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Abstract We develop a method originally proposed by R. A. Fisher into
a general procedure, called tailoring, for deriving goodness-of-fit tests that
are guaranteed to have a χ2 asymptotic null distribution. The method has a
robustness feature that it works correctly in testing a certain aspect of the
model while some other aspect of the model may be misspecified. We apply
the method to small area estimation. A connection, and difference, to the
existing specification test is discussed. We evaluate performance of the tests
both theoretically and empirically, and compare the performance with several
existing methods. Our empirical results suggest that the proposed test is more
accurate in size, and has either higher or similar power compared to the ex-
isting tests. The proposed test is also computationally less demanding than
the specification test and other comparing methods. A real-data application
is discussed.
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1 Introduction

Goodness-of-fit tests for mixed models, or mixed effects models, have received
considerable attention in recent literature (e.g., Jiang 2001, Claeskens and Hart
2009, Dao and Jiang 2016). Such tests are relevant to many practical problems.
For example, mixed effects models are extensively used in small area estima-
tion (SAE; e.g., Rao and Molina 2015). Here the term small area typically
refers to a population for which reliable statistics of interest cannot be pro-
duced based on direct sampling from the population due to certain limitations
of the available data. Examples of small areas include a geographical region
(e.g., a state, county, municipality), a demographic group (e.g., a specific age
× sex × race group), a demographic group within a geographic region, etc.
Statistical models, especially mixed effects models, have played key roles in
improving small area estimates by borrowing strength from relevant sources.
It is known, however, that in case of model misspecification, the traditional
empirical best linear unbiased prediction (EBLUP) method may lose efficiency.
See, for example, Jiang, Nguyen and Rao (2011). In case of model misspeci-
fication, an alternative method, known as observed best prediction (OBP), is
shown to be more accurate than the EBLUP. On the other hand, when the
underlying model is correctly specified, EBLUP is known to be more efficient
than OBP (e.g., Jiang, Nguyen and Rao 2011, 2015). Therefore, it is impor-
tant, in practice, to know whether or not the assumed model is appropriate in
order to come up with a more efficient SAE strategy.

A standard assumption for mixed effects models in general (e.g., Jiang
2007), is that the random effects are normally distributed. This assumption
has had substantial impact on many aspects of the inference. For example,
estimation of the mean squared prediction errors of small area predictors is an
important issue in SAE (e.g., Rao and Molina 2015). The well-known Prasad-
Rao method (Prasad and Rao 1990) depends on the normality assumption and
may not be accurate if the assumption fails (e.g., Lahiri and Rao 1995). Also,
prediction interval obtained via parametric bootstrap methods (e.g., Chat-
terjee, Lahiri and Li 2008) depends heavily on the normality assumption.
The normality assumption is even more critical for inference about general-
ized linear mixed models (GLMMs; e.g., Jiang 2007). See, for example, Jiang
and Nguyen (2009). Although there are strategies that are less dependent on
the normality assumption, those strategies are often less efficient than the
normality-based method when the normality assumption actually holds, or
approximately holds. Thus, it is important to check the validity of the nor-
mality assumption so that an appropriate, or more efficient, method can be
used for the inference.

In the literature of mixed effects models, such problems as discussed above
have to do with mixed model diagnostics; see, for example, Pierce (1982), sec.
2.4.1 of Jiang (2007), Claeskens and Hart (2009). Jiang (2001) proposed a
χ2-type goodness-of-fit test for linear mixed model (LMM) diagnostics, whose
asymptotic null distribution is a weighted χ2, where the weights are eigenval-
ues of some nonnegative definite matrix. Claeskens and Hart (2009) proposed
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an alternative approach to the χ2 test for checking the normality assump-
tion in LMM. The authors considered a class of distributions that include
the normal distribution as a reduced, special case. The test is based on the
likelihood-ratio test (LRT) that compares the “estimated distribution” and
the null distribution (i.e., normal). A model selection procedure via the infor-
mation criteria is used to determine the larger class of distributions for the
LRT. In particular, the asymptotic null distribution is in the form of the dis-
tribution of supl≥1{2Ql/l(l + 3)}, where Ql =

∑l
q=1 χ

2
q+1, l is the order of

polynomial, and χ2
2, χ

2
3, . . . are independent such that χ2

j has a χ2 distribution
with j degrees of freedom, j ≥ 2.

The χ2-type tests depend on the choice of cells, based on which the observed
and expected cell frequencies are evaluated. As noted by Jiang and Nguyen
(2009), performance of the χ2 test is sensitive to the choice of the cells, and
there is no “optimal choice” of such cells known in the literature. On the other
hand, the Claeskens-Hart test depends on the choice of the information crite-
rion. As is well known, there are different versions of the information criteria,
such as AIC (Akaike 1973), BIC (Schwarz 1978), HQ (Hannan and Quinn
1979). The difference in the performance of the test by different information
criteria is unclear. Furthermore, the weighted-χ2 asymptotic null distribution
of Jiang (2001) depends on eigenvalues of a certain matrix, whose expressions
are complicated, and involve unknown parameters. These parameters need to
be estimated in order to obtain the critical values of the tests. Due to such a
complication, Jiang (2001) suggests to use a Monte-Carlo method to compute
the critical value; but, by doing so, the usefulness of the asymptotic result may
be undermined. Similarly, the asymptotic distribution of the Claeskens-Hart
test is not simple and involves supreme of partial sums of χ2 random variables.

It might be argued that, in today’s computer era, having a χ2 asymptotic
distribution is, perhaps, not as important as in the past. However, there are,
still, attractive features of the χ2 limiting distribution that are worth pursu-
ing. First, the χ2 distribution corresponds to the right standardization–it is the
“square” of the norm of a multivariate normal vector. In this regard, anything
other than χ2 leaves, at least, some room for improvement. In other words, if
the limiting distribution is not a (central) χ2, the test statistic has not been
completely standardized. Note that, while there is only one way of a complete
standardization, there are many, if not infinitely many, ways of incomplete
standardization, so it may not be convincing why one way is preferred over
the others. Second, having a computer-driven, non-analytic asymptotic distri-
bution makes it difficult to study properties of the limiting distribution. For
example, how does the reduction of complexity of the model under the null
hypothesis play a role? It may not be easy to tell if all one gets are a bunch
of numbers. A related issue is regarding direction of improvement. This may
not be easy to see without a simple analytic expression for the asymptotic
distribution.

In Section 2, we generalize a method initiated by Fisher (1922) in deriving
goodness-of-fit tests (GoFTs) that are guaranteed to have asymptotic χ2 null
distributions. A robust feature of the proposed test is that it can be used to
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test a certain aspect of the assumed model while another aspect of the model is
misspecified. We also discuss a connection, and difference, between our GoFT
and the specification test based on the generalized method of moments (GMM;
e.g., Hall 2005) that is known in the econometrics literature.

In Section 3, we apply our generalized procedure to SAE to derive a
goodness-of-fit test under the Fay-Herriot model (Fay and Herriot 1979). The
test is developed under a predictive consideration that incorporates the spe-
cial interest of SAE. In Section 4, we evaluate performance of the proposed
GoFT via simulation studies. We compare our GoFT with several competing
methods, including the specification test. The results show that our GoFT is
more accurate in term of the size, and has higher or similar power compared
to the competing methods. Our GoFT is also computationally less demanding
than the specification test. A real data example is discussed in Section 5. Some
concluding remarks and future directions are given in Section 6. Proofs and
technical details are deferred to Appendix. Computer codes are provided as
supplementary materials.

