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Abstract: Mixed models are commonly used for the analysis of small area estimation. In particular, small
area estimation has been extensively studied under linear mixed models. Recently, small area estimation
under the linear mixed model with penalized spline (P-spline) regression model, for fixed part of the model,
has been proposed. However, in practice there are many situations that we have counts or proportions in
small areas; for example a dataset on the number of asthma physician visits in small areas in Manitoba. In
particular, the covariates age, genetic, environmental factors, among other covariates seem to predict asthma
physician visits, however, these relationships may not be linear (see Section 5). In this paper, small area
estimation under generalized linear mixed models using P-spline regression models is proposed to cover
Normal and non-Normal responses. In particular, the empirical best predictor of small area parameters
with corresponding prediction intervals are studied. The performance of the proposed approach is evaluated
through simulation studies and also by a real dataset. The Canadian Journal of Statistics xx: 1–14; 2014
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1. INTRODUCTION

Small area estimation has received considerable attention due to growing demand for reliable
small area statistics. Rao (2003), Jiang and Lahiri (2006) and Jiang (2010) have given com-
prehensive accounts of model-based small area estimation. In particular, area level model (Fay
and Herriot, 1979) and nested error linear regression model (Battese, Harter, and Fuller, 1988)
are often used in small area estimation to obtain efficient model-based estimators of small area
means.

Most of the research in small area estimation has focused on parametric models, and the
research based on non-parametric models in the context of small area estimation is limited. Op-
somer et al. (2008) extended the linear mixed model approach in the context of small area es-
timation to the case in which a linear relationship may not be assumed using penalized splines
(P-splines) regression. From a very different perspective, Chambers and Tzavidis (2006) stud-
ied an approach for small area estimation that is based on M-quantile regression which allows
for models robust to outliers and to distributional assumptions on the errors and the area ef-
fects. However, when the functional form of the relationship between the q-th M-quantile and
the covariates is not linear, it can lead to biased estimates of the small area parameters. An
extended version of this approach for the estimation of the small area distribution function us-
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ing a non-parametric specification of the conditional M-quantile of the response variable given
the covariates has been also studied (Pratesi, Ranalli, and Salvati, 2008, 2009; Salvati, Ranalli,
and Pratesi, 2011). Jiang, Nguyen, and Rao (2010) developed an adaptive fence procedure for
the non-parametric model selection using P-spline models. Sperlich and José Lombardı́a (2010)
used local polynomial inference in the context of small area estimation.

However, there are many applications in small area estimation where responses are counts
or proportions. In particular, one may be interested to analyze the number of incidences in small
areas; for example a dataset on the number of asthma physician visits in small areas in Manitoba
(see Section 5) where the covariates age, genetic, environmental factors, among other covariates
may not be linear to predict asthma physician visit rates. The aim of this paper is to develop
a unified analysis of both discrete and continuous responses using P-spline regression models.
These types of models fall in the class of generalized linear mixed models (GLMMs). It is well
known that the frequentist analysis of these models is computationally difficult.

There are some approximate methods, based on the frequentist paradigm, for analyzing
GLMMs such as Penalized quasi-likelihood (PQL), Laplace approximation, Gauss-Hermite
quadrature among other approaches. Recently, Lele, Dennis, and Lutscher (2007) introduced
an approach, called data cloning (DC), to compute the maximum likelihood (ML) estimates and
their corresponding standard errors for general hierarchical models. Data cloning is a computing
algorithm based on Markov Chain Monte Carlo (MCMC) methods. Lele, Nadeem, and Schmu-
land (2010) described an approach to compute prediction and prediction intervals for the random
effects in the class of GLMMs. Torabi and Shokoohi (2012) used DC approach in the context
of small area estimation to study cross-sectional and time-series models, and Baghishani and
Mohammadzadeh (2011) used the DC method in the context of spatial GLMMs.

