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In this paper, generalized additive mixed models are constructed for the anal-

ysis of geographical and temporal variability of disease ratios. In this class of

models, spatio-temporal models that use conditionally autoregressive smooth-

ing across the spatial dimension and B-spline smoothing over the temporal

dimension are considered. The frequentist analysis of these complex models is

computationally difficult. On the other hand, the advent of the Markov chain

Monte Carlo algorithm has made the Bayesian analysis of complex models

computationally convenient. Recently developed data cloning method pro-

vides a frequentist approach to mixed models and equally computationally

convenient. We propose to use data cloning, which yields to maximum likeli-

hood estimation, to conduct frequentist analysis of spatio-temporal modeling

of disease ratios. The advantages of data cloning approach are that the non-

estimable parameters are flagged automatically and prediction (and prediction

intervals) of the smoothing incidence ratios over space and time are easily ob-

tained. We illustrate this approach using a real dataset of yearly childhood

asthma visits to hospital in the province of Manitoba, Canada, during 2000-
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2010. The performance of the data cloning approach is also studied through

a simulation study.
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hierarchical models; random effects; spline

1. INTRODUCTION

Mapping rates (or ratios) is essentially a way of describing the spatial and some-

times spatio-temporal distribution of rates over a region. Such distributions display the

geographic variation in mortality or disease incidence and are very important for epi-

demiological and health-policy purposes. The idea behind developments on spatial and

spatio-temporal modeling of disease ratios is essentially to model variations in true ratios

and better separate systematic variability from random noise, a component that usually

overshadows crude ratio maps. Maps of regional morbidity and mortality ratios over time

are useful tools in determining spatial and temporal patterns of disease and also for tar-

geting resources. Disease incidence and mortality ratios may differ substantially across

geographical regions. A reliable estimate of the underlying disease risk is usually provided

by borrowing strength from neighboring geographic sub-areas.

Poisson regression is commonly used for the analysis of disease cases, which implicitly

assumes that the cases in nearby regions are independent and the variance of response

is equal to the mean. However, these may not be reasonable assumptions because causal

factors of the disease that are unmeasured or unknown and thus omitted from the regres-

sion model can lead to extra-Poisson variation. Furthermore, a certain degree of spatial

correlation may be induced in the response, depending on how smoothly the omitted

factors vary across the regions. Clayton and Kaldor (1987) extended the use of mixed

models for geographical data to account for the extra-Poisson variability through the
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introduction of random effects where the random effects are often spatially correlated in

a disease mapping context.

The temporal smoothing with random effects of incidence cases has also been studied

in the literature. An autoregressive (AR) model for temporal count data was used by Zeger

(1988). Waller et al. (1997) extended the existing hierarchical Bayesian spatial models to

account for temporal random effects and spatio-temporal interactions. A unified approach

for a Bayesian analysis of incidence or mortality data in space and time was proposed

by Knorr-Held (2000). MacNab and Dean (2001), Silva et al. (2008), and Torabi and

Rosychuk (2012) proposed spatio-temporal models that use AR local smoothing across

the spatial effects and B-spline smoothing over the temporal effects. Martinez-Beneito

et al. (2008) suggested an AR spatio-temporal model based on Bayesian time series and

spatial modeling to link information in time and space. In some contexts, the underlying

rates may change over seasons within a given year. Torabi and Rosychuk (2010) proposed

spatio-temporal models that use conditional AR (CAR) smoothing across the spatial

effects, AR smoothing over the temporal effects, and also use a smoothing function to

account for seasonal effects. Torabi (2012a) proposed spatio-temporal models that use AR

smoothing across the spatial effects, random walk smoothing over the temporal effects,

and a smoothing function to account for seasonal effects.

There are many different ways to perform inference in mixed models, however, the

frequentist approach has been computationally difficult particularly for our generalized

additive mixed model (GAMM); see Section 2 for more details. Consequently, many

approximate approaches have been proposed in last two decades such as generalized

estimating equations (Liang and Zeger, 1986; Prentice and Zhao, 1991; Torabi and Rosy-

chuk, 2010) and penalized quasi-likelihood (PQL) (Breslow and Clayton, 1993; Torabi

and Rosychuk, 2011) among other approaches. However, the maximum likelihood esti-

mation (MLE) approach has been ignored due to high dimension of spatial and temporal
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random effects.