2 Tailoring

In this section, we describe a general approach to obtaining a test statistic that
has an asymptotic χ2 distribution under the null hypothesis. The original idea
can be traced back to R. A. Fisher (1922), who used the method to obtain an
asymptotic χ2 distribution for Pearson’s χ2-test, when the so-called minimum
chi-square estimator is used. However, Fisher did not put forward the method
that he originated under a general framework, as we do here. Suppose that
there is a sequence of s-dimensional random vectors, B(ϑ), which depend on
a vector ϑ of unknown parameters with dimension r such that, when ϑ is the
true parameter vector, one has E{B(ϑ)} = 0, Var{B(ϑ)} = Is, and, as the
sample size increases,

|B(ϑ)|2 d−→ χ2
s, (1)

where | · | denotes the Euclidean norm. However, because ϑ is unknown, one
cannot use (1) for GoFT. What is typically done, such as in Pearson’s χ2-test,

is to replace ϑ by an estimator, ϑ̂. Question is: what is ϑ̂? The ideal scenario
would be that, after replacing ϑ by ϑ̂ in (1), one has a reduction of degrees of
freedom (d.f.), which leads to

|B(ϑ̂)|2 d−→ χ2
ν , (2)

where ν = s − r > 0. This is the famous “subtract one degree of freedom for
each parameter estimated” rule taught in many elementary statistics books
(e.g., Rice 1995, p. 242). However, as is well known (e.g., Moore 1978), de-

pending on what ϑ̂ is used, (2) may or may not hold, regardless of what de-
grees of freedom are actually involved. In fact, the only method that is known
to achieve (2) without restriction on the distribution of the data is Fisher’s
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minimum χ2 method. In a way, the method allows one to “cut-down” the d.f.
of (1) by r, and thus convert an asymptotic χ2

s to an asymptotic χ2
ν . For such

a reason, we have dubbed the method, under the more general setting below,
tailoring. We develop the method with a heuristic derivation, with the rigorous
justification given in the Appendix.

The “right” estimator of ϑ for tailoring is supposed to be the solution to
an estimating equation of the following form:

C(ϑ) ≡ A(ϑ)B(ϑ) = 0, (3)

where A(ϑ) is an r×s non-random matrix that plays the role of tailoring the s-
dimensional vector, B(ϑ), to the r-dimensional vector, C(ϑ). The specification
of A will become clear at the end of the derivation. Throughout the derivation,
ϑ denotes the true parameter vector. For notation simplicity, we use A for A(ϑ),

Â for A(ϑ̂), etc, where ϑ̂ is the solution of (3). Under regularity conditions,
one has the following expansions, which can be derived from the Taylor series
expansion and large-sample theory (e.g., Jiang 2010):

ϑ̂− ϑ ≈ −
{

Eϑ

(
∂C

∂ϑ′

)}−1
C, (4)

B̂ ≈ B − Eϑ

(
∂B

∂ϑ′

){
Eϑ

(
∂C

∂ϑ′

)}−1
C. (5)

Because Eϑ{B(ϑ)} = 0 [see above (1)], one has

Eϑ

(
∂C

∂ϑ′

)
= AEϑ

(
∂B

∂ϑ′

)
. (6)

Combining (5) and (6), we get

B̂ ≈ {Is − U(AU)−1A}B, (7)

where U = Eϑ(∂B/∂ϑ′). We assume that A is chosen such that

U(AU)−1A is symmetric. (8)

Then, it is easy to verify that Is − U(AU)−1A is symmetric and idempotent.
If we further assume that the following limit exists:

Is − U(AU)−1A −→ P, (9)

then P is also symmetric and idempotent. Thus, assuming that B
d→ N(0, Is),

which is typically the argument leading to (1), one has, by (7), B̂
d→ N(0, P ),

hence (e.g., Searle 1971, p. 58) |B̂|2 d→ χ2
ν , where ν = tr(P ) = s − r. This is

exactly (2).
It remains to answer one last question: Is there such a non-random matrix

A = A(ϑ) that satisfies (8) and (9)? We show that, not only the answer is
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yes, there is an optimal one. Let A = N−1U ′W , where W is a symmetric,
non-random matrix to be determined, and N is a normalizing constant that
depends on the sample size. By (4) and the fact that Varϑ(B) = Is [see above
(1)], we have

varϑ(ϑ̂) ≈ (U ′WU)−1U ′W 2U(U ′WU)−1 ≥ (U ′U)−1, (10)

by, for example, Lemma 5.1 of Jiang (2010). The equality on the right side of
(10) holds when W = Is, giving the optimal A:

A = A(ϑ) =
U ′

N
=

1

N
Eϑ

(
∂B′

∂ϑ

)
. (11)

The A given by (11) clearly satisfies (8) [which is U(U ′U)−1U ′]. It will be seen
in the next section that, with N = m, (9) is expected to be satisfied. It should

be noted that the solution to (3), ϑ̂, does not depend on the choice of N .
Remark 1. A basic assumption for the tailoring method to work is that

E{B(ϑ)} = 0 when ϑ is the true parameter vector. However, from the proof of
the result (see Appendix) it is seen that the condition “ϑ is the true parameter
vector” is not critical. For example, in case there is a model misspecification, a
“true parameter vector” may not exist. Nevertheless, what is important is that
there is some parameter vector, ϑ, which is not necessarily the true parameter
vector, such that the equation

A(ϑ)E{B(ϑ)} = 0 (12)

holds. This equation holds, of course, when ϑ is the true parameter vector,
but it can also hold when the true parameter vector does not exist, such as
under model misspecification. In fact, in the latter case, one may define the
“true parameter vector” as the unique ϑ, assumed exist, that satisfies (12).
Note that the number of equations in (12) is the same as the dimension of ϑ;
thus, one expect that a solution exists and is unique, under some regularity
conditions. To see that (12) is the key, note that under (12), (3) is equiv-
alent to A(ϑ)[B(ϑ) − E{B(ϑ)}] = 0, where the expectation is with respect
to the true underlying distribution. It follows that one can replace B(ϑ) by
B(ϑ)− E{B(ϑ)}, which has mean zero, and all of the arguments in the proof
go through. This property has given tailoring some unexpected robustness fea-
ture, that is, it can work correctly in spite of some model misspecification. We
illustrate more specifically in the next section.

Remark 2. There is a connection between the tailoring method and the
specification test (ST) based on GMM (e.g., Hall 2005). However, there is also
a difference. The difference is that ST is equivalent to (3) with A(ϑ) given
by (11) without the expectation, but for tailoring the expectation is taken
first before using it in (3). One may compare this difference to that between
the observed Fisher information and expected one in maximum likelihood
(ML) estimation (Efron and Hinkley 1978). Although it may be argued that,
asymptotically, this difference may be of lower order—in fact, ST may also be
viewed as an extension of the original idea of Fisher (1922), and it has the same



Goodness-of-fit test 7

asymptotic null distribution as tailoring — , finite-sample performance may
differ. We demonstrate this difference in our simulation study in Section 4.
Furthermore, because, after taking the expectation, some terms in ∂B′/∂ϑ in
(11) may vanish, the form of A(ϑ) in (3) may be substantially simplified. One
may, again, compare this to Fisher scoring in ML. For example, McCullagh
and Nelder (1989, p. 42) developed the well-known GLM algorithm and noted
that it often simplifies the numerical computation of the ML estimator. In our
simulation study, we have also observed that tailoring is computationally less
demanding than ST, apparently also due to the simplification of taking the
expectation. See Section 4 for more detail.

Remark 3. The asymptotic covariance matrix of ϑ̂, that is, the left side of
(10), has a “sandwich” expression, which is similar to the well-known sandwich
estimator of the (asymptotic) covariance matrix of a GEE (generalized esti-
mating equations) estimator. See, for example, Kauermann and Carroll (2001),
who studied impact of the sandwich estimator in terms of relative efficiency
and coverage probability of the resulting confidence interval. The sandwich es-
timator provides robust estimation of the variation of the GEE estimator when
the variance-covariance structure of the data is misspecified. The robustness
feature of tailoring is, in a way, more general in that it is not necessarily with
respect to misspecification of the variance-covariance structure. For example,
in the next section we are mainly concerned with misspecification of the mean
function.