We use DC to analyze our proposed non-parametric mixed models for Normal and non-
Normal responses in the context of small area estimation. This paper is organized as follows.
Non-parametric mixed models are described in Section 2. In Section 3, we describe how DC can
be used to estimate model parameters and also to obtain prediction and prediction intervals of
small area parameters. The performance of proposed approach is reported through several simu-
lation studies in Section 4 with also comparing DC and its competitor PQL, noting that PQL is
the only approximate approach which has the package in R and can handle the complicated struc-
ture of our non-parametric GLMMs. In Section 5, a real application of our proposed approach is
also explored. Some concluding remarks are given in Section 6.

2. NON-PARAMETRIC MIXED MODELS

A unit level regression model can be described as follows. Let yij be the variable of interest
for the j-th observation in a given area i(j = 1, ..., ni; i = 1, ...,m). The yij are assumed to be
conditionally independent, given random effects, with exponential family p.d.f.

f(yij |θij , ϕij) = exp[{yijθij − a(θij)}/ϕij + b(yij , ϕij)], (1)

(j = 1, ..., ni; i = 1, ...,m). The density (1) is parameterized with respect to the canonical pa-
rameters θij , known scale parameters ϕij and functions a(·) and b(·). The exponential family
(1) covers well-known distributions including Normal, binomial and Poisson distributions. The
natural parameters θij for non-parametric P-spline regression models are then modeled as

h(µij) = θij = m0(xij) + νi + uij , (j = 1, ..., ni; i = 1, ...,m), (2)

where µij = E(yij |θij , ϕij), h is a strictly increasing function, νi
i.i.d.∼ N(0, σ2

v) and uij
i.i.d.∼

N(0, σ2
u) are area specific and unit-level random effects, respectively, and m0(xij) is unknown
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but, if this function is to be estimated by using P-splines, can be approximated sufficiently well
by

m0(xij ;β,γ) = β0 + β1xij + · · ·+ βpx
p
ij +

L∑
l=1

γl(xij − κl)
p
+, (3)

where p is the degree of the spline, (x)p+ denotes the function xpI{x>0}, with I(·) as an indicator
function, xij is a known value, {κ1, . . . , κL} is a set of fixed knots, β = (β0, β1, . . . , βp)

′ and
γ = (γ1, . . . , γL)

′ are the regression coefficients of parameters and P-spline parts of the model,
respectively, L is the number of spline knots, and γl

i.i.d.∼ N(0, σ2
γ), (l = 1, . . . , L). It is well

known that with spreading out the location of knots sufficiently over the range of xij and with
large enough L, the class of P-spline approximation is very large and can approximate most
smooth functions (Eilers and Marx, 1996; Boor, 2001). It is recommended to use the number of
spline knots (L) as the minimum of 40 and the number of unique xij’s divided by 4 (Ruppert,
2002); we also use this criterion in our paper. We refer to Ruppert, Wand, and Carroll (2003) for
more details of P-spline models.

As a special case, under Normal distribution, h(µij) = µij = θij , the unit level non-
parametric P-spline linear mixed model is obtained where uij’s are sampling errors which are
normally distributed with zero mean and variance σ2

u. The random variables (γl, νi, uij) are also
assumed to be independent of each other. Opsomer et al. (2008) used restricted maximum likeli-
hood approach to estimate the model parameters. They calculated empirical best linear unbiased
predictor (EBLUP) of small area mean θi using

θ̂i = β̂0 + β̂1X̄i + · · ·+ β̂pX̄
p
i +

L∑
l=1

γ̂lE(xij − κl)
p
+ + ν̂i,

with X̄i as the mean of population units xij in area i, and E(·) stands for the expectation. They
also provided mean squared prediction error (MSPE) of θ̂i and the corresponding MSPE estima-
tion.

3. FREQUENTIST INFERENCE

Let y = (y1, ...,ym)′ be the observed data vector and, conditionally on the random effects, as-
sume that the elements of y are independent and drawn from a distribution in the exponential
family with parameters β where yi = (yi1, ..., yini)

′, (i = 1, ...,m). It is also assumed that dis-
tribution for random effects depends on parameters (σ2

ν , σ
2
γ , σ

2
u). The goal of the analysis is to

estimate the model parameters α = (β, σ2
ν , σ

2
γ , σ

2
u)

′ and predict the small area parameters θij or
its variant.

