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Modeling the random effects covariance matrix
for longitudinal data with covariates
measurement error
Md Erfanul Hoquea, Mahmoud Torabia, b∗

Longitudinal data occur frequently in practice such as medical studies and life sciences. Generalized linear mixed
models (GLMMs) are commonly used to analyze such data. It is typically assumed that the random effects covariance
matrix is constant among subjects in these models. In many situations, however, the correlation structure may differ
among subjects and ignoring this heterogeneity can lead to biases in model parameters estimate. Recently, Lee et

al. developed a heterogeneous random effects covariance matrix for GLMMs for error-free covariates. Covariates
measured with error also happen frequently in the longitudinal data set-up (e.g., blood pressure, cholesterol level).
Ignoring this issue in the data may produce bias in model parameters estimate and lead to wrong conclusions. In
this paper, we propose an approach to properly model the random effects covariance matrix based on covariates in the
class of GLMMs where we also have covariates measured with error. The resulting parameters from the decomposition
of random effects covariance matrix have a sensible interpretation and can be easily modeled without the concern of
positive definiteness of the resulting estimator. Performance of the proposed approach is evaluated through simulation
studies which show that the proposed method performs very well in terms of bias, mean squared error, and coverage
rate. An application of the proposed method is also provided using a longitudinal data from Manitoba Follow-up study.
Copyright c© 2017 John Wiley & Sons, Ltd.
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1. Introduction

In many medical studies, longitudinal data or repeated measurement data occur frequently where often changes in a particular
characteristic in the participating individuals are investigated by observing repeatedly over time. The generalized linear mixed
models (GLMMs) are commonly used to analyze such data which enable us to account for between and within individuals
heterogeneity [1–3]. In these models, it is assumed that the random effects covariance matrix is constant across the subject
and also the high dimensionality and positive definite constraints make the structure of random effects covariance matrix
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restricted. However, the covariance matrix may vary by measured covariates in many situations, and biased estimates of the
fixed effects may result by ignoring this heterogeneity [4].

There are few literatures to discuss the issue of accounting the heterogeneity in covariance matrix. Chiu et al. [5] modeled
the covariance matrix using a log matrix parametrization in marginal models and estimates were obtained using estimating
equations. Using the modified Cholesky decomposition, Pourahmadi [6, 7] developed covariance matrix which depends on
subject-specific covariates. Following the idea of modified Cholesky decomposition, Pourahmadi and Daniels [8] developed
a class of dynamic conditionally mixed models by allowing to vary the marginal covariance matrix across subjects. However,
they considered the random effects covariance matrix to be fixed across individuals. Daniels and Pourahmadi [9] proposed
Bayesian priors for the parameters associated with modified Cholesky decomposition in linear mixed model, and Daniels and
Zhao [10] introduced an approach to model the entire random effects covariance matrix for linear mixed model where all the
parameters can be modeled. Recently, Lee et al. [11] introduced a heterogeneous random effects covariance matrix for the
GLMMs by using modified Cholesky decomposition for error-free covariates [6, 7].

It is important to note that in the models above it is assumed that the covariates are perfectly measured for the validity
of inferential methods. Covariates measured with error also happen frequently in practice. Extensive works have been done
on covariates measurement error [12–21]. The GLMMs framework are adopted to make the inference procedure in most
of these cases. In practice, longitudinal data are prone to be not perfect and seriously biased results can be led by ignoring
this issue. Covariate measurement error is a common typical feature of longitudinal study [22]. Recently, the attention has
been increased to address the effects of covariate measurement error in the analysis of longitudinal data [22]. In 2011, Yi
et al. [23] presented a fairly general framework to make inference for longitudinal data with covariates measurement error
and missing responses simultaneously by adopting the framework of GLMMs. They employed the expectation-maximization
(EM) algorithm to conduct inference for parameters of interest [24]. However, in their work the random effects covariance
matrix was left unspecified.

In this paper, our goal is to properly model the random effects covariance matrix under the framework of GLMMs with
covariates measurement errors. For this purpose, we extend the model introduced by Lee et al. [11] for the random effects
covariance matrix for the GLMMs to the case when the covariates are also subject to measurement error. An important feature
of using random effects covariance matrix by defining covariates and Cholesky decomposition is that each subject has a
specific covariance structure and also our proposed model accounts for the covariates measured with error.

The rest of the paper is organized as follows. In Section 2, notation and specification of the model are given. The proposed
approach to model the random effects covariance matrix for the GLMMs with covariates measurement error is given in
Section 3. In Section 4, the general framework is provided to make the inference procedure to estimate model parameters.
Performance of the proposed method is evaluated through simulation studies and also by analyzing a motivating data set
arising from Manitoba Follow-up study (MFUS) in Sections 5 and 6, respectively. Finally, concluding remarks are given in
Section 7. Details of the proposed approach in the case of binary outcome are illustrated in Appendix.

2. Notation and model specification

The model of interest defines repeated measurement on each of m individuals with responses that follow a generalized linear
model with random intercept for each individual, with time-specific covariates that are subject to error and time-specific
error-free covariates. Suppose that Yij be the response variable at time point j for subject i. Let Xij be the vector of
error-prone covariates, and Zij be the vector of error-free covariates, i = 1, 2, . . . ,m, and j = 1, 2, . . . , ni. Further, let Wij

be an observed version of Xij . Denote the response vector for the ith subject by Yi = (Yi1, . . . , Yini
)T and also denote

Xi = (XT
i1, . . . ,X

T
ini

)T , Zi = (ZTi1, . . . ,Z
T
ini

)T , and Wi = (WT
i1, . . . ,W

T
ini

)T .
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2.1. Response process

We assume that Yij belongs to the exponential family conditionally on the random effects ui:

f(yij |xij ,ui; ηij , ζ) = exp{(yijηij − b(ηij))/a(ζ) + c(yij , ζ)}, (1)

where a(·), b(·), and c(·, ·) are known functions and ηij , canonical parameters, can be further modeled to accommodate
within-subject variability. The dispersion parameter ζ is assumed to be known/estimated (e.g., ζ = 1 for binary response). To
emphasize on the estimation of parameters of interest we treat ζ as known here. We model a transformation of the conditional
mean, µij = E(Yij |xij ,ui), as a linear model of the both fixed and random effects:

g(µij) = ηij = β0 + XT
ijβx + ZTijβz + uij , (2)

where g(·) is the link function and β = (β0,β
T
x ,β

T
z )T is the vector of fixed parameters. We suppose that the random effects

ui = (ui1, . . . , uini
)T are independent and also independent of the explanatory variables. Here, ui ∼ N(0,Σi), where the

random effects covariance matrix Σi is indexed by subject i. The vector ui represents the vector of random effect values for
subject i. We also assume that f(yi|ui,xi,wi, zi) = f(yi|ui,xi, zi) which is connected to the usual non-differential error
mechanism [22], but is different because of the dependence on the random effects.

2.2. Measurement error process

To feature the measurement error process we employ a multiple regression model [22] as follows:

Wij = Γ0 + ΓxXij + ΓzZij + eij , (3)

where error terms eij’s are assumed to be independent among different j and also independent of Xij , Zij , Yij and random
effects ui, and follow a distribution, f(eij , σ

2), where σ2 is the associated parameter. It is often assumed that eij has zero
mean. Note that the assumption of independence of eij over replicates is valid in the case of large number of subjects
(m) or the long-term average if the replicates within a subject are taken far enough apart in time [22]; we will further
discuss this assumption in the data application (Section 6). Let Γ0 = (γ01, . . . , γ0p)

T be the vector of intercept coefficients,
Γx = (Γx1, . . . ,Γxp)

T and Γz = (Γz1, . . . ,Γzp)
T denote the vector of regression coefficients of Xij and Zij , respectively.

Also let γ = (ΓT0 ,Γ
T
x ,Γ

T
z )T be the vector of all the regression coefficients. By setting Γ0 = 0,Γz = 0 & Γx = 1p, where

1p is the vector of ones with dimension p, the model above (3) can be then written as a classical additive error model [22]:
Wij = Xij + eij .

