
Estimation of mean squared prediction error of

empirically spatial predictor of small area means under

a linear mixed model

Mahmoud Torabia, Jiming Jiangb

aDepartments of Community Health Sciences and Statistics, University of Manitoba,
Winnipeg, Canada

bDepartment of Statistics, University of California, Davis, USA

Abstract

Policy decisions regarding allocation of resources to subgroups in a popula-

tion, called small areas, are based on reliable predictors of their underlying

parameters. However, the information is collected at a different scale than

these subgroups. Hence, we need to predict characteristics of the subgroups

based on the coarser scale data. In view of this, there is a growing demand

for reliable small area predictors by borrowing information from other related

sources. For this purpose, mixed models have been commonly used in small

area estimation assuming independent small areas. There are many situa-

tions, however, that the small area parameters are related to their locations.

For instance, it is an interest of policy makers (and public) to know the spa-

tial pattern of a chronic disease (e.g., asthma) to identify small areas with

high risk of disease for possible preventions. In this paper, we propose small

area models in the class of spatial linear mixed models to be able to predict

small area parameters and also to obtain corresponding mean squared pre-
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diction error (MSPE). We also provide unbiased estimators of MSPE of small

area predictors using Taylor series expansion and parametric bootstrap meth-

ods. In our simulations, we show that our MSPE estimators using Taylor

expansion and parametric bootstrap perform very well in terms of precision

of small area predictors. Performance of our proposed approach is also eval-

uated through a real application of physician visits for Total Respiratory

Morbidity conditions in Manitoba, Canada.

Keywords: Conditional auto-regressive model; Random effects; Restricted

maximum likelihood; Small area estimation; Spatial model

1. Introduction

Sample surveys are conducted with the purpose of providing reliable

predictors for the finite population characteristics such as totals or means.

Methods used in deriving such predictors (direct survey predictors) are based

on total sample size. However in the past few decades, there have been in-

creasing demand in using same sample survey data to get predictions for

sub-populations, such as health regions or gender-age groups. Such sub-

populations for which reliable predictions are needed are called small areas

in the literature. The term small area refers to small sample size compared

to population size in that area.The traditional area-specific direct predictors

tend to have inadequate precision due to small sample sizes corresponding

to population sizes for each small area. Since policy decisions about im-

plementing specific projects to these small areas are made using predictions

on underlying characteristics, survey researchers are developing methods to

provide more reliable predictions for small areas. To this end, model-based
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estimators (Jiang and Lahiri, 2006; Rao and Molina, 2015; Jiang, 2017, Chap.

4) have been proposed to borrow strength from other related sources such

as past surveys and census. For this purpose, mixed models are commonly

used in small area estimation.

In particular, in the context of linear mixed models (LMMs), such small

area models may be classified into two broad types: (i) Area-level models that

relate small area direct estimates to area-specific covariates; such models are

used if unit-level data are not available. (ii) Unit-level models that relate the

unit values of a study variable to associated unit-level covariates with known

area means and area-specific covariates. A comprehensive account of model-

based small area estimation under area-level and unit-level models is given by

Rao and Molina (2015). Among other approaches, parameters of the LMM

can be estimated using either the maximum likelihood (ML) or restricted ML

(REML). Although it is somewhat straightforward to predict the small area

parameters under the LMM, e.g., using the best linear unbiased predictor

(BLUP), obtaining its prediction error and associated prediction interval is

difficult.

Fay and Herriot (1979; hereafter by FH) used an area-level model assum-

ing independent small areas to predict small area parameters. Following this

seminal work, many developments have been then made in small area esti-

mation to predict small area characteristics (e.g., mean) and to obtain the

corresponding mean squared prediction error (MSPE) estimation. There are

many situations, however, that the small area parameters are related to their

locations. For instance, it is an interest of policy makers (and public) to know

the spatial pattern of a chronic disease (e.g., asthma) to identify small areas
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with high risk of disease for possible preventions. There is limited literate in

small area estimation assuming small areas are spatially correlated.

Spatial models on the area specific effects are used when “neighboring”

areas can be defined for each small area. Such models induce correlations

among the small areas on geographical proximity for example in the context

of estimating area-level mortality disease rates. Cressie (1991) used condi-

tional auto-regressive (CAR) to account for the area-level spatial random

effects (Besag 1974) for small area estimation in the context of US census

undercount. Petrucci and Salvati (2006) used simultaneous auto-regressive

(SAR) to account for the area-level spatial random effects to estimate the

amount of erosion delivered to streams in the Rathbun Lake Watershed in

Iowa. Pratesi and Salvati (2008) used the same model to estimate the mean

per capita income (PCI) in sub-regions of Tuscany using data from the 2001

Life Condition Survey from Tuscany.

In terms of spatial model parameters estimation, Cressie and Chan (1989)

studied ML estimation of spatial model parameters for the spatial FH model.

Since spatial FH models are special cases of general linear mixed model, the

MSPE of the BLUP has been provided in the literature (Kackar and Harville,

1984). However, a rigorous second-order MSPE approximation for the spatial

empirical BLUP (EBLUP) can not be obtained from the general framework

of Das, Jiang, and Rao (2004) because of the presence of correaltion among

observations from different small areas.