3 Applying tailoring to SAE

As noted, we intend to develop a GoFT that takes into account the special
interests in SAE problems. The development is based on an appropriate ob-
jective function in conjunction with the tailoring method. We shall focus on
area-level models (Fay and Herriot 1979); extension of the method to other
types of SAE models, such as the nested-error regression model (Battese, Fuller
and Harter 1988), is fairly straightforward.

There are different aspects of the model that are subject to model checking.
Although the focus here is on testing for the normality assumption of the
random effects, the method can be easily extended to testing other aspects
of the assumed model. As noted (see Remark 1 of the previous section), the
proposed test has a robustness feature that it can be used to test one aspect
of the model assumption, here normality, while other aspects of the model, for
example, the mean function, may be misspecified.

The Fay-Herriot (FH) model may be expressed as that (i) (yi, θi), i =
1, . . . ,m are independent; (ii) yi|θi ∼ N(θi, Di); and (iii) θi ∼ N(x′iβ, σ

2).
Here, yi is the direct estimate from the ith area, θi is the small area mean,
xi is a vector of observed covariates, β is a vector of unknown parameters,
σ2 is an unknown variance, and Di is a sampling variance that is assumed
known. The normality assumption has to do with (iii). The reason that this is
not an issue with (ii) is because, in practice, yi is typically a sample summary
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such as a sample mean or proportion; as a result, the normality assumption in
(ii) often holds approximately due to the central limit theorem (CLT). How-
ever, there is no obvious reason to believe that the CLT should hold for (iii).
Thus, we consider a broader class of distributions, namely, the skewed normal
distribution (SN; Azzalini and Capitanio 2014), which includes the normal
distribution as a special case. Under the SN distribution, (iii) is replaced by
(iii) θi ∼ SN(x′iβ, σ

2, α), which denotes the SN distribution with mean x′iβ,
variance σ2, and skewness parameter α (see below), noting that α = 0 leads to
the normal distribution. We denote the model parameters as ψ = (β′, σ2, α)′.

Suppose that, under the null hypothesis, there is a reduction in the dimen-
sion of the parameter vector such that γ = γ0 under the null hypothesis, where
γ is a sub-vector of ψ and γ0 is known. Let ϑ denote the vector of parameters
in ψ other than γ. In this section, notation such as Eϑ, etc. will be understood
as expectation, etc. under the null hypothesis.

The LRT is often used in the context of goodness-of-fit. However, because,
in SAE, the primary interest is prediction of mixed effects (e.g., Jiang 2007,
Rao and Molina 2015), it is reasonable to develop something that is closely
related to the predictive interest. To motivate something that is in a similar
spirit of LRT, but takes into account the SAE interest, let us consider the
problem from a “Bayesian” perspective.

In general, let θ be a vector of unobserved quantities that one wishes to
predict (e.g., small area mean θi in FH model), ψ be the vector of parameters
involved in either f(y|θ) or f(θ), and y a vector of observations. The likelihood
function may be viewed, using a Bayesian term, as a marginal likelihood with
the distribution of θ, f(θ), treated as a prior, that is,

f(y|ψ) =

∫
f(y|θ, ψ)f(θ|ψ)dθ. (13)

The likelihood is used for estimation of fixed parameters, which are associated
with either f(θ) or f(y|θ) or both. To come up with a predictive version of the
likelihood, we may simply replace the prior in (13) by its “posterior”, that is,
the conditional pdf of θ given y, f(θ|y). With this replacement, we obtain

f(y|y, ψ) ≡
∫
f(y|θ, ψ)f(θ|y, ψ)dθ. (14)

We call (14) the predictive likelihood, or PL. The reason is that, if parame-
ter estimation is of primary interest, one uses the prior, f(θ), to obtain the
(marginal) likelihood (13). Now, because we replace f(θ) by f(θ|y), which
is the main outcome for the prediction of θ, and then go through the same
operation, the output (14) should be called a predictive likelihood. It should
be noted that the predictive likelihood is not necessarily a likelihood, as it
does not always possess some of the well-known properties of the likelihood.
However, we can, at least, adjust the score equation of the PL to make it
unbiased.
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The adjusted PL score is given by

sa(ψ) =
∂

∂ψ
log f(y|y, ψ)− Eψ

{
∂

∂ψ
log f(y|y, ψ)

}
. (15)

We call the estimator of ψ obtained by solving the adjusted PL score equation,
sa(ψ) = 0, or, equivalently, the following equation:

∂

∂ψ
log f(y|y, ψ) = Eψ

{
∂

∂ψ
log f(y|y, ψ)

}
(16)

maximum adjusted PL estimator, or Maple, in view of its analogy to the MLE.
Under the FH model, it is easy to show that f(θ|y, ψ) =

∏m
i=1 f(θi|yi, ψ)

where θ = (θ1, ..., θm). Thus, we have

f(y|y, ψ) =

∫ m∏
i=1

f(yi|θi, ψ)f(θi|yi, ψ)dθ =

m∏
i=1

∫
f(yi|θi, ψ)f(θi|yi, ψ)dθi =

m∏
i=1

f(yi|yi, ψ),

(17)
where f(yi|yi, ψ) =

∫
f(yi|θi, ψ)f(θi|yi, ψ)dθi. Without the null hypothesis

that the random effects are normal, that is, α = 0, we have yi|θi ∼ N(θi, Di)
and θi ∼ SN(x′iβ, σ

2, α). It is then shown in the Appendix that

f(yi|yi, ψ) =
1√

Di(1 +Bi)
φ

[
yi − x′iβ√

Di(1 +Bi)/(1−Bi)

]
Φ[α2i(yi − x′iβ)]

Φ[α3i(yi − x′iβ)]
,(18)

where αsi = (4− s)σα/
√
{(4− s)σ2 +Di}{(4− s)σ2 + (1 + α2)Di}, s = 2, 3,

Bi = σ2/(σ2 +Di), and Φ(·), φ(·) denote the cdf, pdf of N(0, 1), respectively.
Note that, when α = 0, (18) reduces to that under normality. Also note that
f(yi|yi, ψ) 6= f(yi, ψ).

By (17), the PL can be expressed as
∏m
i=1 f(yi|yi, ψ). To test H0 : α = 0,

let

bi(yi, ϑ) = {(∂/∂ψ) log f(yi|yi, ψ)}|α=0 − E[{(∂/∂ψ) log f(yi|yi, ψ)}|α=0].

One can derive the adjusted PL equation, (16), as follows:

∂ log f(yi|yi, ψ)

∂β

∣∣∣∣
α=0

− E

{
∂ log f(yi|yi, ψ)

∂β

∣∣∣∣
α=0

}
= ai(σ

2)xi(yi − x′iβ),

∂ log f(yi|yi, ψ)

∂σ2

∣∣∣∣
α=0

− E

{
∂ log f(yi|yi, ψ)

∂σ2

∣∣∣∣
α=0

}
= bi(σ

2)(yi − x′iβ)2 − ci(σ2),

∂ log f(yi|yi, ψ)

∂α

∣∣∣∣
α=0

− E

{
∂ log f(yi|yi, ψ)

∂α

∣∣∣∣
α=0

}
= di(σ

2)(yi − x′iβ),

where ai(σ
2) = (1−Bi)2/Di(1+Bi), bi(σ

2) = (1−Bi)3(3+Bi)/2D
2
i (1+Bi)

2,
ci(σ

2) = (1−Bi)2(3+Bi)/2Di(1+Bi)
2, and di(σ

2) =
√

2/πσ(1−Bi)2/Di(1+
Bi).
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Let ϑ denote the true ϑ. If the model is correctly specified under the null
hypothesis, then, under the null hypothesis,

∑m
i=1 bi(yi, ϑ) is a sum of in-

dependent random vectors with mean zero. On the other hand, if there is
some misspecification in the mean function that the true β, hence the true ϑ,
does not exist (under the null hypothesis), we again define the “true ϑ” as the
unique solution to (12). Then, all of the arguments in the derivation of Section
2 go through by replacing

∑m
i=1 bi(yi, ϑ) with

∑m
i=1[bi(yi, ϑ) − E{bi(yi, ϑ)}].