As the DC approach uses Bayesian tools to make an inference, we start with standard
Bayesian approach for our hierarchical model. Denote L(α;y) as likelihood of α given y and
π(α) as prior distribution on the parameter space. The posterior distribution π(α|y) is given by

π(α|y) = L(α;y)π(α)

C(y)
, (4)

where C(y) =
∫
L(α;y)π(α)dα is the normalizing constant. There are computational tools,

MCMC algorithms, that facilitate generation of random variates from the posterior distribu-
tion π(α|y) without computing the integrals in the numerator or the denominator of (4) (Gilks,
Richardson, and Spiegelhalter, 1996; Spiegelhalter, Abrams, and Myles, 2004).
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The DC method uses the Bayesian computational approach for frequentist purposes. In DC,
the observations y are repeated independently by K different individuals and all these individ-
uals happened to have the same set of observations y called y(K) = (y,y, ...,y). The posterior
distribution of α conditional on the data y(K) is then given by

πK(α|y(K)) =
{L(α;y)}Kπ(α)

C(y(K))
, (5)

where C(y(K)) =
∫
{L(α;y)}Kπ(α)dα is the normalizing constant. The expression

{L(α;y)}K is the likelihood for K copies of the original data. The following Theorem states
that how one can use the likelihood of K copies of the original data to make an inference based
on the MLE.

Theorem 1. Consider the general models (1)-(3). Under some regularity conditions, as K
becomes large, the distribution in (5) converges to a multivariate Normal distribution with mean
equal to the MLE of the model parameters and variance-covariance matrix equal to 1/K times
the inverse of the Fisher information matrix for the MLE.

Proof. The proof follows along the lines of (Walker, 1969), Lele, Dennis, and Lutscher
(2007) and Lele, Nadeem, and Schmuland (2010). ■

Hence, the sample mean vector of the generated random numbers from (5) provides the MLE
of the model parameters and K times their sample variance-covariance matrix is an estimate of
the asymptotic variance-covariance matrix for the MLE α̂. Lele, Nadeem, and Schmuland (2010)
also provided various checks to determine the adequate number of clones (K). For instance, one
may plot the ratio of largest eigenvalue of the posterior variance of K clones to the eigenvalue
of the posterior variance of one clone as a function of the number of clones K to determine if
the posterior distribution has become nearly degenerate. As another criterion, it is approximately
true that as we increase the number of clones,

(α− ᾱ)
′
V −1(α− ᾱ) ∼ χ2

q, (6)

where ᾱ and V are the mean and the variance of the posterior distribution of α, respec-
tively, and q is the dimension of α. One may also compute the following two statistics: a)
ζ = 1

B

∑B
b=1(Ob − Eb)

2, where Ob and Eb are observed and estimated quantiles for χ2
q random

variable, and b) r̃2 = 1− ρ2, where ρ is the correlation between (O,E). If these statistics are
close to zero, it indicates that the approximation (6) is reasonable. Note that the above three cri-
teria have been implemented in the dclone package (Sólymos, 2010), a freely available package
created for R (R Development Core Team, 2012), which will be used in our simulation studies
as well as in our application.

3.1. Prediction of small area parameters
Prediction of small area parameters (random effects), particularly from the frequentist viewpoint,
is problematic. If the parameters α are known, then one can clearly use the conditional distri-
bution of Θ = (θ11, ..., θmnm), the latent variables, given the observed data. That is, to predict
Θ = θ, one can use π(θ|y,α∗) where α∗ is the true value of the parameter. A naive approach,
when α is estimated using the data, is to use π(θ|y, α̂). However, this approach does not take
into account the variability introduced by the model parameters estimate. An approach that has
been suggested in the literature (e.g., Hamilton, 1986; Lele, Nadeem, and Schmuland, 2010) to
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take into account the variation of the estimators is to use the density:

π(θ|y) =
∫
f(y|θ,β)g(θ|σ2

ν , σ
2
γ , σ

2
u)ϕ(α, α̂, I

−1(α̂))dα

C(y)
, (7)

where g(·) is a multivariate Normal distribution in our set-up and ϕ(., µ,Σ) denotes a multivari-
ate Normal density with mean µ and variance-covariance Σ, which are equal to the MLE and the
inverse of the Fisher information matrix here. In this paper, we obtain prediction and prediction
intervals for random effects ψ using the density in equation (7) along with MCMC sampling,
noting that one can use the same approach to predict variants of θij , (j = 1, ..., ni; i = 1, ...,m).