3. A model for the random effects covariance matrix

The main contribution of this paper is to use a specified model for the random effects covariance matrix in the class of
GLMMs with covariates measurement error where heterogeneity of the random effects covariance matrix has been ignored.
For this purpose, we employ the structure of the random effects covariance matrix given by Lee et al. [11] and propose a
heterogeneous random effects covariance matrix for GLMMs which depends on subject-specific covariates. To that end,
we decompose the random effects covariance matrix based on the modified Cholesky decomposition [6, 7] which results
in a set of dependence parameters, generalized autoregressive parameters (GARPs), and a set of variance parameters called
innovation variances (IVs). The basic idea of this proposed structure is that the covariance matrix Σi of the random effects
vector ui, can be diagonalized by a lower triangular matrix which is constructed from the regression coefficients when uij is
regressed on its predecessors ui1, ui2, . . . , uij−1.
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More specifically, it can be written as:

ui1 = εi1 (4)

uij =

j−1∑
t=1

φi,jtuit + εij , for j = 2, 3, . . . , ni, (5)

where εi = (εi1, εi2, . . . , εini)
T ∼ N(0,Di) with Di = diag(σ2

i1, σ
2
i2, . . . , σ

2
ini

). Then for the j = 2, 3, . . . , ni we can write
(4) and (5) in matrix form as follows:

Tiui = εi, (6)

where Ti is a unit lower triangular matrix having ones on its diagonal and −φi,jt in the (j, t)th element for 2 ≤ j ≤ ni and
t = 1, 2, . . . , j − 1. From (6) we can write TiΣiT

T
i = var(εi) = Di. The GARPs are denoted by φ, and σ2

ij represents the
IVs. Time-and/or subject-specific covariate vectors can be used to model the GARPs and IVs by setting

φi,jt = kTi,jtδ, log
(
σ2
ij

)
= hTi,jλ, (7)

where δ and λ are a× 1 and b× 1 vectors of unknown dependence and variance parameters, respectively. The design vectors
ki,jt and hi,j are covariates to model the GARP/IV parameters as a function of the subject-specific covariates [7, 8, 10, 11].
The parametrization of GARPs or IVs has various advantages. Firstly, we can model the random effects covariance matrix
in terms of covariates because of unconstrained characteristics of GARPs and IVs. Secondly, as in (7) there is a linear
combination of covariates which result that the parameters have a reasonable interpretation and easy to model and the positive
definiteness of Σi is also guaranteed because of the positive σ2

ij [10, 11]. We can also have specific Σi for each subject i. The
covariance matrix also covers e.g. auto-regressive model with order 1, AR (1), as a special case.

4. General inference method

To derive the likelihood function for the GLMM with covariates measurement error, let us define the parameters as
θ = (βT ,γT , σ2, δT ,λT )T . The complete data likelihood function of yi,xi,ui for subject i can be written as:

Li(θ; yi,xi,ui) = f(yi|xi, zi,ui;β)f(xi|wi, zi;γ, σ
2)f(ui; δ,λ),

where f(yi|xi, zi,ui;β) belongs to the exponential family (1) given the random effects. We assume f(xi|wi, zi;γ, σ
2) has a

multivariate Normal density with mean vector µf and covariance matrix σ2
f ,which is independent of ui, and the details of µf

and σ2
f are given in following Section (Section 4.1) e.g. in the case of scalar xij . Also, ui ∼ f(ui|xi, zi; δ,λ) = f(ui; δ,λ)

which f(ui; δ,λ) has a multivariate Normal density with mean vector 0 and covariance matrix Σi and this can be simplified
based on the proposed structure of the random effects covariance matrix [11] as follows:

f(ui; δ,λ) = (2π)−ni/2

[ ni∏
j=1

(
σ2
ij

)−1/2
]

exp

−1

2

ni∑
j=1

ε2ij
σ2
ij

 with εi1 = ui1.

We can then write the complete data log-likelihood as:
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lc(θ) =

m∑
i=1

{
log f(yi|xi, zi,ui;β) + log f(xi|wi, zi;γ, σ

2) + log f(ui; δ,λ)
}
. (8)

The EM algorithm is employed to evaluate the log-likelihood function above due to its intractable form [24]. The E-step can
be written as (at iteration l):

Q(θ | θ(l)) = E
[
lc(θ)|yi,wi, zi;θ

(l)
]

=

m∑
i=1

∫ ∫ {
log f(yi|xi, zi,ui;β) + log f(xi|wi, zi;γ, σ

2) + log f(ui; δ,λ)

}
f
(
xi,ui|yi,wi, zi;θ

(l)
)
dxidui, (9)

where f
(
xi,ui|yi,wi, zi;θ

(l)
)

is the conditional density of random effects (xi,ui) given the observed data (yi,wi, zi)

at the initial value θ(l). As in the Q(θ|θ(l)) function above, the multiple integrals are not in closed form for computation,
it is not often possible to evaluate this expectation directly. Hence, Monte Carlo EM (MCEM) algorithm can be employed
for this purpose [2]. To this end, we need to generate a sample from f(xi,ui|yi,wi, zi;θ

(l)) for each i. Gibbs sampling
or Metropolis-Hasting algorithm can be used to accomplish this [25–27]. Essentially, we can iteratively sample from
f(xi|yi,ui,wi, zi;θ

(l)) and f(ui|yi,xi,wi, zi;θ
(l)). These conditional distributions have the form respectively as follows:

f(xi|yi,ui,wi, zi;θ
(l)) ∝ f(yi|xi,ui, zi;θ(l))f(xi|wi, zi;θ

(l))

f(ui|yi,xi,wi, zi;θ
(l)) ∝ f(yi|xi,ui, zi;θ(l))f(ui;θ

(l))

Suppose that, we take a pseudo-random sample of size M,

{(
x
(1)
i ,u

(1)
i

)
,
(
x
(2)
i ,u

(2)
i

)
, . . . ,

(
x
(M)
i ,u

(M)
i

)}
for individual i,

from the joint distribution f
(
xi,ui|yi,wi, zi;θ

(l)
)

via the Metropolis-Hasting algorithm. Then, the E-step at the (l + 1)th
EM iteration can be written as:

Q(θ|θ(l)) ≈
m∑
i=1

{
1

M

M∑
k=1

lc

(
θ(l); yi,x

(k)
i ,u

(k)
i

)}

=

m∑
i=1

M∑
k=1

1

M
log f

(
yi, |x(k)

i , zi,u
(k)
i ;β

)
+

m∑
i=1

M∑
k=1

1

M
log f

(
x
(k)
i |wi, zi;γ, σ

2
)

+

m∑
i=1

M∑
k=1

1

M
log f

(
u
(k)
i ; δ,λ

)
. (10)

In the M-step of MCEM algorithm, an optimization procedure can be employed to maximize Q(θ | θ(l)) with respect to θ

to produce an updated estimate θ(l+1). These E and M steps will continue until convergence and then the current values of θ
will be declared as MLEs of θ, namely θ̂.

The standard errors of the MLEs cannot be automatically obtained from the EM algorithm. To obtain the asymptotic
covariance matrix of θ̂, we can use

Ĉov(θ̂) ≈
[ m∑
i=1

M∑
k=1

1

M
Sik(θ̂)STik(θ̂)

]−1

, (11)

where, Sik(θ̂) =
∂lc

(
θ; yi,x

(k)
i ,u

(k)
i

)
∂θ

∣∣∣∣∣
θ=θ̂

[28]. Then by taking the square root of the diagonal elements of Ĉov(θ̂), the

standard errors of the MLEs can be obtained. One can also use an optimization procedure to get the standard error. For
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example, optim function in R-program provides the hessian matrix which can be used to calculate the standard errors [29].
As an illustration, we provide a detailed calculation of the above proposed approach in the case of binary outcome in Appendix.
However, similar framework can be extended to other exponential family distributions.