Furthermore, we have Vb(ϑ) = Varϑ{
∑m
i=1 bi(yi, ϑ)} =

∑m
i=1 Varϑ{bi(yi, ϑ)},

where

Varϑ{bi(yi, ϑ)} =

 gi(σ
2)xix

′
i 0p gi(σ

2)(xi
√

2/πσ)
0′p hi(σ

2) 0

gi(σ
2)(x′i

√
2/πσ) 0 gi(σ

2)(2σ2/π)


with gi(σ

2) = (1−Bi)3/Di(1 +Bi)
2 and hi(σ

2) = (1−Bi)4(3 +Bi)
2/2D2

i (1 +
Bi)

4.

Thus, if we let B(ϑ) = V
−1/2
b (ϑ)

∑m
i=1 bi(yi, ϑ), we have B(ϑ)

d−→ N(0, Is),
where s = dim(ψ) = 3. It follows that (1) holds. Because r = dim(ϑ) = 2 < s,
the tailoring method applies to yield (2) with ν = s− r = 1. In particular, we
have

A(ϑ) =
1

m

{
m∑
i=1

Eϑ

(
∂b′i
∂ϑ

)}
V
−1/2
b (ϑ),

where bi is defined above and

Eϑ

(
∂b′i
∂ϑ

)
= −

[
ai(σ

2)xix
′
i 0p di(σ

2)xi
0′p bi(σ

2) 0

]
.

This gives A(ϑ) for solving the tailoring equation (3).

4 Simulation study

We carry out a simulation study to evaluate performance of the tailoring meth-
ods based on Maple, described in the previous section, and compare it with
existing methods. Specifically, we compare our method with those of Pierce
(1982), Jiang (2001), Claeskens and Hart (2009), and ST based on GMM
(e.g., Hall 2005). For Pierce (1982), the test statistic under the FH model for
H0 : α = 0 is given by F̂ ≡ mT̂ 2

m/V , where

T̂m =
1

m

m∑
i=1

√
Di(yi − x

′

iβ̂)

σ̂2 +Di
,

V =
1

m

m∑
i=1

Di

Di + σ̂2
−mP{var(ψ̂ − ψ)}P ′
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with P = lim E(∂Tm/∂ψ). The asymptotic null distribution of the test statistic
is χ2

1. In the current case, it can be shown that

P = − lim

{
1

m

[∑m
i=1

√
Dix

′

i/(Di + σ2)
0

]}
.

In the case of Jiang (2001), one has the test statistic

χ̂2
J =

1

m

K∑
k=1

{Nk − pk(ψ̂)}2,

where Nk =
∑m
i=1 1(yi∈Ck) = #{1 ≤ i ≤ m : yi ∈ Ck}, and pk(ψ) =∑m

i=1 Pψ(yi ∈ Ck) =
∑m
i=1 pik(ψ). More specifically, the cells, Ck, 1 ≤ k ≤ K

are defined as follows: C1 = (−∞, c1], Ck = (ck−1, ck], 2 ≤ k ≤ K − 1, and
CK = (cK−1,∞). Regarding the choice of K and ck’s, by Jiang (2001), we
may choose K = max(p + 2, [m1/5]), where p is the dimension of β. Once K
is chosen, the ck’s are chosen so that there are equal number of yi’s within
each Ck, 1 ≤ k ≤ K. It then follows that Nk = m/K, 1 ≤ k ≤ K. Finally, the
pik(ψ) have the following expressions:

pi1(ψ) = Φ

(
c1 − x′iβ√
σ2 +Di

)
,

pik(ψ) = Φ

(
ck − x′iβ√
σ2 +Di

)
− Φ

(
ck−1 − x′iβ√
σ2 +Di

)
, 2 ≤ k ≤ K − 1,

piK(ψ) = 1− Φ
(
cK−1 − x′iβ√
σ2 +Di

)
.

We then use a Monte-Carlo method (e.g., bootstrapping) to compute the crit-
ical values, as suggested by Jiang (2001).

In the case of Claeskens and Hart (2009), one uses the test statistic

χ̂2
CH = max

1≤l≤M

2{logLl − logLM=0}
l(l + 3)/2

,

where logL is the log-likelihood and M is the order of polynomial which plays
the role of a smoothing parameter. The test is based on the LRT which com-
pares the estimated distribution (M > 0) and the null distribution (M = 0;
i.e., normal). Similar to the Jiang (2001), one needs to use replications from
the test statistic above to approximate the critical values. We consider M = 2
in our simulation study.

As noted (see Remark 2 in Section 2), the ST is simply tailoring with
the expectation sign in (11) removed. In the case of Maple, to obtain the A
corresponding to ST, we have ∂b′i/∂ϑ = (aist)1≤s≤2,1≤t≤3, where

ai11 = −ai(σ2)xix
′
i,

ai12 = −2bi(σ
2)xi(yi − x′iβ),
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ai13 = −di(σ2)xi,

ai21 = −2bi(σ
2)x′i(yi − x′iβ),

ai22 = {∂bi(σ2)/∂σ2}(yi − x′iβ)2 − {∂ci(σ2)/∂σ2},

ai23 = {∂di(σ2)/∂σ2}(yi − x′iβ),

with

∂bi(σ
2)

∂σ2
= −2bi(σ

2)(1−Bi)(3 +Bi)

2Di(1 +Bi)
− ai(σ

2){2(1 +Bi)
2 + (1−Bi)(3 +Bi)}

2(2σ2 +Di)2
,

∂ci(σ
2)

∂σ2
= −2bi(σ

2)(3 +Bi)

2(1 +Bi)
− ai(σ

2)Di

(2A+Di)2
,

and ∂di(σ
2)/∂σ2 = −2bi(σ

2)
√

2/πσ + ai(σ
2)/
√

2πσ.
To evaluate and compare performance of the aforementioned methods, let

B̂2
PL, F̂ , χ̂2

J, χ̂2
CH, and B̂2

ST represent the test statistics for tailoring/Maple,
Pierce (1982), Jiang (2001), Claeskens-Hart (2009), and ST, respectively [for

notation simplicity we write |B(ϑ̂)|2 as B̂2]. We consider two situations where
the assumed model is either correct or misspecified. The assumed model is a
FH model:

yi = β1xi + vi + ei, i = 1, . . . ,m;

however, the data are generated under the following FH model:

yi = β1xi + vi + ei, 1 ≤ i ≤ n,
yi = β2xi + vi + ei, n+ 1 ≤ i ≤ m,

where m = 2n,Di = Di1 for 1 ≤ i ≤ n and Di = Di2 for n + 1 ≤ i ≤ m.
We choose σ2 = 10, noting that vi ∼ SN(0, σ2, α) and ei ∼ N(0, Di). The
Di1 are generated from the uniform distribution between 3.5 and 4.5. There
are two scenarios for Di2, one generated from U(3.5, 4.5) and the other from
U(0.5, 1.5). Let β1 = 1, and β2 = 1 or 3; and the true value of α is 0 under the
null hypothesis, and 0.5 under the alternative. The xi’s are generated from the
uniform distribution between 0 and 1, and fixed during the simulation study.
Note also that the Di’s are fixed during the simulation study. It is seen that,
when β1 6= β2, the underlying model is misspecified.

