we obtain the EB predictor (EBP) of γi, (i = 1, . . . ,m), assuming
that the population model (1) also holds for the sample, that is, no sample selection bias. Under this set-up, the EBP
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does not depend on survey weight, unlike in the case of informative sampling. We first obtain the BP of γi in Section
2. We then obtain the EBP of γi by replacing φ by some suitable estimator φ̂ in the BP (Section 3). In Section 4, we
employ the jackknife method to obtain a nearly unbiased estimator of the mean squared prediction error (MSPE) of
EBP of γi. Section 5 reports the results of a simulation study on the performance of our EBP and associated jackknife
MSPE estimator. The proposed method is applied in Section 6 to predict body mass index (BMI) measured in the U.S.
National Health and Nutrition Examination Survey (NHANES), with auxiliary information wi j from the NHANES
and Xi`k` from the U.S. National Health Interview Survey (NHIS). Finally, some concluding remarks are given in
Section 7. Technical details are deferred to the Appendix.

2. Best predictor

Note that γi is a linear function of yi = (y(1)>
i , y(2)>

i )>, where y(1)
i = (yi1, . . . , yini )

> and y(2)
i = (yi(ni+1), . . . , yiNi )

>.
We also note the independence of (yi, Xi,wi), i = 1, . . . ,m, where Xi = (Xi1, . . . , Xiq)>, Xi` = (Xi`1, . . . , Xi`ti` ,
. . . , Xi`Ti` )

>, ` = 1, . . . , q, and wi = (wi1, . . . ,wiNi )
>. For given φ, we can get the BP (under squared error loss) of

the area mean γi given the sample data y(1)
i , X(1)

i ,w(1)
i as γ̂B

i = E{γi|y(1)
i , X(1)

i ,w(1)
i ,φ}. Let X(1)

i = (X(1)
i1 , . . . , X

(1)
iq )>

where X(1)
i` = (Xi`1, . . . , Xi`ti` )

>, (` = 1, . . . , q) and w(1)
i = (wi1, . . . ,wini )

>. Theorem 1 gives the conditional mean
E{γi|y(1)

i , X(1)
i ,w(1)

i ,φ} and the conditional variance V{γi|y(1)
i , X(1)

i ,w(1)
i ,φ} of γi given y(1)

i , X(1)
i ,w(1)

i , and φ.

Theorem 2.1. Under the nested error model given by (1) and (2), the conditional distribution of γi given y(1)
i , X(1)

i ,w(1)
i

and φ is normal with mean and variance given by

E{γi|y(1)
i , X(1)

i ,w(1)
i ,φ} = (1 − hiBis){ȳi + β>1 (w̄i(P) − w̄i)}

+hiBis{β0 + β>1 w̄i(P) + β>2 µx}

+hiBisβ
>
2 Σx(Σx + Σiη)−1(X̄i − µx) (3)

and
V{γi|y(1)

i , X(1)
i ,w(1)

i ,φ} = hi

{
hiBis(σ2

v + β>2 M−1
i β2) + σ2

e/Ni

}
, (4)

respectively, where hi = 1−ni/Ni, ȳi = n−1
i

∑ni
j=1 yi j, w̄i(P) = N−1

i
∑Ni

j=1 wi j, w̄i = n−1
i

∑ni
j=1 wi j, X̄i = (X̄i1, . . . , X̄iq)>, X̄i` =

t−1
i`

∑ti`
k=1 Xi`k, (` = 1, . . . , q), Σiη = diag(σ2

η1/ti1, . . . , σ
2
ηq/tiq), Mi = Σ−1

iη + Σ−1
x , and

Bis =
σ2

e

σ2
e + ni(σ2

v + β>2 M−1
i β2)

. (5)

Here, the population means w̄i(P)’s are assumed to be known. Proof of Theorem 1 is given in the Appendix.
It follows from (4) that V{γi|y(1)

i , X(1)
i ,w(1)

i ,φ} does not depend on y(1)
i , X(1)

i and w(1)
i . Hence, the mean squared

prediction error (MSPE) of γ̂B
i ,E(γ̂B

i − γi)2, is equal to the conditional variance of γi. Also, note that the right hand
side of (4) depends only on δ which includes β2,Σx,σ

2
η, σ

2
v , σ

2
e . We denote

MSPE(γ̂B
i ) = E(γ̂B

i − γi)2 = g1i(δ),

where g1i(δ) is given by the right hand side of (4). If Ni is large and ni/Ni ≈ 0, then

g1i(δ) ≈ Bis(σ2
v + βT

2 M−1
i β2).
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3. EB predictor

In practice, the model parameters φ are unknown and need to be estimated from the data. Let n =
∑m

i=1 ni and
t` =

∑m
i=1 ti`, (` = 1, . . . , q). We estimate σ2

η`, (` = 1, . . . , q), unbiasedly (assuming t` > m) by

σ̂2
η` = (t` − m)−1

m∑
i=1

ti∑̀
k=1

(Xi`k − X̄i`)2.