5. Simulation study

We conduct a simulation study to evaluate the performance of our proposed approach. In particular, we make a comparison
of the efficiency of our proposed method to the method where covariates measurement error are ignored (Naive 1). Moreover,
we also compare the efficiency of the proposed method to the method for GLMMs with covariates measurement error where
constant random effects covariance matrix is considered across the subjects (Naive 2). We use the following model to simulate
data:

logit
{
Pij
}

= β0 + βxXij + βzZij + βz∗Z
∗
i + uij , (12)

i = 1, 2, . . . ,m and j = 1, 2, . . . , ni, with Pij = P (Yij = 1|xij , z+ij), with Z+
ij = (Zij , Z

∗
i ) and Z∗

i equals to 0 or 1 with an
equal sample size per group. The error-free covariate Zij is generated as the random variables vi + ϕij , where vi’s and ϕij’s
are independently identically distributed following N(0, 0.52), and they are independent. The Zij and Z∗

i are then treated
fixed during the simulation study.
We consider classical additive model for the structural measurement error for which we generate surrogate variable Wij

as Wij = Xij + eij , where eij’s are independently identically distributed following N(0, σ2), where σ2 indicates the
measurement error variation in covariate Xij . The true covariate Xij is generated from model Xij = µx + ai + ξij ,

where µx = 1, ai’s and ξij’s are independently identically distributed following N(0, 1). We consider random effects
ui = (ui1, . . . , uini

) ∼ N(0,Σi). To simplify variance components of Σi, the parameters of random effects covariance
matrix are defined as:

φi,jt = δ0I(|j − t| = 1) + δ1I(|j − t| = 1)Z∗
i and log(σ2

ij) = λ0 + λ1Z
∗
i , (13)

Here, we consider m = 350 and two cases of number of follow-ups (ni = 5, 10). The initial values are
β = (β0, βx, βz, βz∗) = (1, 2, 2, 2). We set three different values (0, 0.4, 0.8) for σ to evaluate the impact of varying
degree of measurement error on estimation. The initial values of the parameters of the random effects covariance matrix
are δ = (δ0, δ1) = (0.5, 0.3) and λ = (λ0, λ1) = (0.1, 0.2). We generate B = 200 independent data sets. We then fit three
methods: the first method is the proposed approach; the second method (Naive 2) is the model which considers homogeneous
covariance matrix, that is, uij = ui0 ∼ N(0, σ2

u), where σ2
u is the average of the σ2

ij defined in the equation (13) and covariate
Xij with measurement error; and the third method (Naive 1) is the model which ignores covariate measurement error and
assumes homogeneous covariance matrix.

To check the performance of our proposed approach in different scenarios, we also consider two additional cases: 1)
misspecification of the measurement error distribution; and 2) different random effects covariance matrix structures rather
than (13). We describe these two cases accordingly.
Case 1: We generate B = 200 datasets from the model (12) with a sample size of m = 350 and ni = 5 using a
misspecified measurement error distribution. In particular, we generate eij from the skew-normal distribution with location
parameter λ = 0, scale parameter δ = 10, and skewness parameter α = 15, that is, eij ∼ SN(λ = 0, δ = 10, α = 15),
where SN stands for skewed Normal. We then fit the three methods (Proposed, Naive 1, Naive 2) considering
the same structure of random effects covariance matrix defined in (13). We assume true model parameters are
β = (β0, βx, βz, βz∗) = (1, 1, 2, 2), δ = (δ0, δ1) = (0.5, 0.3), and λ = (λ0, λ1) = (0.1, 0.2).

Case 2: We also generate B = 200 datasets from the model (12) with a sample size of m = 350 and ni = 5
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with various structured covariance matrix Σi for the proposed approach. In this case, we only focus on the
severe measurement error variation [σ = 0.8]; note that this is the worst scenario (severe measurement error and
small number of follow-ups). We consider three different random effects covariance matrix models to fit the
proposed approach. Model 1 is the heterogeneous special Autoregressive 2 (AR2) covariance matrix depending on
Z∗
i : φi,jt = δ0I(|j − t| = 1) + δ1I(|j − t| = 2) + δ2I(|j − t| = 2)Z∗

i and log(σ2
ij) = λ0 + λ1Z

∗
i . We assume

true values for the parameters δ and λ are (δ0, δ1, δ2) = (0.5, 0.3, 0.2) and (λ0, λ1) = (0.1, 0.2). Model 2 is
the heterogeneous non-stationary covariance matrix depending on Z∗

i . The parameters of Σi are specified as:
φi,jt = δ0 + δ1|j − t|Z∗

i + δ2|j − t|2Z∗
i and log(σ2

ij) = λ0 + λ1Z
∗
i . We assume true values for the parameters δ and λ

are (δ0, δ1, δ2) = (0.5, 0.3, 0.2) and (λ0, λ1) = (0.1, 0.2). In Model 3, we consider heterogeneous non-stationary structure
for Σi which is given by φi,jt = δ0 + δ1|j − t|Z∗

i + δ2|j − t|2Z∗
i and log(σ2

ij) = λ0 + λ1timej + λ2time2j ,where j =

1, . . . , 5 and timej = (j − 1)/10. We assume true values for the parameters δ and λ are (δ0, δ1, δ2) = (0.5, 0.3, 0.2) and
(λ0, λ1, λ2) = (0.05, 0.1, 0.2).

5.1. Simulation results

In the following, we report the simulation results of empirical bias (Bias), root mean squared error (RMSE), and coverage
rate (CR) for the 95% confidence intervals (CI) of the model parameters estimate where e.g. for the β0 (fixed intercept) we
have: Biasβ0

= 1
B

∑B
b=1 β̂

(b)
0 − β0, where β̂(b)

0 is the estimated value of β0 in the simulation run b and β0 is the true value of

this parameter. Also, RMSEβ0
=
√

Bias2β0
+ Varβ0

and 95% CI(b)β0
: β̂

(b)
0 ± 1.96

√
Var(β̂(b)

0 ), where the Varβ0
are the average

of model-based variances Var(β̂0) over B simulation runs, and CR is the proportion of times (out of B = 200) that the true
parameter falls in the corresponding 95% CI.

The following Tables 1 and 2 represent the results of the three methods (Naive 1, Naive 2, and Proposed) for the two cases
ni = 5 and ni = 10 under different measurement error variations (no error [σ = 0.0], moderate error [σ = 0.4] and severe
error [σ = 0.8]) under the random effects covariance matrix structure (13). Table 1 shows the results of the fixed effects and
random effects parameters for the three methods in the case of the absence of measurement error, moderate error, and severe
error when number of follow-ups is 5 (ni = 5). It is evident from the results that the proposed approach works well under
this situation in terms of bias, RMSE, and CR for 95% CI. In the absence of measurement errors, for the cases of Naive 1 and
Naive 2 methods, we can see considerable biases in fixed effects estimates (0.0203 for βx, 0.0153 for βz , 0.0061 for βz∗ , in
the case of Naive 1), (0.0011 for βx, 0.0025 for βz , 0.0011 for βz∗ , in the case of Naive 2) whereas in the proposed approach,
the estimates show fairly small biases (-0.0001 for βx, 0.0002 for βz , 0.0003 for βz∗ ). The proposed approach also shows the
good CR for 95% CI. The RMSEs are also smaller for the proposed approach compared to the other two methods. We can
see considerable biases in the fixed effects parameters for mis-specification of the distribution of random effects. In random
effects covariance matrix parameters, the GARPs (δ0, δ1) and the IVs (λ0, λ1) parameters have small biases.

From the results of moderate measurement error variation [σ = 0.4], it is obvious here that ignoring the measurement error
in data results in considerable biases. The biases tend to increase with the increase of magnitude of measurement error. The
results indicate the higher biases for Naive 1 and Naive 2, while the proposed approach shows considerably smaller biases in
the fixed effects parameters. Moreover, the proposed approach indicates smaller RMSEs as well as good CR for 95% CI in
the estimates of fixed effects compared to the other two methods.