We consider testing H0 : α = 0 with three different levels of significance,
0.01, 0.05, 0.10, and four different sample sizes, m = 50, 100, 200, and 500.
We run R = 5, 000 simulations to calculate B̂2

PL, F̂ , χ̂
2
J, χ̂2

CH, and B̂2
ST. In

particular, we generate response variable y
(r1)
i = β1xi + v

(r1)
i + e

(r1)
i , (1 ≤ i ≤

n; r1 = 1, ..., R), and y
(r1)
i = β2xi + v

(r1)
i + e

(r1)
i , (n+ 1 ≤ i ≤ m; r1 = 1, ..., R),

where v
(r1)
i ∼ SN(0, σ2, α = 0) and e

(r1)
i ∼ N(0, Di1) for 1 ≤ i ≤ n and

e
(r1)
i ∼ N(0, Di2) for n+ 1 ≤ i ≤ m. For each simulated dataset, we estimate

σ2 and β1 for B̂2
PL, F̂ , χ̂2

J, χ̂2
CH, and B̂2

ST, where r = 2 and s = 3. Note that for
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B̂2
PL, we use tailoring to estimate the model parameters; we use the Prasad-

Rao approach for F̂ and χ̂2
J as it is computationally faster, the MLE for χ̂2

CH,

and GMM for B̂2
ST.

Also, we use 1000 replications to obtain the critical values, in each simula-
tion run, for χ̂2

J, and 100 replication run for χ̂2
CH (due to the fact that the latter

is computationally more intensive). To obtain the sizes of the tests, we count

the number of times (out of R) that B̂
2(r1)
PL , F̂ (r1), and B̂

2(r1)
ST exceed the critical

values for the three different levels of significance, namely, χ2
(0.01)(1) = 6.63,

χ2
(0.05)(1) = 3.84, χ2

(0.10)(1) = 2.70, and divide those numbers by R. In the

cases of Jiang (2001) and Claeskens and Hart (2009), χ̂
2(r1)
J and χ̂

2(r1)
CH are

compared with their corresponding critical values obtained using the boot-
strap approaches (i.e., 1000 replications for Jiang test and 100 replications for
CH test under the null hypothesis), in each simulation run. The powers of the
tests are obtained the same way, the only difference being that the sizes are
computed when the data are generated under the null hypothesis α = 0, while
the powers under the alternative of α = 0.5.

The empirical size and power for different levels of significance, different
scenarios, and different methods are reported in Tables 1–3. It seems that,
with the increasing sample size (m) and for all three different levels of signifi-
cance, B̂2

PL and χ̂2
J have approximately the right size under different scenarios.

However, in the case of F̂ , the test does not seem to have the right size if there
are misspecifications in the mean and significant change in the range of the
sampling variances for the small areas. The size also does not seem to improve
for χ̂2

CH with increasing sample size. As for B̂2
ST, it seems that the test does

not have the right size until m = 500. Regarding the power, B̂2
PL seems to per-

form very well under all scenarios. The power performance of χ̂2
J seems to be

poor compared to B̂2
PL, while the power performance of F̂ and B̂2

ST is similar

to that of B̂2
PL. It appears that the power of χ̂2

CH does not also improve with
increasing sample size.

Note, in particular, that B̂2
ST performs poorly in size unless m = 500. To

further investigate the possible reason for this, we provide in Table 4 median
estimates of σ2 over the simulation runs R under different sample sizes and
scenarios, for PL (tailoring) and ST (GMM). It is seen that the estimate of σ2

by GMM performs poorly until m = 500.

It has also been observed that PL (tailoring) is computationally much
less demanding than ST (GMM). For example, the rate of convergence for the
parameter estimates GMM/ST, in terms of the number of iterations needed for
the Newton-Raphson procedure to achieve a given level of accuracy (the larger
m the slower convergence), was much lower than that for the corresponding
Maple/tailoring method.
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Table 1 Size (Power) under different sample sizes and scenarios—level of significance equal
to 0.01

Di2 β2 m B̂2
PL F̂ χ̂2

J χ̂2
CH B̂2

ST

U(3.4, 4.5) 1 50 0.009 (0.660) 0.009 (0.848) 0.009 (0.032) 0.014 (0.818) 0.002 (0.490)
100 0.006 (0.894) 0.006 (0.964) 0.010 (0.019) 0.010 (0.763) 0.000 (0.899)
200 0.010 (0.992) 0.010 (0.999) 0.012 (0.008) 0.003 (0.696) 0.000 (0.985)
500 0.011 (1.000) 0.011 (1.000) 0.011 (0.0003) 0.002 (0.659) 0.008 (1.000)

3 50 0.010 (0.647) 0.009 (0.841) 0.014 (0.021) 0.012 (0.834) 0.003 (0.474)
100 0.006 (0.882) 0.006 (0.962) 0.013 (0.013) 0.014 (0.821) 0.000 (0.889)
200 0.009 (0.991) 0.009 (0.998) 0.010 (0.004) 0.000 (0.698) 0.000 (0.983)
500 0.010 (1.000) 0.010 (1.000) 0.012 (0.0003) 0.004 (0.667) 0.004 (1.000)

U(0.5, 1.5) 1 50 0.008 (0.577) 0.010 (0.773) 0.010 (0.009) 0.020 (0.795) 0.000 (0.579)
100 0.009 (0.821) 0.007 (0.949) 0.013 (0.013) 0.020 (0.795) 0.000 (0.824)
200 0.009 (0.975) 0.009 (0.997) 0.011 (0.005) 0.000 (0.670) 0.000 (0.975)
500 0.010 (1.000) 0.008 (1.000) 0.011 (0.0004) 0.001 (0.673) 0.000 (1.000)

3 50 0.007 (0.574) 0.024 (0.665) 0.015 (0.033) 0.022 (0.804) 0.000 (0.570)
100 0.009 (0.803) 0.033 (0.893) 0.016 (0.019) 0.013 (0.811) 0.000 (0.805)
200 0.008 (0.971) 0.075 (0.982) 0.015 (0.003) 0.001 (0.710) 0.000 (0.972)
500 0.009 (1.000) 0.193 (1.000) 0.011 (0.0004) 0.002 (0.826) 0.000 (1.000)

Table 2 Size (Power) under different sample sizes and scenarios—level of significance equal
to 0.05

Di2 β2 m B̂2
PL F̂ χ̂2

J χ̂2
CH B̂2

ST

U(3.4, 4.5) 1 50 0.050 (0.855) 0.048 (0.896) 0.049 (0.023) 0.068 (0.818) 0.014 (0.634)
100 0.048 (0.966) 0.047 (0.979) 0.051 (0.017) 0.039 (0.770) 0.000 (0.969)
200 0.053 (0.998) 0.053 (0.999) 0.051 (0.004) 0.011 (0.696) 0.001 (0.991)
500 0.050 (1.000) 0.050 (1.000) 0.048 (0.0002) 0.013 (0.659) 0.054 (1.000)

3 50 0.048 (0.849) 0.045 (0.889) 0.053 (0.021) 0.057 (0.837) 0.016 (0.629)
100 0.046 (0.963) 0.045 (0.979) 0.060 (0.013) 0.045 (0.825) 0.000 (0.967)
200 0.051 (0.998) 0.051 (0.999) 0.053 (0.003) 0.002 (0.701) 0.000 (0.990)
500 0.048 (1.000) 0.046 (1.000) 0.049 (0.000) 0.010 (0.667) 0.046 (1.000)