Singh, Shukla, and Kundu (2005) also studied the spatial FH models in

small area estimation. In particular, they considered the SAR to account for

the spatial random effects and ML approach to estimate the model parame-
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ters. They heuristically derived the second-order MSPE of EBLUP of small

area mean and obtained the corresponding second-order unbiased estimator

of MSPE using Taylor expansion assuming that the number of small areas

is finite. Petrucci and Salvati (2006) also used the MSPE estimators using

Taylor expansion with model parameters estimated by REML or ML, respec-

tively, in the case of SAR to account for the spatial random effects. Molina,

Salvati, and Pratesi (2009) considered a spatial FH model with SAR random

effects and obtained the EBLUP of the small area mean and used bootstrap

MSPE estimator for spatial EBLUP of small area means.

Singh et al. (2005) also used saptio-temporal FH models to develop

EBLUP estimators to study the relative performance of spatial and spatio-

temporal models on monthly data on per captia concumer expenditure from

India. Marhuenda, Molina, and Morales (2013) also considered the same set-

up as Molina, Salvati, and Pratesi (2009) but for spatio-temporal FH model

by assuming that area effects in the Rao-Yu model (Rao and Yu, 1994; Torabi

and Shokoohi, 2012) follow a SAR to account for the spatial random effects.

Schmid and Münnich (2014) extended the theory of robust EBLUP (Sinha

and Rao, 2009) to spatial linear mixed models. Using Bayesian inference,

Porter, Holan, Wikle, and Cressie (2014) used spatial FH model to analyze

relative change of percent household Spanish-speaking in the U.S using di-

rect estimators for the states (small areas) from the American Community

Survey (ACS) and big data covariates from Google Trends searches over time

as functional covariates. Porter, Wikle, and Holan (2015) extended the FH

model to the multivariate FH models with latent spatial dependence in the

Bayesian framework. Chandra, Salvati, and Chambers (2015) extended the
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FH model that accounts for the SAR spatial non-stationarity where the pa-

rameters of regression model vary spatially. Baldermann, Salvati, and Schmid

(2018) extended the work of Schmid and Munnich (2014) to the SAR spatial

non-stationary model.

It is well-known that the conditional spatial dependence parameter de-

fined through the SAR model can be inconsistent unlike the CAR model

(Schabenberger and Gotway, 2004, page 340; Banerjee, Carlin, and Gelfand,

2014). In this paper, we introduce the spatial FH model by considering CAR

to account for the spatial random effects (Banerjee, Carlin, and Gelfand,

2014) and use the generalized weighted least squared approach to estimate

the regression coefficients and the REML to estimate the variance compo-

nents. We also rigorously obtain the MSPE of EBLUP of small area means

as well as the estimators of MSPEs of the EBLUP of small area means.

The rest of the paper is organized as follows. In section 2, we introduce

the general set-up for spatial linear mixed model and the BLUP of small area

means and corresponding MSPE of the BLUP of small area means. In section

3, we use the REML method to estimate the variance components to get the

EBLUP of small area means. In section 4, we provide asymptotic expression

of the MSPE of EBLUP of small area means. The estimation of MSPE

of EBLUP of small area means is considered in section 5 using the Taylor

expansion and parametric bootstrap approaches. We spell-out the spatial

linear mixed model theory for the special case of FH model (section 6). In

section 7, performance of the proposed approach is evaluated using a real

application of physician visits for Total Respiratory Morbidity conditions

in Manitoba, Canada, during 2000–2010. We also evaluate our proposed
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approach using a simulation study in section 8. Finally, some concluding

remarks are given in section 9. Technical details and computer codes are

provided as supplementary materials.

2. Spatial linear mixed model

The model is given by

yi = x>i β + z>i v + εi; i = 1, ..., n

In matrix notation, one can also write

y = Xβ + Zv + ε, (2.1)

where Xnp and Znn are known n × n and n × p matrices, respectively, β

is a vector of regression coefficients with dimension p, v ∼ (0, G) and ε ∼

(0, R) with G and R depend on some variance parameters σ = (σ(0), σ(1)) =

(σ01, ..., σ0q0 , σ11, ..., σ1q1) assuming that σ belongs to a specified subset of the

q-dimensional Euclidean space such that

cov(y) = Σ = R + ZGZ>

is non-singular for all σ belonging to the subset where q = q0 +q1. In the case

of spatial model, one can have Z = In, with In being the identity matrix with

dimension n,v = (v1, ..., vn)> where G = σ11S(σ12, ..., σ1q1), R = R(σ(0)) with

known σ(0), and S(·) is spatial covariance; noting that σ11 captures spatial

dispersion and (σ12, ..., σ1q1) account for spatial correlation. In particular,

one popular approach is to use the proper CAR model (Cressie and Chan,

1989; Stern and Cressie, 1999) with

G = σ11(In − σ12D)−1C−1, (2.2)
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where σ11 and σ12 account for spatial dispersion and spatial correlation, re-

spectively; D is a n×n matrix with elements Dii = 0, Dij = wij/wi+ if area i

and j are adjacent (shown by i ∼ j) and Dij = 0 otherwise, where wij is the

corresponding weight and wi+ =
∑

i∼j wij; and C = diag(wi+). See section 4

for regularity conditions of X,Z,R, and G.