In case of severe measurement error variation [σ = 0.8], it is clear from the results that the performance of Naive 1 is
noticeably affected with the increase of magnitude of measurement error. Based on the results, it can be seen that there is
considerably large finite-sample biases in the fixed effects estimates (0.2463 for β0, -0.7067 for βx, -0.3753 for βz , -0.3181
for βz∗ ) and very low CRs for the 95% CI for the Naive 1 approach. The biases become smaller for the Naive 2 method
(0.0018 for β0, -0.0010 for βx, -0.0003 for βz , -0.0015 for βz∗ ). As expected, the proposed approach performs very well with
respect to biases, RMSEs as well as the CRs. In particular, the biases (-0.0005 for β0, 0.0002 for βx, 0.0007 for βz , 0.0009 for
βz∗ ) are fairly small with good CRs. The RMSEs obtained from the Naive 1 and Naive 2 are much bigger than those obtained
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Naive 1 Naive 2 Proposed

Degree
of error Parameter Bias RMSE CR Bias RMSE CR Bias RMSE CR

No error
(σ = 0) β0 0.0082 0.1440 0.93 0.0013 0.0297 0.93 -0.0006 0.0076 0.94

βx 0.0203 0.1151 0.93 0.0011 0.0237 0.94 -0.0001 0.0060 0.95
βz 0.0153 0.1838 0.95 0.0025 0.0355 0.95 0.0002 0.0100 0.96
βz∗ 0.0061 0.2029 0.95 0.0011 0.0432 0.93 0.0003 0.0132 0.96
σ2
u 0.0032 0.1338 0.94 0.0019 0.0282 0.95 - - -
δ0 - - - - - - 0.1464 0.6609 0.93
δ1 - - - - - - -0.0385 0.1123 0.86
λ0 - - - - - - -0.0053 0.0397 0.87
λ1 - - - - - - -0.0188 0.0777 0.85

Moderate error
(σ = 0.4) β0 0.0796 0.1583 0.92 0.0047 0.0296 0.93 0.0005 0.0071 0.95

βx -0.2487 0.2663 0.27 -0.0005 0.0244 0.95 0.0001 0.0059 0.94
βz -0.1570 0.2344 0.85 0.0004 0.0340 0.95 0.0012 0.0101 0.95
βz∗ -0.1163 0.2261 0.90 -0.0044 0.0452 0.94 -0.0007 0.0117 0.96
σ2
u 0.0032 0.1338 0.94 0.0026 0.0309 0.95 - - -
δ0 - - - - - - 0.0920 0.5574 0.95
δ1 - - - - - - -0.0297 0.1060 0.86
λ0 - - - - - - -0.0060 0.0347 0.87
λ1 - - - - - - -0.0137 0.0726 0.87

Severe error
(σ = 0.8) β0 0.2453 0.2756 0.49 0.0018 0.0246 0.94 -0.0005 0.0075 0.96

βx -0.7067 0.7101 0.00 -0.0010 0.0203 0.92 0.0002 0.0060 0.97
βz -0.3753 0.4063 0.33 -0.0003 0.0305 0.93 0.0007 0.0098 0.95
βz∗ -0.3181 0.3637 0.57 -0.0015 0.0376 0.93 0.0009 0.0120 0.95
σ2
u 0.0032 0.1338 0.94 -0.0005 0.0246 0.95 - - -
δ0 - - - - - - 0.1488 0.6743 0.92
δ1 - - - - - - -0.0422 0.1161 0.83
λ0 - - - - - - -0.0070 0.0360 0.87
λ1 - - - - - - -0.0203 0.0772 0.86

Table 1. Bias, RMSE, and CR for 95% CI of the parameters estimate in case of ni = 5 for the three methods (Naive 1, Naive
2, Proposed) under the random effects covariance matrix structure (13)

from the the proposed approach. Also, the RMSEs for the Naive 2 are much smaller than the corresponding values of the
Naive 1.

Table 2 represents the results of the estimates of the coefficients of fixed and random effects for the three approaches
with 10 number of follow-ups (ni = 10). In terms of bias, RMSE, and CR of 95% CI, it is apparent from the results that
the proposed approach works perfectly well compared to the other two approaches for fixed effects parameters estimate in
the case of no measurement error. The parameters of the random effects covariance matrix (GARPs, IVs) also show smaller
biases, compared to the 5 number of follow-ups (ni = 5), and good CRs. As expected, the RMSEs of the model parameters
estimate for the proposed approach are smaller than the corresponding values of the both Naive 1 and Naive 2, and also the
Naive 2 has smaller RMSEs compared to the Naive 1.

It is observed under moderate measurement error and 10 number of follow-ups that the proposed approach provides big
improvement on biases for fixed effects estimate (-0.0003 for β0, -0.0001 for βx, -0.0004 for βz , 0.0007 for βz∗ ) than Naive
1 (0.1045 for β0, -0.2404 for βx, -0.1236 for βz , -0.1326 for βz∗ ) and moderate improvement than Naive 2 (-0.0013 for β0,
-0.0001 for βx, 0.0005 for βz , 0.0024 for βz∗ ). These improvements are also true for the RMSEs. In this case, we can also
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Naive 1 Naive 2 Proposed

Degree
of error Parameter Bias RMSE CR Bias RMSE CR Bias RMSE CR

No error
(σ = 0) β0 0.0011 0.0922 0.95 0.0010 0.0107 0.93 0.0003 0.0048 0.96

βx 0.0065 0.0774 0.98 -0.0010 0.0090 0.95 0.0000 0.0041 0.96
βz 0.0084 0.1143 0.96 -0.0006 0.0134 0.95 0.0001 0.0055 0.95
βz∗ 0.0095 0.1508 0.96 -0.0007 0.0174 0.94 -0.0003 0.0083 0.95
σ2
u -0.0106 0.1441 0.97 -0.0007 0.0151 0.91 - - -
δ0 - - - - - - -0.0255 0.1388 0.94
δ1 - - - - - - -0.0146 0.0798 0.93
λ0 - - - - - - -0.0045 0.0307 0.89
λ1 - - - - - - -0.0099 0.0520 0.92

Moderate error
(σ = 0.4) β0 0.1045 0.1364 0.80 -0.0013 0.0122 0.93 -0.0003 0.0048 0.95

βx -0.2404 0.2487 0.03 -0.0001 0.0088 0.94 -0.0001 0.0042 0.94
βz -0.1236 0.1639 0.79 0.0005 0.0137 0.95 -0.0004 0.0064 0.95
βz∗ -0.1326 0.1959 0.86 0.0024 0.0207 0.94 0.0007 0.0077 0.94
σ2
u -0.0106 0.1441 0.97 -0.0003 0.0188 0.94 - - -
δ0 - - - - - - -0.0189 0.1184 0.93
δ1 - - - - - - -0.0142 0.0730 0.93
λ0 - - - - - - 0.0002 0.0270 0.92
λ1 - - - - - - -0.0069 0.0534 0.91

Severe error
(σ = 0.8) β0 0.2772 0.2884 0.05 0.0004 0.0088 0.94 0.0002 0.0046 0.94

βx -0.7046 0.7061 0.00 -0.0004 0.0086 0.92 0.0002 0.0039 0.96
βz -0.3239 0.3380 0.10 0.0008 0.0154 0.92 -0.0001 0.0057 0.95
βz∗ -0.3290 0.3541 0.26 0.0003 0.0191 0.93 -0.0002 0.0076 0.94
σ2
u -0.0106 0.1441 0.97 -0.0016 0.0160 0.94 - - -
δ0 - - - - - - -0.0343 0.1479 0.91
δ1 - - - - - - -0.0191 0.0768 0.92
λ0 - - - - - - -0.0030 0.0289 0.91
λ1 - - - - - - -0.0102 0.0507 0.93

Table 2. Bias, RMSE, and CR for 95% CI of the parameters estimate in case of ni = 10 for the three methods (Naive 1, Naive
2, Proposed) under the random effects covariance matrix structure (13)

see the smaller amount of biases (with good CRs) of random effects covariance parameters in comparison with the 5 number
of follow-ups (ni = 5).