U(0.5, 1.5) 1 50 0.051 (0.799) 0.052 (0.849) 0.051 (0.025) 0.055 (0.798) 0.000 (0.813)
100 0.046 (0.936) 0.049 (0.967) 0.052 (0.017) 0.055 (0.798) 0.000 (0.932)
200 0.053 (0.994) 0.049 (0.999) 0.048 (0.006) 0.014 (0.677) 0.000 (0.993)
500 0.049 (1.000) 0.049 (1.000) 0.048 (0.000) 0.010 (0.673) 0.033 (1.000)

3 50 0.048 (0.792) 0.092 (0.772) 0.061 (0.021) 0.061 (0.805) 0.000 (0.802)
100 0.046 (0.928) 0.122 (0.935) 0.074 (0.011) 0.050 (0.816) 0.000 (0.924)
200 0.051 (0.993) 0.209 (0.993) 0.070 (0.003) 0.008 (0.715) 0.000 (0.992)
500 0.047 (1.000) 0.415 (1.000) 0.081 (0.000) 0.013 (0.829) 0.031 (1.000)

5 Median income data

We discuss two applications of the tailoring method regarding the median in-
come data of four-person families at the state level in the USA (Ghosh, Nangia
and Kim, 1996). The first application has to do for choosing an appropriate
model; the second is about checking the normality assumption. The data has
been analyzed by several researchers using different set-ups. In this analysis,
the response variable yi is the four-person median income from the sample
survey at state i in year 1989, and xi is the census four-person median income
at state i in year 1979 (i = 1, ...,m = 51).
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Table 3 Size (Power) under different sample sizes and scenarios—level of significance equal
to 0.10

Di2 β2 m B̂2
PL F̂ χ̂2

J χ̂2
CH B̂2

ST

U(3.4, 4.5) 1 50 0.101 (0.917) 0.098 (0.919) 0.094 (0.032) 0.122 (0.819) 0.035 (0.676)
100 0.098 (0.984) 0.095 (0.986) 0.103 (0.018) 0.085 (0.770) 0.000 (0.987)
200 0.104 (0.999) 0.104 (0.999) 0.095 (0.004) 0.024 (0.696) 0.013 (0.992)
500 0.094 (1.000) 0.095 (1.000) 0.099 (0.0004) 0.030 (0.659) 0.097 (1.000)

3 50 0.096 (0.913) 0.094 (0.913) 0.106 (0.031) 0.111 (0.837) 0.034 (0.674)
100 0.097 (0.982) 0.092 (0.984) 0.113 (0.014) 0.097 (0.825) 0.000 (0.985)
200 0.101 (0.999) 0.100 (0.999) 0.104 (0.007) 0.016 (0.702) 0.012 (0.992)
500 0.094 (1.000) 0.094 (1.000) 0.102 (0.0004) 0.000 (0.667) 0.093 (1.000)

U(0.5, 1.5) 1 50 0.103 (0.886) 0.102 (0.885) 0.095 (0.044) 0.121 (0.799) 0.000 (0.891)
100 0.096 (0.972) 0.100 (0.977) 0.096 (0.021) 0.121 (0.799) 0.000 (0.970)
200 0.110 (0.997) 0.102 (0.999) 0.099 (0.003) 0.037 (0.681) 0.000 (0.998)
500 0.099 (1.000) 0.098 (1.000) 0.098 (0.0003) 0.021 (0.681) 0.076 (1.000)

3 50 0.097 (0.879) 0.171 (0.812) 0.121 (0.038) 0.114 (0.806) 0.000 (0.883)
100 0.097 (0.965) 0.209 (0.953) 0.138 (0.018) 0.094 (0.817) 0.000 (0.963)
200 0.105 (0.996) 0.316 (0.996) 0.132 (0.004) 0.022 (0.716) 0.001 (0.997)
500 0.097 (1.000) 0.535 (1.000) 0.120 (0.000) 0.023 (0.829) 0.075 (1.000)

Table 4 Median estimate of σ2 for PL (tailoring) and ST (GMM) methods under different
sample sizes and scenarios

Di2 β2 m PL (tailoring) ST (GMM)
U(3.4, 4.5) 1 50 10.00 1237e+5

100 10.00 1470.00
200 10.04 11.00
500 10.01 10.49

3 50 11.00 1255e+5
100 10.00 585.30
200 10.39 12.00
500 10.33 10.83

U(0.5, 1.5) 1 50 10.00 1661e+4
100 10.00 1038e+3
200 10.02 12.00
500 10.00 10.53

3 50 11.00 1589e+4
100 10.00 980100
200 10.36 12.00
500 10.33 10.83

5.1 Choosing an appropriate model

An inspection of the scatter plot (Figure 1) suggests that a quadratic model
may fit the data well. As a starting point, we test whether a quadratic mixed
model rather than linear mixed model fits the data well. That is,

yi = β0 + β1xi + β2x
2
i + vi + ei, i = 1, ...,m = 51, (19)

where the vi’s are state-specific random effects and ei’s are sampling errors.
It is assumed that vi and ei are independent with vi ∼ N(0, σ2) and ei ∼
N(0, Di) with known Di. We now test H0 : β2 = 0 vs H1 : β2 6= 0. In the

case of Maple/tailoring approach, the model parameter estimates are β̂0 =

4503.2, β̂1 = 1.60, σ̂2 = 1.9×107 which result in rejecting H0 as B̂2
PL = 5.36 >

3.84 [= χ2
0.05(1)]. Thus, the test suggests that the linear model is inappropriate.
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Fig. 1 Plot of survey income in 1989 (y) vs family median income in 1979 (x)

Based on the above result, we can also evaluate the cubic model

yi = β0 + β1xi + β2x
2
i + β3x

3
i + vi + ei, (20)

or a quadratic-outlying (Q-O) model (due to the point at the right corner of
the scatterplot of yi vs xi; see Jiang, Nguyen and Rao 2011), as

yi = β0 + β1xi + β2x
2
i + β31(xi>30000) + vi + ei. (21)

In the case of Maple/tailoring approach, the model parameter estimates are

β̂0 = −72375.1, β̂1 = 845.1, β̂2 = −1.50, σ̂2 = 16982730, which cannot reject
H0 as B̂2

PL = 1.19 < 3.84 [= χ2
0.05(1)]. Thus, the test confirms the quadratic

model is an appropriate model for this data rather than the cubic model.

Finally, we consider the Q-O model. To evaluate the Q-O model, we use
Maple in conjunction with tailoring to test H0 : β3 = 0 in model (21). In the

case of Maple/tailoring approach, the model parameter estimates are β̂0 =

−72375.1, β̂1 = 849.1, β̂2 = −1.50, σ̂2 = 16982730, which cannot reject the H0

as B̂2
PL = 1.31 < 3.84 [= χ2

0.05(1)]. Thus, the test confirms that the quadratic
model as an appropriate model for this data rather than the Q-O model.

Overall, we conclude that the quadratic model is a good fit for the data.
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It should be noted that we also applied the methods of Pierce (1982), Jiang
(2001), and Claeskens and Hart (2009) to this data. None of these tests were
able to reject the linear model null hypothesis. This seems to be consistent
with the pattern observed in our simulation study in Section 4 that these tests
appear to have lower power than our tests.

5.2 Checking the normality assumption

It is known that income data are typically not normal. In this application,
our goal is to check the normality assumption for median incomes of four-
person families at the state level in the USA (Ghosh, Nangia and Kim 1996).
Following Section 5.1, we consider the quadratic model (19).