With advances in computational power, the Bayesian approach especially the non-

informative Bayesian approach has become quite popular although the implementation

of the non-informative Bayesian approach requires substantial care. For example, non-

informative priors are often improper, and the use of an improper prior may lead to

an improper posterior; moreover, the conditions for posterior property are not easily

determined, particularly in spatial models with random effects. The inferences may also

depend on the choice of prior (Efron, 1986; Johnson, 1991).

Recently, Lele et al. (2007) introduced an alternative frequentist approach, called data

cloning (DC), to compute the MLE and their standard errors for general hierarchical mod-

els. Similar to the Bayesian approach, DC avoids high dimensional numerical integration

and requires neither maximization nor differentiation of a function. Extending this work

to the generalized linear mixed model (GLMM) situation, Lele et al. (2010) described an

approach to compute prediction and prediction intervals for the random effects. Torabi

(2012b) also extended the DC approach to the GLMM with two components of disper-

sion. Torabi (2012c) also considered the DC method for the spatial models. Torabi (2013)

studied the DC approach in the context of GLMM with measurement error in covariates.

The DC approach, thus, is well suited to address the issues in spatio-temporal anal-

ysis using the frequentist paradigm. Because these estimators are ML estimators, unlike

the Bayesian estimators, they are independent of the choice of priors, non-estimable pa-

rameters are flagged automatically and possibility of improper posterior distribution is

completely avoided (Lele et al. 2010).

In this paper, we use DC in the context of spatio-temporal analysis. In our spatio-

temporal model, the well-known CAR model (Besag et al., 1991) and B-splines are used

for the spatial and temporal effects, respectively (Section 2). We, then, describe how DC

can be used to obtain ML estimates, and also to get prediction and prediction intervals for
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smoothing disease ratios over space and time (Section 3). In Section 4, the performance

of the proposed approach is evaluated using a real dataset of yearly number of childhood

asthma visits to hospital in the province of Manitoba, Canada, during 2000–2010. The

performance of the DC approach (ML estimates) is also studied through a simulation

study. Concluding remarks are given in Section 5.

2. SPATIO-TEMPORAL MODEL

Let yit be the number of disease cases (or otherwise) for the i-th geographic area at

time t, and let eit be the corresponding expected number of disease cases for i = 1, ..., I;

t = 1, ..., T, where eit is typically calculated using overall rates across time and area

(sometimes specific to age, race, and sex groups). Define yit ∼ Poi(µc
it) where Poi(µc

it) is

a conditionally Poisson variable with mean function µc
it :

µc
it = exp{log eit +m+ S(t) + ηi + θit}, (1)

where m reflects the overall ratio of the number of observed cases across the region to

the number of cases expected across the region under the overall rates defining the eit, ηi

represents spatial pattern in the disease at region i, and θit is the interaction between the

spatial and temporal effects. To account for the fixed temporal effects, S(t) represents a

cubic B-spline with one inner knot (Eilers, 1996). One may simply consider a linear trend

(βt) instead of S(t) depending on the nature of dataset. With the overall mean of ratio

m in our model, the B-spline is provided without an intercept. In this case, S(t) is given

by

S(t) = β1B1(t) + β2B2(t) + β3B3(t) + β4B4(t),

where (βl, Bl) are the coefficients and basis functions of the B-spline, respectively (l =

1, ..., 4), noting that Bl(t) is a cubic function of t (Eilers, 1996; De Boor, 2001). One
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may use the AR model instead of B-spline, however, the B-spline model is more flexible

than the AR model without also assuming any distribution. The CAR model is used to

capture the spatial random effects ηi. A variety of CAR models may also be used by

taking a collection of mutually compatible conditional distributions p(ηi|η−i), i = 1, ..., I

where η−i = {ηj : j ̸= i, j ∈ ∂i} and ∂i refers a set of neighbors for the i-th region (Besag

et al., 1991). We consider the following general model for the spatial effects ηi,

η = (η1, ..., ηI)
′ ∼ N(0,Ση), (2)

Ση = σ2
η(NI − ληD)−1P,

where P is a I × I diagonal matrix with elements Pii = 1/ei with ei =
∑T

t=1 eit; D

is a I × I matrix with elements Dij = (ej/ei)
1/2 if region i and j are adjacent and

Dij = 0 otherwise; σ2
η is the spatial dispersion parameter; λη measures the conditional

spatial dependence, λmin ≤ λη ≤ λmax, where λ−1
min and λ−1

max are the smallest and largest

eigenvalues of P−1/2DP 1/2; and NI is an identity matrix of dimension I (Cressie and

Chan, 1989; Stern and Cressie, 1999). One may define the interaction effect of space and

time, θit, as Si(t), δit, or simply iid Normal distribution as θit
i.i.d.∼ N(0, σ2

θ), depending on

the nature of dataset (Bernardinelli et al., 1992; MacNab and Dean, 2001; Silva et al.,

2008; Torabi and Rosychuk, 2012). Note that δi is the coefficient of the linear temporal

effect related to the i-th region, and Si(t) is a cubic B-spline for specific region i.