Performance of the three methods in the context of the severe measurement error indicates that the proposed approach
performs well with small biases and good CRs for the fixed effects parameters and random effects covariance parameters.
Also, the RMSEs show the consistency of the performance as other scenarios. On the other hand, the Naive 1 performs poorly
with relatively large amount of biases and low CRs particularly for the parameter of measurement error variable (-0.7046 for
βx with 0% CR). Performance of the proposed approach and Naive 2 are similar in terms of biases but the proposed approach
has much smaller RMSEs. The estimates of GARPs and IVs represent fairly small biases (with good CRs) and smaller RMSEs
compared to the corresponding values for the 5 number of follow-ups (ni = 5).

We also evaluate performance of the proposed approach under model mis-specification in measurement error distribution
(Case 1). It is clear from Table 3 that there are smaller biases and RMSEs for the fixed parameters and random effects
parameters of the proposed approach compared to the Naive methods.

Table 4 represents the results of the fixed and random effects parameters for the proposed approach under different
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Naive 1 Naive 2 Proposed

Parameter Bias RMSE CR Bias RMSE CR Bias RMSE CR

β0 0.3117 0.3458 0.46 -0.0022 0.0789 0.92 0.0019 0.0235 0.92
βx -0.9575 0.9575 0.00 0.0008 0.0256 0.93 -0.0005 0.0079 0.95
βz -0.3504 0.3730 0.18 -0.0037 0.0657 0.94 0.0037 0.0241 0.94
βz∗ -0.3624 0.3902 0.29 0.0060 0.1037 0.95 0.0005 0.0331 0.94
σ2
u 0.0039 0.1338 0.94 -0.0045 0.0321 0.92 - - -
δ0 - - - - - - 0.2314 0.8136 0.89
δ1 - - - - - - -0.0423 0.1218 0.83
λ0 - - - - - - -0.0034 0.0515 0.86
λ1 - - - - - - -0.0146 0.0950 0.89

Table 3. Bias, RMSE, and CR for 95% CI of the parameters estimate in case of ni = 5 for the three methods (Naive 1, Naive
2, Proposed) under the random effects covariance matrix structure (13) and mis-specified error distribution

structured covariance matrix in the case of severe error [σ = 0.8] when number of follow-ups is 5 (ni = 5) (Case 2). It is
evident from the results that the proposed approach performs consistently better than the other two Naive methods (from
Table 1) in terms of biases and RMSE for the all three models. However, in the case of Model 1 (heterogeneous AR2) the
performance of the proposed approach is similar to the Naive 2 method (from Table 1) in terms of biases and CRs but the
proposed approach shows much smaller RMSEs.

Model 1 Model 2 Model 3

Parameter Bias RMSE CR Bias RMSE CR Bias RMSE CR

β0 0.0006 0.0068 0.97 -0.0001 0.0090 0.96 0.0002 0.0090 0.94
βx 0.0020 0.0062 0.95 -0.0000 0.0056 0.95 0.0009 0.0057 0.96
βz 0.0026 0.0088 0.93 0.0009 0.0083 0.95 0.0000 0.0108 0.95
βz∗ 0.0030 0.0121 0.96 0.0006 0.0134 0.94 0.0009 0.0132 0.95
δ0 0.0092 0.2037 0.97 0.0139 0.1677 0.93 0.0300 0.1802 0.93
δ1 0.0138 0.2036 0.98 0.0220 0.1202 0.92 0.0296 0.1096 0.92
δ2 0.0109 0.0487 0.93 0.0194 0.0885 0.91 0.0379 0.1018 0.91
λ0 -0.0029 0.0197 0.95 0.0429 0.1329 0.93 0.0991 0.2770 0.96
λ1 0.0059 0.0514 0.93 0.0989 0.3766 0.96 0.0896 0.2505 0.95
λ2 - - - - - - 0.0803 0.2273 0.95

Table 4. Bias, RMSE, and CR for 95% CI of the parameters estimate in case of ni = 5 for the proposed method under different
heterogeneous structures of random effects covariance matrix and severe error [σ = 0.8]

Overall, based on the simulation results, it is evident that the larger biases can occur in the fixed effects parameters
by ignoring the measurement error in covariate and also not specifying the distribution of random effects correctly. The
simulation results also demonstrate that the proposed approach performs very well with small biases and RMSEs as well as
good CRs for 95% CI. Moreover, as expected, the RMSEs for the all methods tend to decrease when the number of follow-ups
(ni) increases.

6. Application: Manitoba Follow-up study

The Manitoba Follow-up study (MFUS) is the longest running study of cardiovascular disease and ageing in Canada. It is
believed that the MFUS is the only cohort study in the world which is financed by the members who are being studied. The
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MFUS cohort consists of 3983 men who were recruits in the Royal Canadian Air Force during the early years of World
War II and was established at the University of Manitoba on July 1, 1948 [30]. The mean age of the men in the cohort was
around 31 years, with about 90% between age 20 and 39 years. It was declared that all men were free of clinical evidence
of ischaemic heart disease (IHD). The baseline measurement of systolic and diastolic blood pressure and body mass index
(mean ± standard deviation) were found 121± 10 mmHg, 76± 8 mmHg and 23.8± 2.7kg/m2, respectively [31]. At present,
the MFUS continues with its 68th year of uninterrupted study.

For the purpose of our study, a sub-sample of the MFUS data has been used. For the selection of sample from MFUS
participants, approximately 500 men, 1/8th of the cohort was chosen. In particular, from the registry file (one record per
MFUS man) a random number in the interval [0, 1] was selected using the ranuni function in SAS software [32], and the man
retained in our file if the random number was less than 0.125. The selected people were merged by ID number with the blood
pressure and body weight file, and all measurements recorded between July 1, 1948 and July 1, 2008 were kept. Finally, the
complete data set contains 373 members with 10 first follow-up observations for each member which has been used in the
analysis.

An important risk factor for cardiovascular disease is high blood pressure which is one of the major cause of mortality.
However, environmental and genetic factors and their interactions may be the cause for complex disorder disease like high
blood pressure [33]. In this work, it is of interest how hypertension which is based on blood pressure is associated with
corresponding risk factors and how individual measurements vary within individuals. For the purpose of analysis, we divide
individuals into two categories: having hypertension and not having hypertension. An individual is said to have hypertension
if his/her systolic blood pressure is greater than 140 mmHg or his/her diastolic blood pressure is greater than 90 mmHg [34].
The main covariates of interest include age, body mass index (BMI), and IHD status [Yes, No (ref)]. An individual is said
to have IHD if he develops IHD in any of his 10 first follow-ups. These covariates are taken into consideration as they are
found to have significant impact on the occurrence of hypertension in many studies [35–39]. In particular, there have been
many literatures which show the association between IHD and blood pressure [40, 41]. For this study, July 1, 1948 or the
closest date from July 1, 1948 is considered as the baseline. Based on the baseline information, it is observed that among the
individuals, the mean age is 30.6 years with standard deviation 5.24 and the minimum and maximum age are 20.2 and 52.6,

respectively. The mean BMI is 23.87 kg/m2 with standard deviation 2.66 kg/m2. Note that at the baseline all individuals are
IHD free. There are 9.1% individuals who had IHD till 10th follow-up, and 25.64% of individuals developed IHD till July 1,
2008.

In many longitudinal studies, the reported BMI of a person for a certain age is actually the long term average values of BMI
for that person in that year. BMI is the the ratio of weight (kg) and height (m2) and weight has a daily as well as seasonal
variations. That is why the true and observed BMI are different. Moreover, since only the overall/baseline weight and height
are considered to calculate BMI, there is always an overestimation/underestimation issue of true BMI. Many literatures have
shown that the BMI is subject to measurement error [42–45].