A consistent estimator of µx is given by µ̂x = m−1 ∑m
i=1 X̄i.

To estimate Σx, we note that
E(X̄iX̄

>

i ) = µxµ
>
x + Σx + Σiη,

and

E(
m∑

i=1

X̄iX̄
>

i ) = mµxµ
>
x + mΣx +

m∑
i=1

Σiη.

On the other hand,

E(µ̂xµ̂
>
x ) = V(µ̂x) + µxµ

>
x =

1
m

(
Σx +

m∑
i=1

Σiη/m
)

+ µxµ
>
x .

We can then write, based on the two equations above,

E
( m∑

i=1

X̄iX̄
>

i − mµ̂xµ̂
>
x

)
= (m − 1)Σx + (1 − 1/m)

m∑
i=1

Σiη.

A consistent estimator of Σx is

Σ̂x =
1

m − 1

m∑
i=1

(X̄i − µ̂x)(X̄i − µ̂x)> −
1
m

m∑
i=1

Σ̂iη,

where Σ̂iη = diag(σ̂2
η1
/ti1, . . . , σ̂2

ηq
/tiq).

Next, one can estimate β1 using

β̂1 =
{ m∑

i=1

ni∑
j=1

(wi j − w̄)w>i j

}−1{ m∑
i=1

ni∑
j=1

(wi j − w̄)yi j

}
,

where w̄ = n−1 ∑m
i=1 niw̄i. Note that our estimator β̂1 remains valid even if some error-free covariates are area-level

covariates. To obtain an estimator of β2, let

E(S l) = β>2 Σ
(`)
x , (` = 1, . . . , q),

where Σ(`)
x is the `th column of Σx, and

S ` =
1

d` − r`

m∑
i=1

ti`(ȳi − β̂
>

1 w̄i)(X̄i` − X̄`),

where d` = t` −
∑m

i=1 t2
i`/t`, r` =

∑m
i=1 niti`(1 − ti`/t`)w̄>i (SSTW )−1(w̄i − w̄), with SSTW =

∑m
i=1

∑ni
j=1(wi j − w̄)w>i j and

X̄` = t−1
`

∑m
i=1 ti`X̄i`. Hence,

E(S>) = β>2 Σx,

and consequently
β̂2 = Σ̂−1

x S,
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where S = (S 1, . . . , S q)>. A consistent estimator of β0 is then given by

β̂0 = ȳ − β̂
>

1 w̄ − β̂>2 µ̂x,

where ȳ = n−1 ∑m
i=1 niȳi.

The remaining parameters σ2
v and σ2

e are consistently estimated by

σ̂2
v = max

[
0,

m − 1
n −

∑m
i=1 n2

i /n

{
(MSBy −MSWy) − β̂

>

1 (MSBW −MSWW )β̂1

}
− β̂

>

2 Σ̂xβ̂2

]
,

and

σ̂2
e =

∑m
i=1

∑ni
j=1

{
(yi j − ȳi) − β̂

>

1 (wi j − w̄i)
}2

n − m − p
,

where

MSBy = (m − 1)−1
m∑

i=1

ni(ȳi − ȳ)2,

MSBW = (m − 1)−1
m∑

i=1

ni(w̄i − w̄)(w̄i − w̄)>,

MSWy = (n − m)−1
m∑

i=1

ni∑
j=1

(yi j − ȳi)2,

MSWW = (n − m)−1
m∑

i=1

ni∑
j=1

(wi j − w̄i)(wi j − w̄i)>.