Our interest is to find a predictor of the following small area mean

µ = l>β +m>v, (2.3)

for specified matrices, l and m, of constants. BLUP of µ under model (2.1)

[see Henderson, 1975] is:

t(σ) = t(σ, y) = l>β̃ + s>(σ)(y−Xβ̃), (2.4)

where β̃ = β̃(σ) = (X>Σ−1X)−1X>Σ−1y, s(σ) = Σ−1ZGm, and correspond-

ing V ar(β̃) = (X>Σ−1X)−1. Note that t(σ, y) is an unbiased predictor of µ

in the sense that E[t(σ, y) − µ] = 0. Also, the measure of variability of t(σ)

can be accounted through:

MSE[t(σ)] = E[t(σ)− µ][t(σ)− µ]> = g1(σ) + g2(σ), (2.5)

where

g1(σ) = m>(G−GZ>Σ−1ZG)m,

and

g2(σ) = [l −X>s(σ)]>(X>Σ−1X)−1[l −X>s(σ)].
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3. EBLUP estimator

The BLUP estimator t(σ, y) given by (2.4) depends on the variance

parameters σ which σ(1) are unknown in practical applications. We estimate

σ(1) using the REML approach. To that end, the log-likelihood function of

model (2.1) is

`(σ) = c− 1

2
log |Σ| − 1

2
(y−Xβ)>Σ−1(y−Xβ), (3.1)

where c is a constant. Then there exist some T such that T>X = 0 and

rank(T ) = n−p. For any T satisfying the above condition, the log-likelihood

is

`R(σ) = c− 1

2
[log(|T>ΣT |) + y>Py], (3.2)

where P = Σ−1 − Σ−1X(X>Σ−1X)−1X>Σ−1. Define the REML estimator

σ̂(1) as the solution to the following score function:

∂`R(σ)

∂σ(1)
|σ(1)=σ̂(1) = 0,

where
∂`R(σ)

∂σ
(1)
j

=
1

2
[y>PVjPy− tr(PVj)]

=
1

2
[u>PVjPu− tr(PVj)], j = 1, ..., q1,

with u = y − Xβ;u ∼ N(0,Σ);Vj = ∂Σ

∂σ
(1)
j

(j = 1, ..., q1). We now provide a

class of convergence of σ̂(1) in the following Lemma 1.

Lemma 1: Let d2
i = maxj,k{tr(PViPVi), tr(P ∂Vi

∂σ
(1)
j

P ∂Vi

∂σ
(1)
j

), tr(P ∂2Vi

∂σ
(1)
j ∂σ

(1)
k

P ∂2Vi

∂σ
(1)
j ∂σ

(1)
k

)}

and d∗ = min1≤i≤q1 di. Then there exists σ̂(1) such that for any 0 < q0 < 1,

there is a set = satisfying for large n and on =,

σ̂(1) − σ(1) = −A−1a+ op(d
−2q0
∗ u),

9



where a = ∂`(σ)

∂σ(1) , A = E( ∂2`(σ)

∂σ(1)∂σ(1)> ), and E(ug) is bounded; and Pr(=c) ≤

cd−τg∗ where τ = 1
4
∧ (1− q0) and c is a constant.

Proof: See the Supplementary Materials A.

Hence, the EBLUP estimator of µ is given by t(σ̂, y). We can also ob-

tain the variance of model parameters estimate σ̂(1) using the inverse of

corresponding Fisher information matrix. In particular, the matrix of ex-

pected second derivatives of `R(σ) with respect to σ(1) is given by I(σ(1))

with (j, k)th element Ij,k(σ
(1)) = 1

2
tr[PVjPVk], (j, k = 1, ..., q1). Then, we

have V ar(σ̂(1)) = I−1(σ(1)).

4. Asymptotic expression for the MSPE of t(σ̂, y)

We now obtain a second-order approximation to the MSPE of EBLUP

t(σ̂, y), note that σ̂ = (σ(0), σ̂(1)). Under normality (Kackar and Harville,

1984), we have

MSPE[t(σ̂)] = E[t(σ̂)− µ][t(σ̂)− µ]>

= MSPE[t(σ)] + E[t(σ̂)− t(σ)][t(σ̂)− t(σ)]>, (4.1)

where MSPE[t(σ)] = g1(σ) + g2(σ). One of the key steps in obtaining the

asymptotic expression for MSPE in (4.1) is to establish an approximation of

E[t(σ̂) − t(σ)][t(σ̂) − t(σ)]> using the Taylor expansion of t(σ̂) around σ(1).

Under some regularity conditions, our interest is to establish

E[t(σ̂)−t(σ)][t(σ̂)−t(σ)]> = E[
∂t(σ)

∂σ(1)
(σ̂(1)−σ(1))][

∂t(σ)

∂σ(1)
(σ̂(1)−σ(1))]>+[o(d−2

∗ )]n×n.

(4.2)
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The covariance matrix of our spatial random effects has a form of σ11S(σ12, ..., σ1q1)

which is not linear in σ. Note that the asymptotic is in the sense of increasing

number of small areas n. The following regularity conditions (referred to as

RC later on) will be assumed throughout the paper:

1) The elements ofX,Z, andR are bounded. Also, G is bounded ([λmax(G>G)]1/2 <

C) for some constant C in such a way that the off-diagonal elements of G

decay excluding (first) neighbours of each small area which are bounded.