We consider testing H0 : α = 0 vs H1 : α 6= 0. First, we apply the Maple
approach in conjunction with tailoring. The parameter estimates are β̂1 =
2.07, β̂2 = −1.2 × 10−5, σ̂2 = 1.9 × 107, which result in B̂2

PL = 4.67 > 2.70 =
χ2
1(0.90), rejecting H0 at the 10% significance level.

Next, we apply the ST method to this data. In this case, the GMM
estimates are β̂1 = 2.07, β̂2 = −1.3 × 10−5, σ̂2 = 1.9 × 107, which result
B̂2

ST = 4.93 > 2.70, also rejecting H0 at the 10% significance level.
Note that, although the values of tailoring and GMM estimates are very

close, the GMM equation for ST is more complicated than the tailoring one
due to not taking the expected value of the A matrix (see Remark 2 in Section
2). This may explain the poor performance of ST in terms of the size (when
m is moderate) and computational efficiency in our simulation study reported
in Section 4.

We also applied the methods of Pierce (1982), Jiang (2001), and Claeskens
and Hart (2009) to test the hypothesis. None of these tests were able to re-
ject the normality assumption. For the latter two methods, this seems to be
consistent with the pattern observed in our simulation study in Section 4 that
these tests appear to be less powerful.

6 Discussion

There are multiple ways of checking for goodness-of-fit. A main reason that
PL is considered in the context of SAE is due to an intuitive fact that it
gets the predictive distribution of θ, the vector of small area means, involved
in the process. To illustrate with a simple example, consider the following
James-Stein example. Suppose that yi = θi + ei, i = 1, . . . ,m, where θi, ei, i =
1, . . . ,m are independent such that θi ∼ N(µ,A), ei ∼ N(0, 1). The model is
a special case of the Fay-Herriot model. From a Bayesian perspective, θi has
a prior distribution, which is normal with mean µ and variance A. However,
the predictive distribution of θi, given the data y = (yi)1≤i≤m, is normal with
mean wµ+ (1− w)yi and variance wA, where w = (A+ 1)−1. It is clear that
the data has an impact on understanding the distribution of θ, going from
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the prior distribution to the predictive distribution. This is what we want
to check with our goodness-of-fit test. In contrast, the traditional likelihood,
which corresponds to using the prior distribution of θ instead of the predictive
distribution [compare (13) and (14)]. The data has no impact on the prior
distribution; in other words, the prior distribution is not sensitive to how
one predicts the distribution of θ using the data. Therefore, intuitively, the
likelihood based method has little to do with the main interest of SAE, that
is, the prediction of θ.

The next question is how this intuition makes a difference. This has to
do with the main objective of using a statistical model. Is the model used
for interpretation or prediction? If the model is used for interpretation, then
perhaps one can ignore a few outliers because, here, the focus is the main
trend, or big picture. However, if the main objective is prediction, the outliers
may not be ignored. In practice, ignoring a few outliers can result in the cost of
millions of dollars, if not billions of dollars. The objective is taken seriously, for
example, in our real-data example (see Section 5.1). Here, a single point on the
right side appears to be an outlier. If one uses a non-predictive goodness-of-
fit test, such as Pierce (1982), Jiang (2001), and Claeskens and Hart (2009),
none of these tests have rejected the linear model null hypothesis (see the
last paragraph of Section 5.1). This suggests that these tests tend to look
at the big picture, and therefore ignore the “outlier”. On the other hand, our
predictive-based test, that is, PL/tailoring, is able to reject the null hypothesis.
This means that PL is taking the “outlier” more seriously by considering its
potential impact on the prediction.

Regarding extension of the proposed method to other SAE models, note
that tailoring is a general method that can be implemented as long as one has
a base function, B(ϑ), in hand that satisfies certain conditions (see the first
paragraph of Section 2). For example, to extend our GoFT to the nested-error
regression (NER; Battese, Fuller and Harter 1988) model, we need to (I) set
up a framework for GoFT; and (II) construct an appropriate base function.
We discuss these two parts below. (I) An NER model can be expressed as
yij = x′ijβ + vi + eij , i = 1, . . . ,m, j = 1, . . . , ni, where yij is the outcome
variable, xij is a known vector of auxiliary variables, β is a vector of fixed
effects, vi is an area-specific random effect, and eij is an error. The standard
assumptions are that the random effects and errors are independent with (i)
vi ∼ N(0, σ2

v) and (ii) eij ∼ N(0, σ2
e). Note that, unlike in the Fay-Herriot

model, here, it may not be reasonable to assume that the distribution of eij
is normal, because the central limit theorem (CLT) may not apply. Thus, to
set up the GoFT framework, we may replace both (i) and (ii) by the skewed
normal distribution family. (II) The general principle of PL (see the middle
part of Section 3) still applies to this case. We just need to derive the resulting
base function following the general steps and, with the base function, the
resulting GoFT by the tailoring method. We will develop the details, and
study performance of the resulting test in our future work.



Goodness-of-fit test 19

Appendix

This appendix provides justification for the heuristic derivation given in Sec-
tion 2 regarding the asymptotic null distribution as well as other details.

A.1 Notation and regularity conditions

Let ϑ0 denote the true ϑ; ‖M‖ =
√
λmax(M ′M) the spectral norm of ma-

trix M , where λmax denotes the largest eigenvalue; λmin the smallest eigen-
value; and |v| =

√
v′v the Euclidean norm of vector v. Note that the matrices

A(ϑ), B(ϑ), etc. in Section 2 depend on the sample size, m, although the de-
pendence will be implicit in notation.

Suppose thatB(ϑ) in (1) can be expressed asB(ϑ) = V −1/2(ϑ)
∑m
i=1 bi(Yi, ϑ),

where Y1, . . . , Ym are independent random vectors, Eϑ{bi(Yi, ϑ)} = 0, Varϑ{bi(Yi, ϑ)}
exists, and V (ϑ) =

∑m
i=1 Varϑ{bi(Yi, ϑ)} is nonsingular. Then, with N = m

and A(ϑ) given by (11), the C(ϑ) in (3) can be expressed as

C(ϑ) =
1

m

m∑
i=1

Eϑ

(
∂B′

∂ϑ

)
V −1/2(ϑ)bi(Yi, ϑ) =

1

m

m∑
i=1

cm,i(ϑ)

with cm,i(ϑ) defined in an obvious way. Denote ∆C(ϑ) = (∂/∂ϑ′)C(ϑ). We
assume the following regularity conditions as m→∞:

A1. The parameter space of ϑ, Θ, is an open subset of Rr, and cm,i is
continuously differentiable with respect to ϑ for each 1 ≤ i ≤ m.

A2. With probability tending to one, ∆C(ϑ0) is nonsingular.

A3. D(ϑ) = limm→∞ E{∆C(ϑ)} exists, and there is a constant δ > 0 such
that

sup
|ϑ−ϑ0|<δ

‖∆C(ϑ)−D(ϑ)‖ P−→ 0.

A.2 Asymptotic behavior of ϑ̂

In this subsection, we state a result regarding existence, uniqueness, and con-
sistency of ϑ̂, the solution to the tailoring equation (3) which is our estimator
of ϑ used in (2). The proof is very similar to that of Theorem 2 of Foutz (1977),
and therefore is omitted.

Lemma 1. Under assumptions A1–A3, there exists a sequence of estima-

tors, ϑ̂, such that C(ϑ̂) = 0 with probability tending to one, and ϑ̂
P−→ ϑ0.