A consistent estimator, B̂is, of Bis is obtained from (5) by replacing δ by δ̂. The EB predictor of γi is then given by

γ̂EB
i = (1 − hiB̂is)

{
ȳi + β̂

>

1 (w̄i(P) − w̄i)
}

+ hiB̂is

{
β̂0 + β̂

>

1 w̄i(P) + β̂
>

2 µ̂x

}
+hiB̂isβ̂

>

2 Σ̂x(Σ̂x + Σ̂iη)−1(X̄i − µ̂x). (6)

4. Jackknife estimation of MSPE of EBP of small area means

In this section, we obtain a nearly unbiased estimator of the MSPE of the EB predictor γ̂EB
i . We estimate

MSPE(γ̂EB
i ) = E(γ̂EB

i − γi)2 using the jackknife methods proposed by Jiang et al. [12] and Chen and Lahiri [4]. We
have

MSPE(γ̂EB
i ) = E(γ̂B

i − γi)2 + E(γ̂EB
i − γ̂

B
i )2 + 2E(γ̂B

i − γi)(γ̂EB
i − γ̂

B
i )

=: M1i + M2i + 2M3i, (7)

where M1i = g1i(δ). In the case of SME, we have M3i = 0, noting that the conditional expectation of γi is equal to γ̂B
i .

A plug-in estimator of g1i(δ) is g1i(δ̂). We apply the jackknife method of bias reduction to g1i(δ̂) to get a nearly un-
biased estimator of M1i = g1i(δ). Let φ̂−t be the estimator of φ obtained by deleting the tth area data set (y(1)

t , X(1)
t ,w(1)

t )
from the full data set {(y(1)

i , X(1)
i ,w(1)

i ) : i = 1, . . . ,m} and then applying the method-of-moments. This calculation is
done for each area t in turn to get m estimators of φ as {φ̂−t : t = 1, . . . ,m}. A weighted jackknife estimator of M1i is
given by

M̂1iJν = g1i(δ̂) −
m∑

t=1

νt
{
g1i(δ̂−t) − g1i(δ̂)

}
, (8)
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where νt = 1 + O(m−1) is a suitable weight (Chen and Lahiri [4]). In particular, we use

νt = 1 − a>1t

( m∑
r=1

a1r a>1r

)−1
a1t

where a1t = (1, w̄>t , X̄
>

t )>. An unweighted jackknife estimator of M1i, denoted by M̂1iJ , is obtained by letting νt =

(m − 1)/m , (t = 1, . . . ,m), in (8); (Jiang et al. [12]).
Turning to jackknife estimation of the second term, M2i, in (7), let

γ̂B
i = ki(y(1)

i , X(1)
i ,w(1)

i ,φ)

be the BP of γi expressed as a function of y(1)
i , X(1)

i ,w(1)
i , and φ. Then the EB predictor of γi may be expressed as

γ̂EB
i = ki(y(1)

i , X(1)
i ,w(1)

i , φ̂).

Now replace φ̂ by φ̂−t to get
γ̂EB

i,−t = ki(y(1)
i , X(1)

i ,w(1)
i , φ̂−t), (t = 1, . . . ,m).

A weighted jackknife estimator of M2i is then given by

M̂2iJν =

m∑
t=1

νt(γ̂EB
i,−t − γ̂

EB
i )2. (9)

An unweighted jackknife estimator of M2i, denoted by M̂2iJ , is obtained by letting νt = (m − 1)/m , (t = 1, . . . ,m), in
(9). By taking the sum of (8) and (9), a weighted jackknife estimator of MSPE(γ̂EB

i ) is obtained as

mspeJν(γ̂
EB
i ) = M̂1iJν + M̂2iJν. (10)

An unweighted jackknife estimator of MSPE(γ̂EB
i ) is given by

mspeJ(γ̂EB
i ) = M̂1iJ + M̂2iJ . (11)

The jackknife estimator (10) is nearly unbiased in the sense that its bias is o(m−1) for large m (Jiang et al. [12]).

5. Simulation study

We conduct a simulation study to evaluate the efficiency of the proposed EB predictor γ̂EB
i . To this end,

we assume that the responses yi j for the population units are generated from the model given by (1) and (2) with
β0 = 100, p = q = 2,β1 = (0.1, 0.1)>,β2 = (2, 2)T ,µx = (194, 194)>,Σx = diag(2737, 2737), σ2

v = 16, σ2
e =

100,Ση = diag(25, 25), noting that this set up is similar to Ghosh et al. [8] in the case of single area-level co-
variate from one survey. The population consists of N = 1400 units spread across m = 12 areas of sizes (Ni) :
50, 250, 50, 100, 200, 150, 50, 150, 100, 150, 100, and 50. Sample sizes (ni) within areas for the response variable are
taken as 1, 5, 1, 2, 4, 3, 1, 3, 2, 3, 2 and 1. For the covariates, we use two scenarios (ti` = ni and ti` = 3ni) to evaluate the
impact of larger sample sizes, ti`, for the covariates. We first calculate the MSPE of the best estimator γ̂B

i , given by
(3), assuming the model parameters are known. Table 1 reports MSPE(γ̂B

i ) for the scenarios ti` = ni and ti` = 3ni. As
observed in Table 1, the MSPE(γ̂B

i ) for the larger sample sizes of covariates (ti` = 3ni) are consistently smaller than
the corresponding values for the equal sample sizes (ti` = ni) with the range of MSPE reduction from 19 % to 34 %
across areas.