3. FREQUENTIST INFERENCE USING DATA CLONING

Let y = (y11, ..., y1T , ..., yI1, ..., yIT )
′ be the observed data vector and, conditionally on the

random effects, v = (η1, ..., ηI , θ11, ..., θIT )
′
, assume that the elements of y are independent

and drawn from a Poisson distribution with parameters α1 = (m,β1, ..., β4). It is also

assumed that distribution for v depends on parameters α2 which includes λη, σ
2
η and

6



related parameter(s) from θit; noting that v can have any appropriate distribution. The

goal of the analysis is to estimate the model parameters α = (α1,α2)
′, and predict the

incidence ratios over space and time as a function of v.

To illustrate the DC approach, we start with standard Bayesian approach to inference

for hierarchical models. Denote L(α;y) as likelihood of α given y and π(α) as prior

distribution on the parameter space. The posterior distribution π(α|y) is given by

π(α|y) = L(α;y)π(α)

C(y)
, (3)

where C(y) =
∫
L(α;y)π(α)dα is the normalizing constant. There are computational

tools, Markov chain Monte Carlo (MCMC) algorithms, that facilitate generation of ran-

dom variates from the posterior distribution π(α|y) without computing the integrals in

the numerator or the denominator of (3)(Gilks et al., 1996; Spiegelhalter et al., 2004).

The DC method uses the Bayesian computational approach for frequentist purposes.

To understand the idea in DC, imagine a hypothetical situation where the observations y

is repeated independently by K different individuals, and all these individuals happen to

result in exactly the same set of observations y called y(K) = (y,y, ...,y). The posterior

distribution of α conditional on the data y(K) is then given by

πK(α|y(K)) =
{L(α;y)}Kπ(α)

C(y(K))
, (4)

where C(y(K)) =
∫
{L(α;y)}Kπ(α)dα is the normalizing constant. The expression {L(α;y)}K

is the likelihood for K copies of the original data. Lele et al. (2007, 2010) showed that, for

K large enough, πK(α|y(K)) converges to a multivariate Normal distribution with mean

equal to the MLE of the model parameters and variance-covariance matrix equal to 1/K

times the inverse of the Fisher information matrix for the MLE. Hence, this distribution

is nearly degenerated at the MLE α for large K (Walker, 1969). Moreover, the sample
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mean vector of the generated random numbers from (4) provides the MLE of the model

parameters, and K times their sample variance-covariance matrix is an estimate of the

asymptotic variance-covariance matrix for the MLE α̂.

Lele et al. (2010) also provided various checks to determine the adequate number of

clones K. For instance, one may plot the largest eigenvalue of the posterior variance as a

function of the number of clones K to determine if the posterior distribution has become

nearly degenerate. As another criterion, it is approximately true that as we increase the

number of clones K,

(α− ᾱ)
′
V −1(α− ᾱ) ∼ χ2

p, (5)

where V is the variance of the posterior distribution and p is the dimension of α. One

may also compute the following two statistics: a) ζ = 1
B

∑B
q=1(Oq − Qq)

2, where Oq and

Qq are observed and estimated quantiles for χ2
p random variable, and b) r̃2 = 1 − ρ2,

where ρ is the correlation between (Oq, Qq). If these statistics are close to zero, it indicates

that the approximation (5) is reasonable.

3.1. Prediction of disease ratios

Prediction of random effects (disease ratios in our set up), particularly from the frequentist

viewpoint, is usually problematic. If the parameters α are known, then one can clearly use

the conditional distribution of DR = (DR11, ..., DR1T , ..., DRI1, ..., DRIT )
′, the latent

variables, given the observed data; noting that DRit = µc
it/eit is the disease ratio at

area i and time t. That is, one can use π(DR|y,α∗) where α∗ is the true value of the

parameter. A naive approach, when α is estimated using the data, is to use π(DR|y, α̂).