In this paper, for the DC analysis, the Normal prior distributions were used for fixed parame-
ters with mean 0 and variance 106, and uniform distribution between 0 and 1000 for the standard
deviations. Since the DC is invariant to the priors, one may use different priors. To monitor the
convergence of the model parameters, we used several diagnostic methods implemented in the
Bayesian output analysis (BOA) program (Smith, 2007) in R. We also used diagnostic methods
implemented in the dclone package (Sólymos, 2010), which described in Section 3, to monitor
the convergence of the model parameters in terms of number of clones K.

4. SIMULATION STUDY

4.1. Non-parametric linear mixed model
We conduct a simulation study to evaluate the performance of proposed approach in the non-
parametric linear mixed model set-up. We use the following true non-parametric area-level model
to generate samples for the simulation study

yi = m0(xi) + νi + ui, (i = 1, ...,m),

where m = 100 is number of areas, νi
i.i.d.∼ N(0, σ2

ν) and ui
i.i.d.∼ N(0, σ2

u) with known σ2
u = 1,

and three different choices of m0(x) : 1. m0(x) = 1 + x (linear), 2. m0(x) = 1 + x+ x2

(quadratic), and 3. m0(x) = 1− x+ 0.5 exp(x) (exponential 1) as used by Breidt, Claeskens,
and Opsomer (2005) as well as Rao, Sinha, and Dumitrescu (2014). We also generate the
xi(i = 1, ...,m) from Normal distribution with mean one and variance one once and treat them
fixed in the simulation study. For the simulation study, we use the linear P-spline approxima-
tion (p = 1) for m0(xi). Following Ruppert (2002), the number of knots set to be L = 25.

We generate R = 1000 independent samples {(y(r)i , xi), i = 1, ..., 100; r = 1, ..., 1000} where
y
(r)
i = m0(xi) + ν

(r)
i + u

(r)
i , ν

(r)
i and u

(r)
i are generated from the corresponding Normal dis-

tributions of νi and ui with σ2
ν = σ2

u = 1. For each simulated run, we apply the method of
DC to get the MLE of the model parameters and also to provide the prediction and pre-
diction intervals of the EPLUP of small area means θ

(r)
i = m0(xi) + ν

(r)
i , (r = 1, ..., R), us-

ing θ̂
(r)
i = β̂

(r)
0 + β̂

(r)
1 xi +

∑25
l=1 γ̂

(r)
l (xi − κl)+ + ν̂

(r)
i with γl

i.i.d.∼ N(0, σ2
γ). We also com-

pare our proposed P-spline regression model with the corresponding parametric model θ̂(r)i,p =

β̂
(r)
0 + β̂

(r)
1 xi + ν̂

(r)
i . For this simulation set-up, the average number of clones was K = 10 to

obtain MLE, and the average number of iterations for convergence of the model parameters was
about 50,000 for our P-spline regression model. We calculate the empirical MSPE of θ̂i as

EMSPE(θ̂i) =
1

R

R∑
r=1

{θ̂(r)i − θ
(r)
i }2,
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TABLE 1: Average EMSPE of small area means by data cloning approach, P-spline and parametric
approaches for three different models (linear, quadratic, and exponential 1) in the case of linear mixed

model.

True model Method

P-spline Parametric

Linear 0.526 0.525

Quadratic 0.541 0.785

Exponential 1 0.552 0.864

TABLE 2: Percent average absolute relative bias of estimators of MSPE of small area means by data
cloning approach, P-spline and parametric approaches for three different models (linear, quadratic, and

exponential 1) in the case of linear mixed model.