For the simulation study on MSPE (γ̂EB
i ), we first generate each element of wi j for the population from normal

distribution with mean one and variance one and treat them as fixed in the simulation study. We then generate
R = 5, 000 independent sets of normal variates {v(r)

i : i = 1, . . . ,m}, {e(r)
i j : i = 1, . . . ,m; j = 1, . . . ,Ni} with means zero

and specified variances σ2
v and σ2

e .We also generate {x(r)
i : i = 1, . . . ,m}with mean µx and variance Σx.Using {v(r)

i , e
(r)
i j
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Table 1 MSPE of γ̂B
i for the two scenarios ti` = ni and ti` = 3ni.

Area ni ti` = ni ti` = 3ni

1 1 68.17 45.19
2 5 14.73 11.89
3 1 68.17 45.19
4 2 34.90 24.82
5 4 18.12 14.16
6 3 23.74 17.80
7 1 68.17 45.19
8 3 23.74 17.80
9 2 34.90 24.82

10 3 23.74 17.80
11 2 34.90 24.82
12 1 68.17 45.19

and x(r)
i }, the values y(r)

i j are generated as y(r)
i j = 100 + 0.1wi j1 + 0.1wi j2 + 2x(r)

i1 + 2x(r)
i2 + v(r)

i + e(r)
i j ; i = 1, . . . ,m; j =

1, . . . ,Ni; r = 1, . . . , 5000. The rth simulated population mean for the ith area is given by

γ(r)
i = N−1

i

Ni∑
j=1

y(r)
i j .

Further, η(r)
i`k is generated independently from a normal distribution with mean zero and variance σ2

η` for i =

1, . . . ,m; ` = 1, 2; k = 1, . . . , ti` and the observed covariates are taken as X(r)
i`k = x(r)

i` + η(r)
i`k. From each simulated

population, we draw simple random sample {y(r)
i j : i = 1, . . . ,m; j = 1, . . . , ni} and then, using the sample values {y(r)

i j }

and the covariates values {X(r)
i`k}, γ̂

EB(r)
i is computed for each r = 1, . . . , 5000 for the two scenarios ti` = ni and ti` = 3ni.

The empirical MSPE (EMSPE) of γ̂EB
i is then calculated as

EMSPE(γ̂EB
i ) =

1
R

R∑
r=1

{
γ̂EB(r)

i − γ(r)
i

}2
.

Table 2 shows that γ̂EB
i is substantially more efficient in terms of EMSPE when we use larger sample sizes for the

covariates (ti` = 3ni) compared to the same sample sizes (ti` = ni) with the range of EMSPE reduction from 3 % to 41
% across areas. Note that the result of Table 2 is consistent with the result of Table 1 in a way that the EMSPE of γ̂EB

i
is slightly larger than the corresponding MSPE of γ̂B

i due to the estimation of model parameters.
We also compare the performance of our method with the naive approach that treats the second measurement error

covariate xi2 as an error-free covariate. We obtain the naive EB predictor of γi, denoted by γ̃EB
i , following (6) by

setting measurement error variance for the covariate xi2 as zero. In other words, the data for the naive method are
generated from (1)-(2) where β1 = (β11, β12, β22)>,wi j = (wi j1,wi j2, X̄i2)>, β2 as β21, and xi as xi1. We observe that the
relative efficiency of the proposed EB predictor to the corresponding naive predictor,

{
EMSPE(γ̃EB

i )/EMSPE(γ̂EB
i )

}
,

ranges from 1.20 to 1.50 in the case of ti = ni and decreases from 0.99 to 1.37 as ti increases to 3ni.
To evaluate the magnitude of each term in the EMSPE of γ̂EB

i , we decompose the EMSPE of γ̂EB
i as

EMSPE(γ̂EB
i ) ≡ Mi = M1i + M2i + 2M3i, (12)

where

M1i = R−1
R∑

r=1

{
γ̂B(r)

i − γ(r)
i

}2
,
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Table 2 Empirical MSPE of γ̂EB
i for the two scenarios ti` = ni and ti` = 3ni.