2) The smallest and largest eigenvalues of Σ,Σ−1, ∂Σ

∂σ
(1)
j

, ∂2Σ

∂σ
(1)
j ∂σ

(1)
k

, Σ−1 ∂Σ

∂σ
(1)
j

,

Σ−1/2 ∂Σ

∂σ
(1)
j

Σ−1/2,Σ−1 ∂Σ

∂σ
(1)
j

Σ−1, ∂Σ−1

∂σ
(1)
j

Σ∂Σ−1

∂σ
(1)
j

, Σ∂Σ−1

∂σ
(1)
j

Σ∂Σ−1

∂σ
(1)
j

Σ, (1 ≤ j, k ≤ q1), and

(X>Σ−1X)−1 are bounded away from zero and infinity, respectively.

3) s(σ) has bounded second derivatives w.r.t. σ(1)(2 ≤ i, j ≤ q1).

4) l−X>s(σ) = [O(1)]p×n, [
∂X>s(σ)

∂σ
(1)
j

] = [O(1)]p×n, and [ ∂
2X>s(σ)

∂σ
(1)
j ∂σ

(1)
k

] = [O(1)]p×n, (1 ≤

j, k ≤ q1), noting that [O(1)]p×n means that each element of the matrix is

O(1).

Theorem 1. Suppose that the above conditions RC (1-4) are satisfied. Let

t(σ̂) = l>β̂ + m>v̂ be the EBLUP of µ and σ̂(1) be the REML estimator of

σ(1). We then have:

E[t(σ̂)−t(σ)][t(σ̂)−t(σ)]> = E[
∂t(σ)

∂σ(1)
(σ̂(1)−σ(1))][

∂t(σ)

∂σ(1)
(σ̂(1)−σ(1))]>+[o(d−2

∗ )]n×n

= −∇>s(σ)[A−1 ⊗ Σ]∇s(σ) + [o(d−2
∗ )]n×n

:= g3(σ) + [o(d−2
∗ )]n×n,

where ∇s(σ) = col1≤j≤q1 [∇js(σ)] with ∇js(σ) = ∂s(σ)

∂σ
(1)
j

, and ⊗ is Kronecker

product. Note that the g3(σ) can be also written as g3(σ) = −
∑q1

j=1

∑q1
k=1A

−1
jk (σ)
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.[∇′js(σ)Σ∇ks(σ)], where A−1
jk (σ) is the (j, k)th element of A−1(σ). The MSPE

of the EBLUP t(σ̂) is then

MSPE[t(σ̂)] = g1(σ) + g2(σ) + g3(σ) + [o(d−2
∗ )]n×n. (4.3)

Proof: See the Supplementary Materials A.

Note that the MSPE expression (4.3) is different from the Das, Jiang,

and Rao, 2004; hereafter by DJR) derived for the longitudinal model. The

variance components in G are not linear in parameters σ unlike the DJR

model.

5. Estimation of the MSPE of t(σ̂, y)

5.1 Taylor expansion

Since the approximated MSPE (4.3) is a function of unknown parameters

σ(1), it is not computable. We now obtain the estimation of MSPE[t(σ̂)]

which is second-order unbiased in the sense that

E{mspe[t(σ̂)]} = MSPE[t(σ̂)] + [o(d−2
∗ )]n×n. (5.1)

The following Theorem summarizes the asymptotic properties of mspe[t(σ̂)].

Theorem 2. Under the RC (1-4), the MSPE estimation of t(σ̂) is given by

mspe[t(σ̂)] = g1(σ̂) + g2(σ̂) + 2g3(σ̂)−4(σ̂), (5.2)

which is second-order unbiased in the sense of (5.1), noting that σ̂ is the

REML estimator of σ, and 4(σ) = −1
2

∑q1
j=1

∑q1
k=1 A

−1
jk (σ)[m> ∂2G

∂σ
(1)
j ∂σ

(1)
k

m +
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s> ∂2G

∂σ
(1)
j ∂σ

(1)
k

s− 2m> ∂2G

∂σ
(1)
j ∂σ

(1)
k

Z>s].

Proof: See the Supplementary Materials A.

5.2 Parametric Bootstrap

We now obtain an estimator of MSPE[t(σ̂)] using the parametric boot-

strap approach. As we have explicit forms of the MSPE approximation of

EBLUP of small area means in terms of g1(σ) + g2(σ) + g3(σ), we only

need to make a bias correction for the g1(σ) term as the other terms, g2(σ)

and g3(σ), are asymptotically unbiased. To that end, we first draw v∗ from

N(0, G(σ̂(1))) and ε∗ from N(0, R) independently. We then create bootstrap

values y∗ = Xβ̂ + Zv∗ + ε∗. Now using the bootstrap dataset (y∗, X), we

estimate the model parameters as (β̂∗, σ̂∗) where σ̂∗ = (σ(0), σ̂(1)∗). We can

then obtain g1(σ̂∗) following g1(σ) defined in section 2. Hence, the boot-

strap bias correction of g1(σ̂) is given by b∗(σ̂) = E∗[g1(σ̂∗)] − g1(σ̂), where

E∗ denotes the bootstrap expectation. In practice, we approximate E∗(.) by

drawing a large number of independent bootstrap samples. An estimator of

MSPE[t(σ̂)] is then given by

mspeboot[t(σ̂)] = g1(σ̂) + g2(σ̂) + g3(σ̂)− b∗(σ̂).

We evaluate the performance ofmspeboot[t(σ̂)] in the data application (section

7) and simulation study (section 8).