In MFUS, the all BMIs are reported by the physicians, however, the BMIs are based on the follow-up weights and heights
from the baseline. It means that the physicians in the follow-up times only ask for the weights and then report the BMI using
the weights with the heights at the baseline. Hence, it can be considered that there exists a variability of any BMI measurement
taken at a specific assessment time for an individual. In particular, it can be said that the observed BMI may overestimate the
true BMI.

Let the response variable Yij be the binary response, taking 1 if the subject i has hypertension at assessment j, and 0
otherwise. We can consider the model as follows:

logit
{
Pij
}

= β0 + β1Ageij + β2BMIi + β3IHDi + uij , (14)

where i = 1, 2, . . . , 373, j = 1, 2, . . . , 10, with Pij = P (Yij = 1|Ageij ,BMIi, IHDi, uij) and each individual has 10 visits.
It is assumed that ui = (ui1, . . . , uij) follows a multivariate Normal distribution with mean 0 and covariance matrix Σi.

Here BMIi, representing the true body mass index over time for subject i, which cannot be observed in practice and is
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treated as the error-contaminated covariate. To feature the measurement error variation we employ the following classical
structural measurement error model BMIij = BMIi + eij , where BMIij is the measurement taken for subject i at assessment
time point j, BMIi ∼ N(µx, σ

2
x), and eij’s are assumed to follow independent Normal distribution with mean 0 and variance

σ2. It is known that the errors over replicates can be considered conditionally independent given the long-term average if
the replicates within an individual are taken far enough apart in time [22]. In MFUS, during first 15 years, routine medical
examination including BMI, blood pressure were requested from study members at 5-year intervals, then 3-year intervals,
every year, twice a year and now three times each year [31]. This actually demonstrates the BMI measurements within an
individual were taken in long time distance and suggested that the errors can be considered independent over these replicates.

6.1. Analysis of impact of covariates on hypertension

We analyze the data with the three approaches: the proposed approach which allows the random effects covariance matrix
to vary by IHD for each subject; Naive 2 approach where constant random effects covariance matrix with AR(1) structure
is considered across the subjects; and Naive 1 approach where measurement error in covariate is also ignored. The results
for the all three approaches are reported in Table 5. In particular, the associated model parameters estimates, their standard
errors, and corresponding 95% confidence intervals for the all three approaches are provided. The GARP and IV parameters
are obtained by specifying ki,jt and hi,j as follows:

ki,j,j−1 = (1, IHDi) and hi,j = (1, IHDi),

and estimated value of Σi is calculated using Σi = T−1
i Di(T

T
i )−1,where Di = diag(σ2

i1, σ
2
i2, . . . , σ

2
ini

), log
(
σ2
ij

)
= hTi,jλ,

and Ti is a unit lower triangular matrix having ones on its diagonal and −φi,jt (φi,jt = kTi,jtδ) in the (j, t)th element for
2 ≤ j ≤ 10. Here we specify the following structure for the parameters of random effects covariance matrix:

φi,jt = δ0I(|j − t| = 1) + δ1I(|j − t| = 1)IHDi and log(σ2
ij) = λ0 + λ1IHDi. (15)

Moreover, the adjusted odds ratio (OR) is used to compare the odd of occurrence of hypertension with covariates. In
logistic regression, estimate of OR e.g. for covariate Ageij(i = 1, . . . ,m; j = 1, . . . , ni) can be obtained as ÔR = exp(β̂1).

The 100(1− α)% confidence interval for OR is

ÔR± zα/2
√

var(ÔR),

where var(ÔR) =
(
ÔR
)2

var(β̂1) = exp(2β̂1)var(β̂1) using the delta method. The estimated OR and its standard error with
95% confidence interval for the covariates under the all three approaches are given in Table 6.

6.1.1. Estimation of parameters From Table 5, in case of Naive 1, it is observed that BMI, age, and IHD are positively
associated with the occurrence of hypertension. The 95% confidence intervals of these fixed effects estimate indicate the
significant effect of these covariates on hypertension. For Naive 2, BMI is positively associated with the development of
hypertension and this effect is found to be significant. Age and IHD also have significant positive effects on the hypertension.

Here, the reliability ratio,
σ2
x

σ2
x + σ2

, is 0.83 which indicates the amount of error associated with the covariate BMI. Hence, it

is clear that there is 17% error associated with the covariate BMI.
The estimate of GARP and IV parameters indicates that the covariance matrix varies according to the IHD

group. This result demonstrates that the random effects covariance matrix differs by measured covariates and
neglecting this heterogeneity can cause the biased estimate of model parameters [4]. In the estimate of IV, the
coefficient of IHD was found significant which indicates that the estimated IV was higher for those individuals
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Naive 1 Naive 2 Proposed

Parameter Est SE LB UB Est SE LB UB Est SE LB UB

β0 -13.72 0.580 -14.86 -12.58 -13.16 0.573 -14.28 -12.04 -12.09 0.588 -13.24 -10.94
βBMI 0.278 0.021 0.237 0.319 0.269 0.020 0.230 0.308 0.208 0.021 0.167 0.249
βAge 0.089 0.006 0.077 0.101 0.083 0.006 0.071 0.095 0.089 0.005 0.079 0.099
βIHD 1.227 0.162 0.909 1.545 1.033 0.161 0.717 1.349 0.561 0.180 0.208 0.914
σ2
u 1.982 0.046 1.892 2.072 1.959 0.045 1.870 2.047 - - - -
µx - - - - 23.98 0.042 23.90 24.06 24.03 0.042 23.95 24.12
σ2
x - - - - 6.612 0.153 6.312 6.912 6.533 0.151 6.237 6.829
σ2 - - - - 1.380 0.032 1.317 1.443 1.380 0.032 1.317 1.443
δ0 - - - - - - - - 0.146 0.005 0.136 0.156
δ1 - - - - - - - - -0.111 0.001 -0.113 -0.109
λ0 - - - - - - - - 1.561 0.012 1.537 1.585
λ1 - - - - - - - - 1.973 0.012 1.949 1.997

Table 5. Estimate (Est), standard error (SE), and lower bound (LB) and upper bound (UB) of 95% CI of model parameters
estimate for the Naive 1, Naive 2, and Proposed approaches

who have IHD than the individuals without IHD. By following equation (15), the estimated values for D̂

for each group of IHD are log D̂(IHD=0) = diag (1.56, 1.56, 1.56, 1.56, 1.56, 1.56, 1.56, 1.56, 1.56, 1.56) and
log D̂(IHD=1) = diag (3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53). This demonstrates that the estimated
IV parameters vary across the status of IHD. The coefficient of IHD in the estimates of GARP is also found significant and
this also indicates the substantial variation of GARPs across the status of IHD. As δ̂1 and λ̂1 are statistically significant from
zero, the proposed approach also works better than assuming the same correlation structural AR(1) for the all subjects (Naive
2). By following equation (15), the estimated values of T̂ for each group of IHD are given by

T̂(IHD=0) =



1 0 0 0 0 0 0 0 0 0

0.15 1 0 0 0 0 0 0 0 0

0 0.15 1 0 0 0 0 0 0 0

0 0 0.15 1 0 0 0 0 0 0

0 0 0 0.15 1 0 0 0 0 0

0 0 0 0 0.15 1 0 0 0 0

0 0 0 0 0 0.15 1 0 0 0

0 0 0 0 0 0 0.15 1 0 0

0 0 0 0 0 0 0 0.15 1 0

0 0 0 0 0 0 0 0 0.15 1


,

T̂(IHD=1) =



1 0 0 0 0 0 0 0 0 0

−0.04 1 0 0 0 0 0 0 0 0

0 −0.04 1 0 0 0 0 0 0 0

0 0 −0.04 1 0 0 0 0 0 0

0 0 0 −0.04 1 0 0 0 0 0

0 0 0 0 −0.04 1 0 0 0 0

0 0 0 0 0 −0.04 1 0 0 0

0 0 0 0 0 0 −0.04 1 0 0

0 0 0 0 0 0 0 −0.04 1 0

0 0 0 0 0 0 0 0 −0.04 1


.
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The significant estimate of coefficient of BMI indicates that the estimated conditional probability of hypertension given the
random effects increases with the increase of individual’s BMI. Also, age was found significant and the conditional probability
of hypertension increases as age increases. The reliability ratio for the proposed approach is also 0.82 which indicates the
amount of 18% error involvement with the covariate BMI.