Area ni ti` = ni ti` = 3ni

1 1 74.80 52.98
2 5 16.99 16.54
3 1 76.22 54.64
4 2 38.55 31.35
5 4 21.64 18.98
6 3 26.98 22.94
7 1 75.87 54.76
8 3 27.11 24.21
9 2 40.01 31.94

10 3 27.07 24.12
11 2 40.37 33.55
12 1 74.38 57.59

M2i = R−1
R∑

r=1

{
γ̂EB(r)

i − γ̂B(r)
i

}2
,

and

M3i = R−1
R∑

r=1

{
γ̂B(r)

i − γ(r)
i

}{
γ̂EB(r)

i − γ̂B(r)
i

}
.

Table 3 presents the result on the decomposition of EMSPE. It is clear from Table 3 that the leading term M1i in (12)
makes major contribution to EMSPE for both scenarios ti` = ni and ti` = 3ni. On the other hand, the cross-product
term M3i is negligible relative to M2i which is substantially smaller than M1i.

Table 3 Components of empirical MSPE of γ̂EB
i for the two scenarios ti` = ni and ti` = 3ni.

ti` = ni ti` = 3ni

Area ni Mi M1i M2i M3i Mi M1i M2i M3i
1 1 74.80 65.94 7.94 0.46 52.98 44.00 10.07 -0.54
2 5 16.99 14.30 2.79 -0.06 16.54 12.12 4.16 0.13
3 1 76.22 68.81 7.66 -0.12 54.64 44.78 10.01 -0.07
4 2 38.55 33.88 5.01 -0.17 31.35 23.78 7.65 -0.04
5 4 21.64 18.21 3.26 0.08 18.98 13.94 4.97 0.03
6 3 26.98 22.88 4.01 0.05 22.94 17.52 6.09 -0.33
7 1 75.87 68.66 7.75 -0.27 54.76 45.22 10.09 -0.28
8 3 27.11 23.08 3.92 0.05 24.21 18.12 6.01 0.04
9 2 40.01 34.73 5.02 0.13 31.94 24.55 7.66 -0.14

10 3 27.07 23.59 3.93 -0.22 24.12 18.08 5.97 0.04
11 2 40.37 35.33 5.09 -0.02 33.55 25.36 7.42 0.39
12 1 74.38 66.56 7.60 0.10 57.59 45.93 10.64 0.51

We also study the performance of the weighted and the unweighted jackknife MSPE estimators, mspeJν(γ̂EB
i ) and

mspeJ(γ̂EB
i ), of the EB estimator γ̂EB

i . The relative bias (RB) of a MSPE estimator, mspe, is given by

RB =
E(mspe)
EMSPE

− 1,

8



where E(mspe) is estimated by the average of simulated mspe(r), (r = 1, . . . ,R). Table 4 shows mspeJν given by (10)
performs much better than mspeJ given by (11) in terms of RB. Behaviour of RB for areas 2 and 5 shows large RB for
mspeJ (39.29% for area 2; 34.71% for area 5) for larger covariate sample sizes ti` = 3ni. But for the weighted version,
these relative biases are small: |RB| < 7% for 10 of 12 areas and < 12.5% for all 12 areas in the case of ti` = 3ni.

Table 4 Percent relative bias of jackknife estimators of MSPE of γ̂EB
i for the two scenarios ti` = ni and ti` = 3ni.

ti` = ni ti` = 3ni

Area ni RB[mspeJ(γ̂EB
i )] RB[mspeJν(γ̂EB

i )] RB[mspeJ(γ̂EB
i )] RB[mspeJν(γ̂EB

i )]
1 1 3.12 0.24 10.37 1.94
2 5 33.52 16.44 39.29 12.49
3 1 1.50 -1.47 6.89 -1.26
4 2 10.49 4.17 15.86 1.93
5 4 19.73 6.39 34.71 10.79
6 3 13.87 5.36 24.71 6.40
7 1 2.23 -0.86 7.18 -1.42
8 3 14.16 5.10 17.72 0.16
9 2 5.87 0.18 16.32 0.00

10 3 14.51 5.57 20.00 1.27
11 2 5.57 -0.41 7.22 -5.42
12 1 3.80 0.62 1.37 -6.36

6. Application

In this section, we apply our method to data from the 2013–2014 U.S. NHANES, using the 2014 U.S. NHIS
as auxiliary information. Following Ybarra and Lohr [19], we consider 50 small domains (demographic subgroups)
classified by race and ethnicity (Mexican American, Other Hispanic, White non-Hispanic, Black non-Hispanic and
Other), by age group (20–29, 30–39, 40–49, 50–59 and 60–84), and by sex.