Furthermore, if ϑ̃ also satisfies the above, then P(ϑ̃ = ϑ̂)→ 1 as m→∞.
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A.3 Asymptotic distribution of B(ϑ̂)

We assume the following additional regularity conditions:
A4. there is a full rank matrix, Q, such that

1√
m

Eϑ0

(
∂B

∂ϑ′

)
−→ Q and

1√
m

{
∂B

∂ϑ′
− Eϑ0

(
∂B

∂ϑ′

)}
P−→ 0,

where ∂B/∂ϑ′ is evaluated at ϑ0.
A5. There is a compact subspace of Θc ⊂ Θ that contains ϑ0 as an interior

point such that the supϑ∈Θc
‖ · ‖ of V (ϑ)/m and of its up to second partial

derivatives (with respect to ϑ) are bounded, and lim inf[infϑ∈Θc λmin{V (ϑ)/m}] >
0.

A6. For the same Θc, the supϑ∈Θc
‖ · ‖ of m−1

∑m
i=1 Eϑ(∂bi/∂θ

′) and of
its up to second partial derivatives (with respect to ϑ) are bounded; and the
supϑ∈Θc

‖ · ‖ of m−1
∑m
i=1 bi and its up to second partial derivatives with

respect to ϑ are bounded in probability.
A7. ∀ε > 0, max1≤i≤m Eϑ0

{b2i 1(|bi|>εm)} → 0 as m → ∞, where bi =
bi(Yi, ϑ0).

Theorem 1. Let ϑ̂ denote the estimator in Lemma 1. Under assumptions

A1–A7, we have B(ϑ̂)
d−→ N(0, P ), where P = Is−Q(Q′Q)−1Q′ is idempotent

with rank ν = s− r.
Proof: First, by assumptions A5, A7, and the central limit theorem for an

array of independent random variables (e.g., Theorem 6.12 of Jiang 2010), it
follows that

B(ϑ0)
d−→ N(0, Is). (A.1)

Next, by the Taylor series expansion, we have

0 = C(ϑ̂) = C(ϑ0)+
∂C

∂ϑ′
(ϑ̂−ϑ0)+

1

2

[
(ϑ̂− ϑ0)′

∂2C(k)

∂ϑ∂ϑ′

]
1≤k≤r

(ϑ̂−ϑ0), (A.2)

where ∂C/∂ϑ′ is evaluated at ϑ0, and ∂2C(k)/∂ϑ∂ϑ
′ denotes the kth compo-

nent of C evaluated at some ϑ(k) that lies between ϑ0 and ϑ̂. By assumptions
A4–A6, it follows that

∂C

∂ϑ′
= Q′Q+ oP(1). (A.3)

Similarly, by assumptions A5 and A6, it can be shown that

∂2C(k)

∂ϑ∂ϑ′
= OP(1), 1 ≤ k ≤ r. (A.4)

By (A.2)–(A.4), and Lemma 1, we have 0 = C(ϑ0) + {Q′Q+ oP(1)}(ϑ̂− ϑ0),
or

ϑ̂− ϑ0 = −{Q′Q+ oP(1)}−1C(ϑ0). (A.5)
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On the other hand, again by the Taylor series expansion, we have

B(ϑ̂) = B(ϑ0) +
∂B

∂ϑ′
(ϑ̂− ϑ0) +

1

2

[
(ϑ̂− ϑ0)

∂2B(k)

∂ϑ∂ϑ′

]
1≤k≤s

(ϑ̂− ϑ0), (A.6)

where ∂B/∂ϑ′ is evaluated at ϑ0, and ∂2B(k)/∂ϑ∂ϑ
′ denotes the kth compo-

nent of B evaluated at some ϑ(k) that lies between ϑ0 and ϑ̂. By assumption

A4 and (A.1), it is easy to see that C(ϑ0) = OP(m−1/2). It follows by (A.5)

that ϑ̂ − ϑ0 = OP(m−1/2). Therefore, by assumptions A5 and A6, it can be
shown that the last term on the right side of (A.6) is oP(1). Furthermore, by
assumption A4, we have

√
mA(ϑ0) −→ Q′,

1√
m

∂B

∂ϑ′
P−→ Q. (A.7)

Combining (A.5)–(A.7), we have

B(ϑ̂) = B(ϑ0)−
(

1√
m

∂B

∂ϑ′

)
{Q′Q+ oP(1)}−1

√
mA(ϑ0)B(ϑ0)

= {Is −Q(Q′Q)−1Q′}B(ϑ0) + oP(1)
d−→ N(0, P ),

and P = Is −Q(Q′Q)−1Q′ is idempotent with rank(P ) = s− r.
Corollary 1. Under the conditions of Theorem 1, we have |B(ϑ̂)|2 d−→

χ2
s−r.

A.4 Derivation of (18)

We have f(θi|yi) = f(yi|θi)f(θi)/
∫
f(yi|θi)f(θi)dθi = Ii1/Ii2. For Ii1, we have

Ii1 =
2

σ
√
Di

φ

(
yi − θi√
Di

)
φ

(
θi − x′iβ

σ

)
Φ

(
α
θi − x′iβ

σ

)
.

Next, we can show, after some simplification, that

(yi − θi)2

Di
+

(θi − x′iβ)2

σ2
=

(θi − µi)2

σ2
i

+
(yi − x′iβ)2

σ2 +Di
,

where µi = (Dix
′
iβ+σ2yi)/(σ

2 +Di) and σ2
i = BiDi with Bi = σ2/(σ2 +Di).

It follows that Ii1 can be expressed as

Ii1 =
2

σ
√
Di

φ

(
θi − µi
σi

)
φ

(
yi − x′iβ√
σ2 +Di

)
Φ

(
α
√

1−Bi
θi − µi
σi

+ α
√
Bi

yi − x′iβ√
σ2 +Di

)
.

Thus, we obtain the expression f(θi|yi) ={
σiΦ

(
α
√
Bidi√

1 + α2(1−Bi)

)}−1
φ

(
θi − µi
σi

)
Φ

(
α
√

1−Bi
θi − µi
σi

+ α
√
Bidi

)
,
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where di = (yi − x′iβ)/
√
σ2 +Di, and we have used the following fact:

Azzalini and Capitanio (2014): Let φ(·) and Φ(·) denote pdf and cdf
of the standard normal distribution. Then for all constants a, b ∈ R and real
value u, we have

∫ +∞
−∞ φ(u)Φ(a+ bu)du = Φ(a/

√
1 + b2).

To calculate f(yi|yi), we have

f(yi|yi) =

{
σiΦ

(
α
√
Bidi√

1 + α2(1−Bi)

)}−1
1√
Di

×
∫ +∞

−∞
φ

(
yi − θi√
Di

)
φ

(
θi − µi
σi

)
Φ

(
α
√

1−Bi
θi − µi
σi

+ α
√
Bidi

)
dθi.

It can now be shown, after some simplification, that

(yi − θi)2

Di
+

(θi − µi)2

σ2
i

=
(θi − µθi)2

σ2
θi

+
(yi − µi)2

σ2
i +Di

,

where µθi = (Diµi + σ2
i yi)/(σ

2
i + Di) and σ2

θi = σ2
iDi/(σ

2
i + Di). Thus, we

have

f(yi|yi) =
1√
Di

φ

(
yi − µi√
σ2
i +Di

){
σiΦ

(
α
√
Bidi√

1 + α2(1−Bi)

)}−1

×
∫ +∞

−∞
φ

(
θi − µθi
σθi

)
Φ

(
α

√
Di

2σ2 +Di

θi − µθi
σθi

+ αfi

)
dθi

=

{
σiΦ

(
α
√
Bidi√

1 + α2(1−Bi)

)}−1
σθi√
Di

φ

(
yi − µi√
σ2
i +Di

)

×Φ

(
αfi√

1 + α2Di/(2σ2 +Di)

)
,

where fi = {2σ/(2σ2 +Di)}(yi − x′iβ). From here it is easy to derive (18).

Supplementary Materials

The supplementary materials contain R codes and corresponding “readme”
files for the simulation and application conducted in this work.
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