True model Method

P-spline Parametric

Linear 7.32 7.26

Quadratic 6.20 13.16

Exponential 1 6.89 12.73

and the relative bias of an estimator of the MSPE, say mspe, as

RB[mspe(θ̂i)] =
{ 1

R

R∑
r=1

mspe(r)(θ̂i)− EMSPE(θ̂i)
}
/EMSPE(θ̂i),

where θ̂
(r)
i , θ

(r)
i , and mspe(r)(θ̂i) are the values of θ̂i, θi, and mspe(θ̂i) for the r-th simulation

batch, respectively. Note that mspe(θ̂i) is the variance of θ̂i calculated by (7).
The results of average EMSPE over areas for the three different models (linear, quadratic,

exponential 1) of P-spline and parametric approaches are reported in Table 1. As shown in Ta-
ble 1, the values of EMSPE are stable for the P-spline approach for the three different models
while these values are increased for the parametric approach from the linear to the quadratic and
also from the quadratic to the exponential 1 model. The results of average absolute relative bias
(AARB) of mspe over areas for the three different models and the two approaches (P-spline and
parametric) are also reported in Table 2. The proposed P-spline approach performs very well in
terms of AARB(< %8) for the all three models while these values for the quadratic and expo-
nential 1 in the case of parametric approach are 13.2% and 12.7%, respectively.

We also study the performance of precision of EBLUP of small area means by providing
corresponding prediction intervals using DC approach. To this end, for each simulation run r,
we calculate θ

(r)
i and compute appropriate quantiles α and (1− α) of the posterior distribution

of θ̂(r)i using (7). In particular, the coverage probabilities of the θ̂i is the proportion of the times
(over R = 1000) that θ(r)i falls within (θ̂

(r)
i (α), θ̂

(r)
i (1− α)). Table 3 shows the average coverage

probabilities and average lengths of prediction intervals of the estimates of small area means for
the P-spline and parametric approaches for the three different models. The proposed P-spline
approach also performs very well in terms of average coverage probabilities of the EBLUP of
small area means for the all three different models. The corresponding parametric method also
performs well in terms of coverage probabilities of the θ̂i.
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TABLE 3: Average coverage probabilities (and average lengths) of small area means with different
confidence coefficients by data cloning approach, P-spline and parametric approaches for three different

models (linear, quadratic, and exponential 1) in the case of linear mixed model.

True model Method
Confidence coefficient (average lengths)

0.90 0.95 0.98 0.99

Linear P-spline 0.882 (2.288) 0.936 (2.726) 0.971 (3.235) 0.983 (3.582)

Parametric 0.882 (2.286) 0.936 (2.725) 0.971 (3.234) 0.983 (3.581)

Quadratic P-spline 0.886 (2.335) 0.939 (2.783) 0.972 (3.303) 0.984 (3.657)

Parametric 0.895 (2.868) 0.945 (3.417) 0.976 (4.055) 0.987 (4.489)

Exponential 1 P-spline 0.884 (2.339) 0.937 (2.787) 0.971 (3.308) 0.984 (3.663)

Parametric 0.897 (2.962) 0.945 (3.529) 0.973 (4.188) 0.983 (4.636)

We should point out that in the non-parametric linear mixed model proposed by Opsomer
et al. (2008), we need to analytically derive tedious algebra to get mspe(θ̂i), while in DC ap-
proach, not only can we easily get mspe(θ̂i), but also we can get the corresponding prediction
intervals for θ̂i.

4.2. Non-parametric logistic mixed model
We also conduct a simulation study to evaluate the performance of proposed approach in the non-
parametric logistic mixed model set-up. To our knowledge, the glmmPQL function in MASS
package in R is the only existing package to be able to handle our non-parametric GLMMs.
We then compare the performance of both DC and PQL methods in our non-parametric logistic
mixed model. To that end, we first generate R = 2000 independent samples:

y
(r)
i,s ∼ Binomial(ni, µ

(r)
i ) (8)

log(
µ
(r)
i

1− µ
(r)
i

) = m0(xi) + ν
(r)
i , (i = 1, ...,m),

with ν
(r)
i

i.i.d.∼ N(0, σ2
ν), and three different choices of m0(x) as linear (−0.1 + 0.01x),

quadratic (−0.1 + 0.01x+ 0.01x2) and exponential 1 (−0.1 + 0.01x+ 0.1 exp(x)). We set
ni = 5,m = 100, and xi’s are generated from uniform distribution between −10 and 0 once
and treat them fixed in the simulation study. Using the simulated datasets {(y(r)i,s , xi), i =