Height and weight for each respondent are measured in the NHANES medical examination, and the BMI is
calculated as weight/height2, in units kg/m2. In the NHIS, by contrast, BMI is calculated using self-reported responses
to the height and weight questions in the interview. Since a respondent may not report height and/or weight accurately,
the NHIS variable for BMI may not be the same as the NHANES BMI. Instead, the NHIS estimates a characteristic
related to BMI and we call this the reported BMI. We expect that the estimates of the reported BMI from the NHIS to
be highly correlated across areas with the estimates of BMI from the NHANES. The 2013–2014 NHANES had BMI
values for 5,588 persons in the demographic subgroups of interest, with domain sample sizes ranging from 31 to 479.
The 2014 NHIS had reported BMI for 35,928 persons, with domain sample sizes between 77 and 4,866.

In addition to the reported BMI as a covariate measured with error from the NHIS, we also consider cholesterol
level (called CHOLES) from the NHIS as another covariate measured with error. To improve direct estimates of the
BMI from NHANES, we also use an error-free covariate current smoker (yes or no) called SMOKE from the same
survey. Hence, our observed data for the analysis are {(yi j,wi j, Xi1k, Xi2k) : i = 1, . . . ,m = 50; j = 1, . . . , ni; k =

1, . . . , ti}, where yi j is BMI and wi j is SMOKE from the NHANES, and (Xi1k, Xi2k) are reported BMI and CHOLES
from the NHIS, respectively.

We estimate the model parameters as β̂0 = 8.79, β̂1 = −1.01, β̂21 = 0.68, β̂22 = −0.90, µ̂x = (30.62, 0.30), Σ̂x =

diag(3.79, 0.03), σ̂2
v = 1.67, σ̂2

e = 46.94 and σ̂2
η = (217.31, 0.18), noting that β1, β21, and β22 refer to SMOKE,

reported BMI, and CHOLES, respectively. To calculate the EB predictors, we need the population mean of error-free
covariate SMOKE for each small area. However, those population means are not known. To address this problem, we
use an EB estimator as proxy to the area mean w̄i(P) = N−1

i
∑Ni

j=1 wi j. We assume that Wi j|θi ∼ Bern(θi), j = 1, . . . ,Ni,

9



and θi|α, a ∼ Beta[aα, a(1 − α)], independently, i = 1, . . . ,m. We then obtain the best estimator

w̄B
i(P) =

1
Ni

{ ni∑
j=1

wi j + (Ni − ni)E(θi|wi1, . . . ,wini )
}
,

of w̄i(P), where

E(θi|wi1, . . . ,wini ; a, α) =

∑ni
j=1 wi j + aα

ni + a
.

Noting that E(
∑ni

j=1 wi j) = niα, we get a moment estimator of α as α̂ = n−1 ∑m
i=1 niw̄i. Further, we estimate a from the

estimating equation

m∑
i=1

( ni∑
j=1

wi j

)2
=

{∑m
i=1 ni(ni − 1)

}
α̂(1 − α̂)

a + 1
+

{ m∑
i=1

ni(ni − 1)
}
α̂2 + niα̂.

We do not know the population size Ni in our application, but the Ni’s are large compared to the corresponding ni.
Hence, we can approximate w̄B

i(P) by w̄∗Bi(P) = E(θi|wi1, . . . ,wini ). Substituting α̂ and â for α and a in w̄∗Bi(P) leads to the
EB estimator w̄EB

i(P) ≈
niw̄i+âα̂

ni+â .
Figures 1 and 2 show the boxplots of EB predictors of small area means and the estimated MSPE of EB predictors

of small area means, respectively. Figure 2 shows that the MSPE estimators for the unweighted and weighted jackknife
approaches are similar. Note that the weight incorporated in the MSE estimator is of order 1/m. This is the reason
for similarity of the two MSE estimators (weighted and unweighted) in the case of relatively large m(= 50); however,
in the simulation study we showed that for small m(= 12), the weighted MSE estimator performed better than the
unweighted MSE estimator.

2
6

2
8

3
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3
4

BMI

Fig. 1 Boxplot of empirical best predictors of small area means using the structural measurement error model.