6. An illustration: spatial Fay-Herriot model

We now spell-out our general model for the specific case of spatial FH

model. Our model is yi = x>i β + z>i v + εi, where xi is a vector of size p, zi
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is a vector of zeros (with size n) except the ith element which is one, v has

a multivariate Normal distribution following CAR model with parameters

σ(1) ≡ (σ2
v , λv) where σ11 ≡ σ2

v and σ12 = λv, and εi ∼ N(0, σ2
0i), assuming

σ2
0i’s are known. The small area mean for i−th area is:

µi = x>i β + vi,

where yi = µi + εi. If σ are known, the componentwise BLUP of µ =

(µ1, ..., µn)> is given by

t(σ, y) = Xβ̃(σ) + s(σ)>(y −Xβ̃(σ)), (6.1)

β̃(σ) = (X>Σ−1X)−1(X>Σ−1y),

where s(σ) = Σ−1G = (R + G)−1G, where G is given by (2.2) and R =

diag(σ2
0i). In practice, however, σ(1) are not known. Substituting consistent

estimators σ̂ for σ in (6.1), we get the EBLUP given by

t(σ̂, y) = Xβ̂ + s(σ̂)>(y −Xβ̂), (6.2)

where β̂ = β̃(σ̂). Following Lemma 1, we can get the REML estimator σ̂(1)

as follows:

σ̂(1) = σ(1) − {E[
∂2`R(σ)

∂σ(1)∂σ(1)> ]}−1(
∂`R(σ)

∂σ(1)
) + [o(n−1)]2×1, (6.3)

using any iterative approach such as Newton Raphson method, where

∂`R(σ)

∂σ
(1)
j

=
1

2
[u>PVjPu− tr(PVj)], j = 1, 2,

with u = y−Xβ;u ∼ N(0,Σ);Vj = ∂Σ

∂σ
(1)
j

(j = 1, 2). We have V1 = σ−2
v G, V2 =

σ2
v(In − λvD)−1D(In − λvD)−1C−1 with C and D defined in section 2. We

can then have ∂`R(σ)
∂σ2
v

and ∂`R(σ)
∂λv

.
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To get {E[ ∂2`R(σ)

∂σ(1)∂σ(1)> ]}−1, we have

∂2`R(σ)

∂σ
(1)
j ∂σ

(1)
k

=
1

2
[−u>Djku+ tr(PVkPVj)− tr(P

∂Vj

∂σ
(1)
k

)],

whereDjk = P (VkPVj− ∂Vj

∂σ
(1)
k

+VjPVk)P, and ∂V1
∂σ2
v

= 0, ∂V1
∂λv

= (In−λvD)−1D(In−

λvD)−1C−1, ∂V2
∂σ2
v

= (In−λvD)−1D(In−λvD)−1C−1, ∂V2
∂λv

= 2σ2
v(In−λvD)−1D(In−

λvD)−1D(In − λvD)−1C−1. Hence, one can write

∂2`R(σ)

∂σ2
v∂σ

2
v

= −u>PV1PV1Pu+
1

2
tr(PV1PV1),

∂2`R(σ)

∂λv∂λv
=
−1

2
[u>PV2PV2Pu+ u>PV2PV2Pu− u>P

∂V2

∂λv
Pu

−tr(PV2PV2) + tr(P
∂V2

∂λv
)],

∂2`R(σ)

∂σ2
v∂λv

=
−1

2
[u>PV2PV1Pu+ u>PV1PV2Pu− u>P

∂V1

∂λv
Pu

−tr(PV2PV1) + tr(P
∂V1

∂λv
)].

Then,

E[
∂2`R(σ)

∂σ2
v∂σ

2
v

] = −tr(ΣPV1PV1P ) +
1

2
tr(PV1PV1), (6.4)

E[
∂2`R(σ)

∂λv∂λv
] = −tr(ΣPV2PV2P ) +

1

2
tr(PV2PV2) (6.5)

+
1

2
tr[(ΣP − In)

∂V2

∂λv
P ],

E[
∂2`R(σ)

∂σ2
v∂λv

] =
−1

2
tr[ΣPV2PV1P + ΣPV1PV2P (6.6)

−PV2PV1 − (ΣP − In)
∂V1

∂λv
P ].

We then have the REML estimator σ̂(1) by (6.3).
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To get the MSPE of EBLUP t(σ̂, y), we can have

MSPE[t(σ̂)] = g1(σ) + g2(σ) + g3(σ) + [o(n−1)]n×n,

where

g1(σ) = G−GΣ−1G,

g2(σ) = [X> −X>s(σ)]>(X>Σ−1X)−1[X> −X>s(σ)],

g3(σ) = −∇>s(σ)[A−1 ⊗ Σ]∇s(σ),

where ∇s(σ) = col1≤j≤2[∇js(σ)] and ∇js(σ) = ∂s(σ)

∂σ
(1)
j

= −(R+G)−1 ∂G

∂σ
(1)
j

(R+

G)−1G+ (R+G)−1 ∂G

∂σ
(1)
j

, and A is the 2× 2 matrix with elements (6.4)-(6.6).

The MSPE of area-specific EBLUP t(σ̂, yi) is the (i, i) element of MSPE[t(σ̂)].