1, ..., 100; r = 1, ..., 2000} with σ2
ν = 1, we apply the approaches of DC and PQL to estimate

the model parameters and also to predict the small area proportion µ̂i for each simulation run r
using

log(
µ̂
(r)
i

1− µ̂
(r)
i

) = β̂0 + β̂1xi +
25∑
l=1

γ̂l(xi − κl)+ + ν̂i, (i = 1, ..., 100).

For the DC in this simulation set-up, the average number of clones was K = 20 to obtain MLE
and the average number of iterations for convergence of the model parameters was about 50,000.

Similar to the linear mixed model, we also study the EMSPE of µ̂i, RB of mspe(µ̂i), and the
average coverage probabilities of µ̂i. We report the average EMSPE of small area proportions
over areas for the three different models and two approaches PQL and DC (Table 4). It is clear
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TABLE 4: Average EMSPE of small area proportions over areas by penalized quasi-likelihood (PQL) and
data cloning (DC) approaches for our P-spline logistic mixed model.

True model Average EMSPE

DC PQL

Linear 0.022 0.244

Quadratic 0.022 0.207

Exponential 1 0.022 0.245

TABLE 5: Percent average absolute relative bias of estimators of MSPE of small area proportions over
areas by data cloning approach for our P-spline logistic mixed model.

True model RB(%)

Linear 6.63

Quadratic 6.98

Exponential 1 7.43

TABLE 6: Average coverage probabilities (and average lengths) of small area proportions over areas with
different confidence coefficients by data cloning approach for our P-spline logistic mixed model.

True model
Confidence coefficient (average lengths)

0.90 0.95 0.98 0.99

Linear 0.885 (0.468) 0.939 (0.543) 0.974 (0.621) 0.986 (0.669)

Quadratic 0.884 (0.467) 0.938 (0.542) 0.972 (0.620) 0.985 (0.668)

Exponential 1 0.884 (0.467) 0.938 (0.542) 0.972 (0.620) 0.985 (0.668)

from Table 4 that the EMSPE of PQL is almost 10 times bigger than corresponding values in
the DC method. The AARB of MSPE estimator of small area proportions over areas for the
three different models for the DC approach is also provided in Table 5, noting that the PQL
(glmmPQL function in R) can’t provide the MSPE estimator of small area proportions. Similar
to the linear mixed model, the DC also performs very well for our P-spline approach in terms of
AARB (< %8) as shown in Table 5 for the all three models. The results of the average coverage
probabilities and average lengths of small area proportions and different coefficients are also
given in Table 6 for the three different models. The DC approach also performs very well for our
P-spline approach in terms of coverage probabilities and average lengths of prediction intervals
of the small area proportions for different confidence coefficients and for the all three different
models, noting that we are unable to provide prediction intervals of small area proportions for
the PQL method using glmmPQL function in R.

4.3. Non-parametric Poisson mixed model
We also conduct a simulation study to evaluate the performance of proposed approach in the non-
parametric Poisson mixed model set-up. To that end, we first generate R = 1000 independent
samples:

y
(r)
i ∼ Poisson(Niµ

(r)
i ) (9)
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TABLE 7: Average EMSPE of small area rates over areas by data cloning approach for our P-spline
Poisson mixed model.

True model Average EMSPE

Linear 3.691

Quadratic 4.472

Exponential 1 3.753

TABLE 8: Percent average absolute relative bias of estimators of MSPE of small area rates over areas by
data cloning approach for our P-spline Poisson mixed model.