7. Concluding remarks

We have derived fully efficient empirical best (EB) predictors of small area means under a nested error linear
regression model with multiple error-free unit-level covariates and multiple area-level covariates subject to structural
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Fig. 2 Boxplots of jackknife estimate of MSPE of small area mean predictors using the structural measurement error
model for the unweighted and weighted jackknife approaches.

measurement errors, assuming that the observed covariates can be from other (and possibly bigger) surveys in addition
to the response variable survey. We have also proposed jackknife estimators of the mean squared prediction error
(MSPE) of the EB predictors. We have shown through a simulation that using covariates with possibly larger sample
sizes is more efficient than using the same sample sizes associated with the response variable in terms of empirical
MSPE of EB predictors. We have also observed that our proposed approach is more efficient than the naive approach,
which ignores the measurement errors in a covariate, in terms of empirical MSPE of the EB predictors.

Supplementary Materials

The supplementary materials provide R codes and corresponding readme files as well as related datasets for the
simulation and application conducted in this paper.
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Appendix

Proof of Theorem 2.1. For j = ni + 1, . . . ,Ni, we have

E
{
yi j|y(1)

i , X(1)
i ,w(1)

i ,φ
}

= β0 + β>1 wi j + E
{
β>2 xi + vi|y(1)

i , X(1)
i ,w(1)

i ,φ
}
.

One can also write

E
{
vi|xi, y(1)

i , X(1)
i ,w(1)

i ,φ
}

=
σ2

v

σ2
v + σ2

e/ni

(
ȳi − β0 − β

>
1 w̄i − β

>
2 xi

)
.

We then have
E
{
yi j|y(1)

i , X(1)
i ,w(1)

i ,φ
}

= β0 + β>1 wi j+
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E
[{
β>2 xi +

σ2
v

σ2
v + σ2

e/ni
(ȳi − β0 − β

>
1 w̄i − β

>
2 xi)

}
|y(1)

i , X(1)
i ,w(1)

i ,φ
]
. (A. 1)

Next, we predict xi. The best predictor of xi is given by E{xi|y(1)
i ,X(1)

i }, denoted by x̂i. Due to normal distribution
theory, x̂i is obtained by minimizing

Q(xi) = {r(1)
i − 1niβ

>
2 xi}

>(σ2
e Ini + σ2

v Jni )
−1{r(1)

i − 1niβ
T
2 xi}+

(xi − X̄i)>Σ−1
iη (xi − X̄i) + (xi − µx)>Σ−1

x (xi − µx),

where r(1)
i = y(1)

i − β01ni − w(1)
i β1. We solve ∂Q(xi)

∂xi
= 0 to find x̂i. After some algebra and simplification, we obtain

x̂i = X̄i −
(
Ini + ΣiηΣ

−1
x +

ni

σ2
e + niσ2

v
Σiηβ2β

>
2

)−1{
ΣiηΣ

−1
x (X̄i − µx)−

niΣiηβ2

σ2
e + niσ2

v
(ȳi − β0 − β

>
1 w̄i − β

>
2 X̄i)

}
,

and then, after further simplification,

β>2 x̂i = β>2 X̄i −
( σ2

e + niσ
2
v

σ2
e + niσ2

v + niβ
>
2 H−1

i Σiηβ2

)
β>2 Σiη(Σx + Σiη)−1(X̄i − µx)+

( niβ
>
2 H−1

i Σiηβ2

σ2
e + niσ2

v + niβ
>
2 H−1

i Σiηβ2

)(
ȳi − β0 − β

>
1 w̄i − β

>
2 X̄i

)
,

where Hi = Ini + ΣiηΣ
−1
x . We can then write

ȳi − β0 − β
>
1 w̄i − β

>
2 x̂i = (ȳi − β0 − β

>
1 w̄i − β

>
2 X̄i)

+
( σ2

e + niσ
2
v

σ2
e + niσ2

v + niβ
>
2 H−1

i Σiηβ2

){
β>2 Σiη(Σx + Σiη)−1(X̄i − µx)

}
−
( niβ

>
2 H−1

i Σiηβ2

σ2
e + niσ2

v + niβ
>
2 H−1

i Σiηβ2

)(
ȳi − β0 − β

>
1 w̄i − β

>
2 X̄i

)
.

=
( σ2

e + niσ
2
v

σ2
e + niσ2

v + niβ
>
2 H−1

i Σiηβ2

){
ȳi − β0 − β

>
1 w̄i − β

>
2 µx − β

>
2 Σx(Σx + Σiη)−1(X̄i − µx)

}
.