In the case of non-spatial random effects (G = σ2
vIn), our model reduces to

the conventional FH model with

g1i(σ) = σ2
v − σ4

v/(σ
2
0i + σ2

v) = σ2
0iγi,

g2i(σ) = (1− γi)2x>i (X>Σ−1X)−1xi,

where γi = σ2
v/(σ

2
v + σ2

0i). To get the g3i(σ), we have ∂G
∂σ2
v

= In, si(σ) =

σ2
v/(σ

2
v + σ2

0i),∇1si(σ) = σ2
0i/(σ

2
v + σ2

0i)
2, so

g3i(σ) = V (σ̂2
v)
[ σ2

0i

(σ2
v + σ2

0i)
2

]2

(σ2
v + σ2

0i) =
V (σ̂2

v)

σ2
v + σ2

0i

(1− γi)2,

noting that −A−1 = V (σ̂2
v).

To get the estimation of MSPE[t(σ̂, y)] using Taylor expansion, we can

write

mspe[t(σ̂, y)] = g1(σ̂) + g2(σ̂) + 2g3(σ̂)−4(σ̂), (6.7)
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where 4(σ) = −1
2

∑2
j=1

∑2
k=1A

−1
jk (σ)[ ∂2G

∂σ
(1)
j ∂σ

(1)
k

+ s> ∂2G

∂σ
(1)
j ∂σ

(1)
k

s − 2 ∂2G

∂σ
(1)
j ∂σ

(1)
k

s],

with ∂2G
∂σ2
v∂σ

2
v

= 0, ∂2G
∂σ2
v∂λv

= (In − λvD)−1D(In − λvD)−1C−1, and ∂2G
∂λv∂λv

=

2σ2
v(In−λvD)−1D(In−λvD)−1D(In−λvD)−1C−1.Note that in themspe[t(σ̂, y)]

given by (6.7), the σ(1) are estimated using the REML method. An area-

specific estimation of MSPE[t(σ̂, yi)] is the (i, i) element of mspe[t(σ̂, y)]. In

the case of non-spatial random effects (G = σ2
vIn), we have 4(σ) = 0 since

∂2G
∂σ2
v∂σ

2
v

= ∂2G
∂σ2
v∂λv

= ∂2G
∂λv∂λv

= 0. As a result, in the case of non-spatial random

effects, the spell-out of Fay-Herriot model coincides with the known result

(e.g., Prasad and Rao, 1990).

7. Application

Performance of the proposed approach is evaluated by using a real

dataset. We study physician visits for Total Respiratory Morbidity (TRM)

conditions (a patient diagnosed with any of the following respiratory diseases:

asthma, chronic or acute bronchitis, emphysema, or chronic airway obstruc-

tion, and chronic obstructive pulmonary disease) in the Canadian province

of Manitoba between April 1, 2000 to March 31, 2010. The population of

Manitoba was stable during the study period from 1.15 million in 2000 to

1.20 million in 2010. The province consisted of 5 Regional Health Authorities

that were responsible for the delivery of health care services. These 5 regions

were further sub-divided into 67 non-overlap Regional Health Authorities

Districts (RHADs) and these RHADs were used as small areas in our model.

Note that out of 67 RHADs, 12 RHADs belong to Winnipeg (major city and

capital of province of Manitoba). Our interest is to use the normal mixed

model to make an inference on the rate of physician visits for TRM in the

17



n = 67 small areas (RHADs). Let yi be the average rate of physician vis-

its for TRM and xi are the corresponding covariates in the ith area. Let

yi|vi ∼ N(µi, Di) and µi = β0 + β1xi1 + β2xi2 + vi, where Di are average of

variance of yi given vi over 10 years (2000–2010), v = (v1, ..., vn) are spatial

random effects given by (2.4) assuming weight wij = 1, and xi1, xi2 are rates

of indigenous and immigrants, respectively, in the ith area; noting that these

covariates are extracted from 2006 Canadian census microfile data.

Table 1 Parameters estimate and corresponding standard error (SE) of Total Respiratory

Morbidity study using the spatial Fay-Herriot model.

Parameter β0 β1 β2 σ2
v λv

Estimate 0.252 -0.115 -0.008 0.020 0.618

SE 0.020 0.033 0.130 0.004 0.280

The estimate of model parameters and associated standard errors are re-

ported in Table 1. It seems that the covariate indigenous and spatial model

parameters are statistically significant. We also applied the SAR spatial FH

model to this dataset. Estimate of model parameters for β0, β1, β2, σ
2
v , λv and

corresponding standard errors (in parenthesis) are 0.241(0.017),−0.110(0.030),

0.083(0.118), 0.004, and 0.139, respectively. We used the sae package in R

for the SAR spatial FH model where using the sae package, the standard

errors for the spatial model parameters are not provided, note that the spa-

tial model parameters in the CAR and SAR should be interpreted differently

due to their spatial model construction. It is worth mentioning that the

model parameters estimates behave differently in the CAR and SAR spatial

18



FH models. We further investigate this behaviour in the simulation study

(section 8). The prediction of rates of physician visits for TRM, t(σ̂, yi),

and corresponding mspe[t(σ̂, yi)] using the Taylor expansion method are also

provided in Figures 1 and 2, respectively. Note that the 4i involved in

the mspe[t(σ̂, yi)] has the same order as g2i and g3i. Hence, if one ignores the

term4i and applies the conventional (non-spatial) mspe, it will not estimate

the MSPE correctly; we will further investigate this issue in the simulation

study (section 8). In particular, the range of ratio 4/g2 over 67 areas is

(0.14, 5.74) and this range for the ratio 4/g3 is (0.001, 0.97). We also pro-

vide the MSPE estimation of t(σ̂, yi) using the bootstrap approach. Figure

3 shows the box plots of MSPE estimation using the parametric bootstrap

and Taylor expansion methods; it appears that the both Taylor expansion

and parametric bootstrap methods behave similarly. In particular, it shows

that the bias correction of g1 term in the parametric bootstrap method (with

1000 bootstrap samples) tracks nicely the bias correction provided using the

Taylor expansion.
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Figure 1 Prediction of Total Respiratory Morbidity visit rates in 67 health regions (small

areas) in Manitoba using the spatial Fay-Herriot model.
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1.90 - 2.77
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Figure 2 MSPE estimation of prediction of Total Respiratory Morbidity visit rates in