The fixed effects estimates for the all three approaches reveal the same nature of covariates effects on hypertension status,
but there exists a variation in the magnitude of the fixed effects for the naive methods compared to the proposed approach,
especially in case of IHD covariate. The naive approaches suggest a significant positive IHD effect of individuals who have
IHD compared to the individuals without IHD on hypertension status that is nearly more than two times higher than the
corresponding value in the proposed approach. This might be due to ignoring the heterogeneity or temporal dependence on
random effects covariance matrix in the naive methods. The estimates of BMI effect are also larger in naive methods than
the proposed approach. We also observe that the random effects variance estimate (and its standard error) for the both naive
methods are close to each other, and the variance of measurement error (σ2) and corresponding mean and variance of BMI
(µx, σ

2
x) are also similar for the both Naive 2 and proposed approaches.

We also calculate the Akaike information criterion (AIC) as a goodness-of-fit criterion to compare the three models. The
AIC values indicated that the proposed approach provided a better fit than the Naive models (3780.3, 6388.8, and 4627.2 for
the proposed approach, Naive 2, and Naive 1, respectively).

6.1.2. Estimation of odds ratio To examine the association of a covariate with the occurrence of hypertension controlling
other covariates in the model, one may use adjusted OR. The adjusted OR and its standard error with 95% confidence interval
for the covariates under the three approaches are given in Table 6.

Naive 1 Naive 2 Proposed

Quantity BMI Age IHD BMI Age IHD BMI Age IHD

OR 1.320 1.093 3.411 1.309 1.087 2.809 1.231 1.093 1.752
SE 0.028 0.007 0.553 0.026 0.007 0.452 0.026 0.005 0.315

95% LB 1.266 1.080 2.328 1.257 1.074 1.923 1.181 1.082 1.134
95% UB 1.375 1.106 4.494 1.360 1.099 3.696 1.282 1.104 2.371

Table 6. Odds ratio (OR), standard error (SE), lower bound (LB) and upper bound (UB) of 95% CI of model parameters
estimate for the Naive 1, Naive 2, and Proposed approaches

From Table 6, in case of Naive 1, it is found that the OR for BMI is 1.320 which implies that with one unit increase in
BMI, the odds of developing hypertension is expected to increase 32%. It is interesting to observe that the development of
hypertension increases with the increase of age as well (OR=1.09). In case of IHD, it is observed that an individual with IHD
is 241% more likely to have hypertension compared to an individual without IHD. For the Naive 2, it is observed that the
estimated OR for BMI is 1.309 with p-value 0.00. It implies that the odds of having hypertension is significantly increased
by 31% with one unit increase of BMI. The OR of age also reveals the same nature which means with one unit increase in
age, the odds of developing hypertension is increased by 9%. For the IHD, the OR is 2.809 which means that the individuals
with IHD are 181% more likely to develop hypertension than the individuals without IHD. Same nature can be revealed for
the BMI, age, and IHD for the proposed approach. The OR for the BMI indicates the significant increase of odds (1.231) of
developing hypertension with the increase of one unit in BMI. The odds of having hypertension is expected to increase 9%

with one unit increase in age. For the IHD, the OR is 1.75 which means that the individuals with the IHD are 75% more likely
to develop hypertension than the individuals without the IHD. We also observe that the all three covariates are statistically
significant from zero.
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7. Concluding remarks

In this paper, our aim was to properly model the random effects covariance matrix under the GLMMs with covariates
measurement error. For this purpose, we extended the model introduced by Lee et al. [11] to model the random effects
covariance matrix for the GLMMs to the case when the covariates are subject to measurement error using modified Cholesky
decomposition. This covariance matrix was decomposed to the GARPs and IVs parameters and this structure is able to
accommodate the heterogeneous covariance matrix which depends on subject-specific covariates. In this paper, we analytically
derived the necessary formulae for the case of binary outcome, however, one can follow the same steps to derive for other
exponential family distributions. From the simulation studies, we have demonstrated that the proposed approach performs
very well in terms of bias, RMSE as well as coverage rate of the model parameters estimate. The simulation studies also
indicated that the larger biases can occur in the fixed effects parameters by ignoring the measurement error in covariates
and also not specifying the distribution of random effects correctly. The proposed approach for modelling random effects
covariance matrix is also computationally attractive and provides parameters which have sensible interpretation for modelling
trajectories over time. Especially, the dependence and variability of the random effects can be characterized by the covariance
parameters. To incorporate the heterogeneity in the random effects, we worked with the random intercept model to explicitly
show performance of our proposed approach, however, one can also consider the random effects in terms of design matrix.

In the longitudinal data analysis with covariates measurement error, if the main interest is the covariance structure or
subject-specific prediction, then proper care needs to be taken in modeling the covariance structure as well as the measurement
error. However, taking proper care is important even if these are not the main or direct interests. For instance, if the random
effects covariance matrix is not modeled correctly when it is function of subject-specific covariates, then the inference will be
incorrect which may lead to wrong conclusions.

It should be noted that in measurement error problem, model identifiability is an important issue. In case of measurement
error, additional data source such as a validation sub-sample or replications is needed to perform a measurement error
analysis [22]. In longitudinal studies, repeated measurements are collected for error-prone variables, and for identifying
model parameters these measurements can be used as replicates. In particular, the parameters of an error model are often
identifiable if the number of repeated assessment of measurement error covariates is larger than the number of parameters
in the error model [23]. If the parameters are not identifiable, then in numerical iterative procedures, fast divergence can
occur. For example, if there is a non-identifiability problem then the EM algorithm would diverge quickly [46]. Our numerical
experience, however, did not indicate that there is an issue with non-identifiability for the models considered (equations (1) to
(3)) in this work (simulation study as well as the real data application).

In the past twenty years, significant contributions have been made in the area of longitudinal data with covariates
measurement error. However, there are still a lot of interesting and important problems related to this work need to be explored
as future works. For example, our plan is to study our random effects subject-specific variance-covariance matrix for the
marginalized random effects models as well. It would be also interesting to model the random effects covariance matrix in
case of longitudinal data with response measurement error. The proposed model is based on measurement error in the mean
model, however, one can extend it to study the measurement error in the variance model as well. We also assumed that the
design vectors k and h needed to model the GARP/IV parameters are subsets of error-free covariates, however, one can extend
our proposed approach to also consider the covariates with measurement error to build the model to estimate the GARP/IV
parameters. We have planned to study these approaches in our future studies.