True model RB(%)

Linear 8.12

Quadratic 6.74

Exponential 1 7.46

log(µ
(r)
i ) = m0(xi) + ν

(r)
i , (i = 1, ...,m),

with ν
(r)
i

i.i.d.∼ N(0, σ2
ν), offset Ni = 3, number of areas m = 50, and three different choices of

m0(x) as linear (−0.1 + 0.01x), quadratic (−0.1 + 0.01x+ 0.1x2) and exponential 1 (−0.1 +
0.01x+ 0.1 exp(x)). The xi’s are generated from uniform distribution between -10 and 0 once
and treat them fixed in the simulation study. The true small area rate of i−th area for each
simulation run r is µ(r)

i . Using the simulated datasets {(y(r)i , xi), i = 1, ..., 50; r = 1, ..., 1000}
with σ2

ν = 1, we apply the DC approach to estimate the model parameters and also to predict the
small area rate µi for each simulation run r using

log(µ̂
(r)
i ) = β̂

(r)
0 + β̂

(r)
1 xi +

13∑
l=1

γ̂
(r)
l (xi − κl)+ + ν̂

(r)
i , (i = 1, ..., 50).

For the DC approach in this simulation set-up, the average number of clones was K = 20 to
obtain MLE and the average number of iterations for convergence of the model parameters was
about 50,000 in our P-spline model.

Similar to the other simulation studies (Sections 4.1 and 4.2), we also study the EMSPE
of µ̂i, RB of mspe(µ̂i), and the average coverage probabilities of µ̂i. We report the average
EMSPE of small area rates over areas for the three different models using the DC approach
for our P-spline model (Table 7). The AARB of MSPE estimator of small area rates over areas
for the three different models for the DC approach is also provided in Table 8. Similar to the
previous simulation studies, the DC approach also performs very well for our P-spline model in
terms of AARB (< %9) as shown in Table 8 for the all three models. The results of the average
coverage probabilities and average lengths of small area rates and different coefficients are also
given in Table 9 for our P-spline model in the case of three different models (linear, quadratic,
and exponential 1). The DC approach also performs very well for our P-spline model in terms
of coverage probabilities and average lengths of prediction intervals of the small area rates for
different confidence coefficients and for the all three different models.
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TABLE 9: Average coverage probabilities (and average lengths) of small area rates over areas with
different confidence coefficients by data cloning approach for our P-spline Poisson mixed model.

True model
Confidence coefficient (average lengths)

0.90 0.95 0.98 0.99

Linear 0.886 (5.185) 0.939 (6.261) 0.973 (7.562) 0.986 (8.480)

Quadratic 0.900 (9.750) 0.952 (11.620) 0.981 (13.793) 0.990 (15.264)

Exponential 1 0.886 (5.253) 0.939 (6.341) 0.974 (7.656) 0.985 (8.585)

TABLE 10: Parameters estimate and corresponding standard error (SE) of Total Respiratory Morbidity
study in Manitoba using data cloning approach for our P-spline logistic mixed model.

Parameter β0 β1 σ2
ν σ2

γ

Estimate -3.01 -0.78 0.05 0.01

SE 0.03 0.14 0.01 0.002

5. APPLICATION

The performance of the proposed approach is also evaluated by using a real dataset of logis-
tic mixed model. We study physician visits for Total Respiratory Morbidity (TRM) conditions
(a patient diagnosed with any of the following respiratory diseases: asthma, chronic or acute
bronchitis, emphysema, or chronic airway obstruction, and chronic obstructive pulmonary dis-
ease) in the Canadian province of Manitoba during 2000 – 2010 fiscal years. The population of
Manitoba was stable during the study period from 1.15 million in 2000 to 1.20 million in 2010.
The province consisted of eleven Regional Health Authorities that were responsible for the de-
livery of health care services. These eleven regions were further sub-divided into 67 Regional
Health Authorities Districts (RHAD) and these RHADs were used as areas in our model. Our
interest is to use the non-parametric logistic mixed model to make an inference on the rate of
physician TRM visits in the 67 RHADs. Let yi and ni be the number of physician TRM visits
and corresponding population at risk, respectively, and xi is the average age in the ith area. Let
yi ∼ Binomial(ni, µi) and consider the following P-spline logistic mixed model:

log(
µi

1− µi
) = β0 + β1xi +

L∑
l=1

γl(xi − κl)+ + νi, (i = 1, . . . ,m),

where µi is the rate of physician TRM visits in area i, β0 is overall mean log-odds over areas,
β1 is the coefficient of age, m = 67 is the number of areas, L = 17 is the number of fixed knots,
γl

i.i.d.∼ N(0, σ2
γ) and νi

i.i.d.∼ N(0, σ2
ν).