67 health regions (small areas) in Manitoba using the Taylor expansion approach

based on the spatial Fay-Herriot model.
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Figure 3 Box plots of MSPE estimation of prediction of Total Respiratory Morbidity visit

rates in 67 health regions (small areas) in Manitoba using the Taylor expansion and

parametric bootstrap based on the spatial Fay-Herriot model.

8. Simulation study

We also conduct a simulation study on the relative efficiency of the

EBLUP estimator t(σ̂, yi) and the naive EBLUP estimator t̃(σ̂, yi) which is

obtained by ignoring the spatial random effects (λv = 0) in the following FH

model:

yi = β0 + z>i v + εi, (i = 1, ..., n), (8.1)

where v ∼ N(0, G) and εi ∼ N(0, σ2
0i). We also compare performance of the

proposed approach (CAR spatial FH model) with the corresponding SAR

spatial FH model in terms of estimation of the MSPE of EBLUP estima-
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tor t(σ̂, yi). For simplicity, we consider the same spatial structure as in our

data analysis (section 7). To this end, we generate B = 1, 000 indepen-

dent sets of normal variates {(v(b), ε
(b)
i ); i = 1, ..., n; b = 1, ..., B} with mean

zero and specified variances G(σ2
v , λv) and σ2

0i, respectively, with assuming

weight wij = 1. We then obtain {y(b)
i ; i = 1, ..., n; b = 1, ..., B} from the

model (8.1) by assuming that β0 = 5, and σ2
0i are generated from uniform

distribution between 0.5 and 1.5, and different values for σ2
v(= 20, 50) and

λv(= −0.1,−0.25,−0.5,−0.75), noting that the range of possible λv to get

the positive definite G in our set-up is between -1.44 and 1. Note that the

σ2
0i’s are known during the simulation study. The ith small area mean of the

bth simulated dataset is

µ
(b)
i = 5 + v

(b)
i .

For each simulated dataset, we estimate the model parameters as (β̂
(b)
0 , σ̂

2(b)
v , λ̂

(b)
v )

and then obtain t[σ̂(b), y
(b)
i ] and t̃[σ̂(b), y

(b)
i ].

Table 2 presents the mean and median values of the model parameters es-

timate, the empirical variances of model parameters estimate, and the model-

based variances (using the generalized weighted least squared approach for

fixed parameters and the inverse of Fisher information matrix for variance

components) of the estimate parameters for the both proposed and naive

methods for different values of σ2
v and λv. It seems that the estimates of

model parameters in our proposed approach are reasonably unbiased, and

their variances are also estimated well with comparing the model-based vari-

ances with the corresponding empirical variance values. However, the esti-

mate of variance component σ2
v is heavily biased for the naive method, and

the model-based variances of model parameters estimate are not comparable
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with the corresponding empirical values. For instance, in the case of σ2
v = 20

and λv = −0.10, the mean squared error (MSE) (= bias2 + var) of model

parameters for (β0, σ
2
v) are 0.08 and 19.63 for our spatial FH model, while

these values are 0.09 and 216.77 for the naive model, respectively. Note that,

in the case of σ2
v = 20 and λv = −0.10, the MSE of λv is 0.24 for our spatial

FH model while the naive model ignores this variation in the model. Perfor-

mance of the naive method even gets worse with increasing σ2
v . For instance,

in the case of σ2
v = 50 and λ = −0.1, the MSE of σ2

v is 1351.94 in the case of

naive method compared to 95.41 in the case of spatial method. Overall, it

seems that the model parameters estimate in our proposed approach provides

good point estimates and variances.

The empirical MSPE (EMSPE) of t(σ̂, yi) and t̃(σ̂, yi) are then calculated

as

EMSPE[t(σ̂, yi)] =
1

B

B∑
b=1

{t[σ̂(b), y
(b)
i ]− µ(b)

i }2,

and

EMSPE[t̃(σ̂, yi)] =
1

B

B∑
b=1

{t̃[σ̂(b), y
(b)
i ]− µ(b)

i }2.

We only report the empirical MSPE in the case of σ2
v = 20 and λv = −0.10.

Figure 4 shows that in terms of empirical MSPE, t(σ̂, yi) is more efficient

than the naive predictor t̃(σ̂, yi) with relative efficiency, EMSPE[t̃(σ̂, yi)]/

EMSPE[t(σ̂, yi)], ranging from 100% to 129%. Note that one can consider

other set-ups such as smaller values of σ2
v to get even more efficient prediction

of small area means compared to the naive method.