In conclusion, in the presence of covariates measurement error in longitudinal data, incorrectly modeling the random effects
covariance matrix can have significant effects on inference in model parameters. Hence, it is important to properly model the
random effects covariance matrix in the presence of covariates measurement error.
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Appendix A

A.1. An illustration

This appendix contains an illustration of the general inference procedure of our proposed method in the case of binary
outcome. In particular, let us consider the longitudinal binary data and assume the following logistic mixed model:

logit
{
P (Yij = 1 | xij , zij , uij)

}
= β0 + βxxij + βzzij + uij ,

and the density function for yij is given by f(yij |xi, zi,ui;β) = Pij(uij)
yij [1− Pij(uij)]1−yij , i = 1, 2, . . . ,m and j =

1, 2, . . . , ni, with

Pij(uij) = P (Yij = 1|xij , zij , uij) =
exp(xTijβ + uij)

1 + exp(xTijβ + uij)
, where xij = (1, xij , zij)

T ,βT = (β0, βx, βz),

and 1− Pij(uij) =
1

1 + exp(xTijβ + uij)
. We can then write the following density function:

f(yi|xi, zi,ui;β) =
exp
{∑ni

j=1 yij
(
xTijβ + uij

)}∏ni

j=1

{
1 + exp

(
xTijβ + uij

)}
= exp

[ ni∑
j=1

yij
(
xTijβ + uij

)
−
( ni∑
j=1

log
{

1 + exp
(
xTijβ + uij

)})]
. (16)

Also, f(ui) has a multivariate Normal density with mean vector 0 and covariance matrix Σi which can be written as:

f(ui; δ,λ) = (2π)−ni/2

[ ni∏
j=1

(
σ2
ij

)−1/2
]

exp

−1

2

ni∑
j=1

ε2ij
σ2
ij

 with εi1 = ui1. (17)

Moreover, let us consider classical additive structural measurement error model as wij = xij + eij , where eij ∼ N(0, σ2)

and xij be the covariate subject to error and has Normal distribution N(µx, σ
2
x). To avoid identifiability issue, one should

assume whether the parameter σ2
x or σ2 is known. We can write wij |xij ∼ N(xij , σ

2). Then the conditional distribution of
xij |wij can be written as follows:

xij

∣∣∣wij ;µx, σ2
x, σ

2 ∼ N(µf , σ
2
f ), where µf =

µxσ
2 + wijσ

2
x

σ2 + σ2
x

andσ2
f =

σ2
xσ

2

σ2 + σ2
x

. (18)
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Therefore, we can write the complete data log-likelihood following (8) as:

lc(θ) =

m∑
i=1

logLi(θ; yi,xi,ui)

=

m∑
i=1

 ni∑
j=1

yij
(
xTijβ + uij

)
−
( ni∑
j=1

log
{

1 + exp
(
xTijβ + uij

)})

+

m∑
i=1

−ni2 log
(

2π
σ2
xσ

2

σ2 + σ2
x

)
− 1

2

ni∑
j=1

(
xij −

µxσ
2 + wijσ

2
x

σ2 + σ2
x

)2

σ2
xσ

2

σ2 + σ2
x


+

m∑
i=1

−ni
2

log (2π)−
ni∑
j=1

1

2
logσ2

ij −
1

2

ni∑
j=1

ε2ij
σ2
ij

 , (19)

where θ =

(
βT ,γT = (µx, σ

2
x)T , σ2, δT ,λT

)T
is the associated parameters to develop the EM algorithm. We can then

write the observed data likelihood as follows:

L(θ; yi,wi, zi) =

∫ ∫
f(yi|xi, zi,ui;β)f(xi|wi;γ, σ

2)f(ui; δ,λ)dxidui (20)

This likelihood function is not in closed form, so we rely on MCEM algorithm to evaluate this. The ML estimators of
β, δ,λ,γ, σ2 can be obtained by solving the following estimating equations:

m∑
i=1

E
{
∂ log f

(
yi
∣∣ xi, zi,ui;β

)
∂β

∣∣∣∣∣yi,wi, zi

}
= 0,

m∑
i=1

E
{
∂ log f

(
xi;γ, σ

2
)

∂γ

∣∣∣∣∣yi,wi, zi

}
= 0,

m∑
i=1

E
{
∂ log f

(
xi;γ, σ

2
)

∂σ2

∣∣∣∣∣yi,wi, zi

}
= 0,

m∑
i=1

E
{
∂ log f

(
ui; δ,λ

)
∂δ

∣∣∣∣∣yi,wi, zi

}
= 0,

m∑
i=1

E
{
∂ log f

(
ui; δ,λ

)
∂λ

∣∣∣∣∣yi,wi, zi

}
= 0,

where the conditional expectations are with respect to the conditional distribution of random effects
(
xi,ui

)
given the

observed data
(
yi,wi, zi

)
. Here for the parameters β, δ,λ,γ, σ2, the above score functions for individual i can be expressed

as:

∂logL(θ; yi,xi,ui)

∂β
=

1

L(θ; yi,wi, zi)

∫ ∫
∂f(yi|xi, zi,ui;β)

∂β
f(xi|wi, zi;γ, σ

2)f(ui; δ,λ) dxidui, (21)
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where,

∂f(yi|xi, zi,ui;β)

∂β
= exp

[ ni∑
j=1

yij
(
xTijβ + uij

)
−
( ni∑
j=1

log
{

1 + exp
(
xTijβ + uij

)})]
[ ni∑
j=1

yijxij −
1

1 + exp
(
xTijβ + uij

) exp
(
xTijβ + uij

)
xij

]

= exp
[ ni∑
j=1

yij
(
xTijβ + uij

)
−
( ni∑
j=1

log
{

1 + exp
(
xTijβ + uij

)})][ ni∑
j=1

(
yij − Pij(uij)

)
xij

]
.

Also,

∂logL(θ; yi,xi,ui)

∂σ2
=

1

L(θ; yi,wi, zi)

∫ ∫
f(yi|xi, zi,ui;β)

∂f(xi|wi;γ, σ
2)

∂σ2
f(ui; δ,λ) dxidui, (22)

where
∂f(xi|wi;γ, σ

2)

∂σ2
=

∂

∂σ2

[
exp
{

log f(xi|wi;γ, σ
2)
}]

= f(xi|wi;γ, σ
2)

∂

∂σ2

{
log f(xi|wi;γ, σ

2)
}
,

and

∂logL(θ; yi,xi,ui)

∂γ
=

1

L(θ; yi,wi, zi)

∫ ∫
f(yi|xi, zi,ui;β)

∂f(xi|wi;γ, σ
2)

∂γ
f(ui; δ,λ) dxidui, (23)

where
∂f(xi|wi;γ, σ

2)

∂γ
=

∂

∂γ

[
exp
{

log f(xi|wi;γ, σ
2)
}]

= f(xi|wi;γ, σ
2)
∂

∂γ

{
log f(xi|wi;γ, σ

2)
}
.

Furthermore,

∂logL(θ; yi,xi,ui)

∂δ
=

1

L(θ; yi,wi, zi)

∫ ∫
f(yi|xi, zi,ui;β)f(xi|wi, zi;γ, σ

2)
∂f(ui; δ,λ)

∂δ
dxidui, (24)

where f(ui; δ,λ) is defined in (17) and φi,jt = kTi,jtδ, log
(
σ2
ij

)
= hTi,jλ, uij =

∑j−1
t=1 φi,jtuit + εij , for j =

2, 3, . . . , ni. We can then write

∂f(ui; δ,λ)

∂δ
=

∂

∂δ

[
exp
{

log f(ui; δ,λ)
}]

= f(ui; δ,λ)
∂

∂δ

{
log f(ui; δ,λ)

}
= −f(ui; δ,λ)

ni∑
j=1

εij
σ2
ij

∂εij
∂δ

with
∂εi1
∂δ

= 0 as εi1 = ui1 and
∂εij
∂δ

= −
j−1∑
t=1

uitki,jt.

Similarly, we can write

∂logL(θ; yi,xi,ui)

∂λ
=

1

L(θ; yi,wi, zi)

∫ ∫
f(yi|xi, zi,ui;β)f(xi|wi, zi;γ, σ

2)
∂f(ui; δ,λ)

∂λ
dxidui, (25)

where
∂f(ui; δ,λ)

∂λ
=

∂

∂λ

[
exp
{

log f(ui; δ,λ)
}]
. After some algebra, we can write

∂f(ui; δ,λ)

∂λ
=

f(ui; δ,λ)
∑ni

j=1

(
ε2ij
σ2
ij

− 1

)
hi,j . As we do not have closed forms of the above equations, we use the MCEM to get

the approximation of the integrals in (21)-(25). We then follow the equation (9) to get the E-step of the MCEM. To evaluate
the E-steps, we generate samples from these conditional distributions using Metropolis-Hasting algorithm. In M-steps,
we used optim function in R-program (R 3.1.1) using quasi-Newton based method to get the updated estimates, and we
continued these steps until convergence [29].
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Supplementary materials

The supplementary materials contain R codes and corresponding “readme” files for the simulation and real data application
conducted in this paper.
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