The estimate of model parameters and associated standard errors are reported in Table 10.
For this specific application, the number of clones was K = 100 to obtain MLE with number
of iterations 20,000 for the convergence of the model parameters. As mentioned in Section 3, if
scaled variances decrease at a 1/K rate and have reached a lower bound (say < 0.05), the DC
approach has converged (Figure 1). One of the main features of the DC approach is the ability to
provide the prediction (and prediction interval) of random effects. We provide prediction (Figure
2) and 95% prediction intervals (Figure 3) of the physician TRM visit rates.
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FIGURE 1: Data cloning convergence diagnostics for Total Respiratory Morbidity study dataset. The stan-
dardized maximum eigenvalues (solid line) converge to zero at the expected rate 1/K (dashed line).

6. CONCLUDING REMARKS

Linear mixed models using penalized spline (P-spline) regression models have been previously
studied in the context of small area estimation. There are, however, many applications in small
area estimation where response variables are counts or proportions. In this paper, small area
estimation under generalized linear mixed models (GLMMs) using P-spline regression models
has been proposed to cover Normal and non-Normal responses.

The analysis of these non-parametric mixed models is extremely difficult using frequentist
paradigm. Analysis based on data cloning has overcome the computational difficulties of the
maximum likelihood method. We have used the data cloning for our non-parametric GLMMs
to unify the analysis of Normal and non-Normal responses from frequentist perspective. Under
the linear mixed model set-up, we have shown by simulation study that our proposed approach
works very well in terms of coverage probabilities of small area means; noting that one needs
to do tedious algebra to get an estimator of mean squared prediction errors (MSPE) of small
area means (Opsomer et al., 2008), while using data cloning not only can we easily get MSPE
estimation of small area means, but also we can get the corresponding prediction intervals of
small area means. Under the non-parametric logistic and Poisson mixed models, we have also
shown by simulation studies that our proposed approach works very well in terms of coverage
probabilities of small area proportions and rates, respectively. Our proposed approach was also
evaluated by a real dataset of physician visits due to Total Respiratory Morbidity in 67 health
regions in Manitoba under the P-spline logistic mixed model.

In our Total Respiratory Morbidity study, we assumed that the physician visits were indepen-
dent from each other; however, we had some cases who visited physicians multiple times over
the study period. We have planned to study this kind of data more appropriately in a separate
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FIGURE 2: Percent prediction of Total Respiratory Morbidity visit rates in 67 health regions in Manitoba
using data cloning approach for our P-spline logistic mixed model.

manuscript.
We have considered a single covariate in our proposed model; however, it can be easily

extended to multiple covariates which is more applicable in real life situations. In our proposed
model, we assumed that random effects have Normal distribution; however, one can relax this
assumption and consider mixture of Normal distributions (or other appropriate distributions) and
study the misspecification of our proposed model. Another extension of our work would be to
consider P-spline regressions in non-linear mixed models. We have planned to study these models
in our future study.

Recently, Baghishani, Rue, and Mohammadzadeh (2012) used the DC method via Integrated
Nested Laplace Approximation (Rue, Martino, and Chopin, 2009) in the class of GLMMs called
hybrid DC. They showed that this approximation approach is faster than the usual MCMC and
with same efficiency, noting that it is only applicable for Normal random effects. One can use this
approach for our proposed model to speed up the computing time of model parameters estimate.
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FIGURE 3: The 95% prediction bands of Total Respiratory Morbidity visit rates in 67 health regions in
Manitoba using data cloning approach for our P-spline logistic mixed model. The bullet represents predic-

tion rates with corresponding lower and upper prediction bands.
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