We also study performance of the proposed MSPE estimator, mspe[t(σ̂, yi)],

and compare it with the corresponding MSPE estimator through the SAR

24



Table 2 Mean and median values of the model parameters estimates, the empirical vari-

ances of the estimated parameters, and the model-based variances of the parameters

estimates of proposed model (spatial FH model) and naive model (ignoring spatial

random effects) based on 1000 simulated datasets.

Spatial FH model FH model

Variance Variance

Parameter Mean Median Model-base Empirical Mean Median Model-base Empirical

β0 = 5 5.00 4.99 0.08 0.07 5.00 4.99 0.09 0.08

σ2
v = 20 18.93 18.64 18.49 18.86 5.32 5.20 1.27 1.78

λv = −0.10 -0.14 -0.10 0.24 0.17 – – – –

β0 = 5 5.00 4.99 0.07 0.06 5.00 4.99 0.10 0.08

σ2
v = 20 18.94 18.60 18.72 19.44 5.38 5.28 1.29 1.82

λv = −0.25 -0.24 -0.25 0.24 0.17 – – – –

β0 = 5 5.00 4.99 0.06 0.05 5.00 4.99 0.10 0.07

σ2
v = 20 19.10 18.63 19.90 22.39 5.59 5.46 1.38 1.97

λv = −0.50 -0.40 -0.50 0.25 0.13 – – – –

β0 = 5 5.00 4.99 0.06 0.05 5.00 4.99 0.10 0.07

σ2
v = 20 19.03 18.71 20.24 25.78 5.95 5.81 1.53 2.28

λv = −0.75 -0.58 -0.75 0.24 0.10 – – – –

β0 = 5 4.99 4.98 0.16 0.14 5.00 4.99 0.21 0.19

σ2
v = 50 48.00 46.98 91.41 93.08 13.32 12.94 6.52 9.59

λv = −0.10 -0.14 -0.12 0.18 0.16 – – – –

β0 = 5 4.99 4.98 0.15 0.13 5.00 5.00 0.22 0.18

σ2
v = 50 47.98 46.97 92.40 94.99 13.47 13.13 6.66 9.84

λv = −0.25 -0.26 -0.25 0.19 0.15 – – – –

β0 = 5 4.99 4.98 0.13 0.11 5.00 5.00 0.22 0.16

σ2
v = 50 47.97 47.25 94.51 100.55 13.98 13.61 7.14 10.71

λv = −0.50 -0.43 -0.50 0.19 0.12 – – – –

β0 = 5 4.99 4.99 0.11 0.10 5.00 5.00 0.24 0.15

σ2
v = 50 48.00 47.18 98.29 116.56 14.89 14.53 8.04 12.54

λv = −0.75 -0.61 -0.75 0.18 0.08 – – – –
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Figure 4 Box plot of relative efficiency of the proposed EBLUP estimator t(σ̂, yi) (spatial

FH) to the corresponding naive EBLUP estimator t̃(σ̂, yi) (FH) over 67 health

regions (small areas).
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approach. Figure 5 shows the percent relative bias (%RB) of the MSPE

estimators where RB of a MSPE estimator, mspe[t(σ̂, yi)], is given by

RBi =
E{mspe[t(σ̂, yi)]}
EMSPE[t(σ̂, yi)]

− 1,

where E{mspe[t(σ̂, yi)]} = 1
B

∑B
b=1 mspe[t(σ̂

(b), y
(b)
i )]. It is clear from Figure 5

that the proposed MSPE estimator of the EBLUP estimator t(σ̂, yi) performs

well in terms of RB for different values of σ2
v and λv for the both Taylor

expansion and parametric bootstrap approaches. On the other hand, the

SAR spatial FH model has much larger RB compared to our proposed CAR

spatial FH model in all scenarios, and in particular for small σ2
v .

9. Concluding remarks

There are extensive literature in small area estimation for linear mixed

models, assuming small areas are independent from each other. However,

assuming the independency of small areas may not be a valid assumption in

many applications. For instance, health agencies (e.g., policy making) may

need to know the spatial pattern of a rare disease (e.g., chronic disease or

cancer) to identify small areas with high risk of disease to implement the

prevention.

We have proposed a unified approach for Normal response with spatial

patterns in the context of small area estimation. In particular, we have pro-

vided prediction of small area parameters and rigorously derived second order

approximation to the mean squared prediction error (MSPE) of small area

parameters. We have also rigorously obtained second-order MSPE estima-

tion of small area predictors by Taylor expansion and parametric bootstrap
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Figure 5: Box plots of percent relative bias of estimator of MSPE of the

EBLUP t(σ̂, yi) using the Taylor expansion, parametric bootstrap (with 100

bootstrap samples), and SAR spatial FH models: (a) σ2
v = 20, λv = −0.10,

(b) σ2
v = 20, λv = −0.25, (c) σ2

v = 20, λv = −0.50, (d) σ2
v = 20, λv = −0.75,

(e) σ2
v = 50, λv = −0.10, (f) σ2

v = 50, λv = −0.25, (g) σ2
v = 50, λv = −0.50,

and (h) σ2
v = 50, λv = −0.75.
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methods. We have shown by simulation study (and a real data application)

that the proposed approach works very well in terms of small area predictors

and their precisions.

Supplementary Materials

The supplementary materials contain two section. The first section pro-

vides proofs of Lemma 1, Theorem 1, and Theorem 2. The second section

provides R codes and corresponding “readme” files for the simulation and

application conducted in this paper.
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