Hence, for j = ni + 1, . . . ,Ni, using (A. 1) we can write, after some simplification,

E
{
yi j|y(1)

i , X(1)
i ,w(1)

i ,φ
}

= β0 + β>1 wi j

+
{ σ2

e

σ2
e + ni(σ2

v + β>2 H−1
i Σiηβ2)

}[
β>2 {Σx(Σx + Σiη)−1X̄i + Σiη(Σx + Σiη)−1µx}

]
+

{ ni(σ2
v + β>2 H−1

i Σiηβ2)

σ2
e + ni(σ2

v + β>2 H−1
i Σiηβ2)

}
(ȳi − β0 − β

>
1 w̄i). (A. 2)

Hence, the best estimator of γi is

γ̂B
i = E

{
γi|y(1)

i , X(1)
i ,w(1)

i ,φ
}

=
ni

Ni
ȳi +

1
Ni

Ni∑
j=ni+1

E
{
yi j|y(1)

i , X(1)
i ,w(1)

i ,φ
}
,

which leads to (3) by substituting (A. 2) in the above equation.
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Moreover, to get V
{
γi|y(1)

i , X(1)
i ,w(1)

i ,φ
}
, we can write

V
{
γi|y(1)

i , X(1)
i ,w(1)

i ,φ
}

=
(Ni − ni

Ni

)2[
V
{
β>2 xi + vi|y(1)

i , X(1)
i ,w(1)

i ,φ
}

+ σ2
e/(Ni − ni)

]
. (A. 3)

However, to get V
{
βT

2 xi + vi|y(1)
i , X(1)

i ,w(1)
i ,φ

}
, we need to find the joint distribution of (vi, xi) conditional on the data.

In particular, noting that

f (vi, xi|y(1)
i , X(1)

i ,w(1)
i ,φ) ∝ exp

[−1
2

{ ni

σ2
e

(ȳi − β0 − β
>
1 w̄i − β

>
2 xi − vi)2 +

v2
i

σ2
v

+(X̄i − xi)>Σ−1
iη (X̄i − xi) + (xi − µx)>Σ−1

x (xi − µx)
}]
.

We get

−
∂2log f (vi, xi|y(1)

i , X(1)
i ,w(1)

i ,φ)

∂v2
i

= (σ2
e/ni)−1 + σ−2

v ,

−
∂2log f (vi, xi|y(1)

i , X(1)
i ,w(1)

i ,φ)
∂xi∂x>i

= (σ2
e/ni)−1β2β

>
2 + Σ−1

iη + Σ−1
x ,

−
∂2log f (vi, xi|y(1)

i , X(1)
i ,w(1)

i ,φ)
∂vi∂xi

= β2(σ2
e/ni)−1.

Using the property of multivariate normal distribution, the variance-covariance matrix is the inverse of the Hessian
matrix of the negative log-density, we obtain

V
{ ( vi

xi

)
|y(1)

i , X(1)
i ,w(1)

i ,φ
}

=

 (σ2
e/ni)−1 + σ−2

v (σ2
e/ni)−1β>2

β2(σ2
e/ni)−1 (σ2

e/ni)−1β2β
>
2 + Mi


−1

,

where Mi = Σ−1
iη + Σ−1

x . After some algebra and simplification, we have

V
{ ( vi

xi

)
|y(1)

i , X(1)
i ,w(1)

i ,φ
}

=


σ2

v (σ2
e/ni+β

>

2 M−1
i β2)

σ2
v+σ2

e/ni+β
>

2 M−1
i β2

−σ2
vβ
>

2 M−1
i

σ2
e/ni+σ

2
v+β>2 M−1

i β2

−M−1
i β2σ

2
v

σ2
e/ni+σ

2
v+β>2 M−1

i β2

M−1
i −

M−1
i β2β

>

2 M−1
i

σ2
e/ni+σ

2
v+β>2 M−1

i β2

 .
Hence, we get, after further simplification,

V
{
vi + β>2 xi|y(1)

i , X(1)
i ,w(1)

i ,φ
}

=
(σ2

e/ni)(σ2
v + β>2 M−1

i β2)

σ2
e/ni + σ2

v + β>2 M−1
i β2

(A. 4)

= Di(σ2
v + β>2 M−1

i β2) = g1i(δ).

Now substituting (A. 4) in (A. 3), we get (4) which completes the proof of Theorem 2.1.
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