However, this approach does not take into account the variability introduced by the

model parameters estimate. An approach that has been suggested in the literature (e.g.,

Hamilton, 1986; Lele et al., 2010) to take into account the variation of the estimator is
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to use the density:

π(DR|y) =
∫
f(y|DR,α1)g(DR|α2)ϕ(α, α̂, I−1(α̂))dα

C(y)
, (6)

where f(·) and g(·) are Poisson and Normal distributions, respectively, and ϕ(., µ, σ2)

denotes Normal density with mean µ and variance σ2, which are equal to the MLE and

the inverse of the Fisher information matrix here. In this paper, we obtain prediction

(and prediction interval) of the DR using the density in equation (6) along with MCMC

sampling. Note that we can use the same approach to predict, for example, exp(ηi +

θit), (i = 1, ..., I; t = 1, ..., T ).

4. APPLICATION

4.1. Data analysis

We use a yearly dataset of childhood (age ≤ 20 years) asthma visits to hospital in the

Canadian province of Manitoba during the 2000-2010 fiscal years. The population of

Manitoba was stable during the study period from 1.15 million in 2000 to 1.20 million in

2010, with an average population of children of around 335,000. The province consisted

of eleven Regional Health Authorities that were responsible for the delivery of health

care services. These eleven regions were further sub-divided into 56 Regional Health

Authorities Districts (RHAD) and these RHAD are the geographic unit used in our

model and all data were linked to these geographic boundaries. For simplicity, we call

these regions 1,2,...,56. The number of childhood asthma visits totaled 14,690 over the

study period with mean and median number of yearly cases per region of 26 and 17 (range

3 to 422), respectively. The regional child population sizes varied from 290 to 175,300,

with mean and median numbers of 5,998 and 2,488, respectively. The largest population
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was in region 56, while region 42 had the smallest population.

We first fit the model (1) to the dataset of children asthma cases using the DC, hier-

archical Bayesian (HB), and PQL methods; noting that the expected number of asthma

cases (eit) was adjusted by gender. In particular, we have eit =
∑2

j=1 nitjyj/nj where nitj

is the population at risk for the i−th geographic area, time t, and gender j; nj is the

population at risk for the gender j, and similarly yj is the number of disease cases for

the gender j. We used the PQL approach in our data analysis since this approach has

been extensively used in the spatio-temporal context as a frequentist approach. Table 1

reports the model parameters estimate and corresponding standard errors for all three

approaches; noting that we used θit
i.i.d.∼ N(0, σ2

θ) which was found useful in our explo-

ration of the data. It seems that the standard errors for some model parameters in DC

approach are smaller than other two approaches; noting that the PQL based estimate for

spatial random effect (σ2
η) is so high compared to the DC and HB approaches.

“Table 1 around here”

In this paper, for the DC and HB analysis, the independent Normal distribution is

assigned for fixed effects with zero mean and variance 106 and gamma distribution for

the inverse of variance component with shape and scale parameter 0.001. Since the DC

is invariant to the priors, one may use different priors. To monitor the convergence of

the model parameters, we used several diagnostic methods implemented in the Bayesian

output analysis (BOA) program (Smith, 2007), a freely available package created for R

(R Development Core Team, 2012). We also used diagnostic methods implemented in

the dclone package (Sólymos, 2010), which were described in Section 3, to monitor the

convergence of the model parameters in terms of number of clones K (Lele et al. 2010).

For this application, the number of clones was K = 50 to obtain MLE, and the number of

iterations for convergence of the model parameters in DC was about 20,000. As mentioned
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in Section 3, if scaled variances are decreasing at a 1/K rate and have reached a lower

bound (say < 0.05), the DC approach has converged (Figure 1).

Other advantage of DC approach is that the non-estimable parameters are flagged

automatically (Lele et al. 2010). To show this fact, we considered the model (1) with in-

corporating an iid regional random variable with Normal distribution (say, δi; i = 1, ..., 56)

and then fitted it to our dataset and observed that with increasing number of clones, the

variances of posterior distributions also increase (not shown here).

“Figure 1 around here”

For a diagnostic analysis, we calculated the deviance residual (McCullagh and Nelder,

1989) as

dit = sgn(yit − µ̂c
it)
[
2
{
yit log(

yit
µ̂c
it

)− yit + µ̂c
it

}]1/2
,

where

sgn(z) =


1 z > 0

0 z = 0

−1 z < 0

.

Figure 2 gives the residuals versus log-predicted diagnostic plot based on DC approach.

It is clear from Figure 2 that there is no serious lack of fit in our model; noting that those

10 observations with relatively large log-predicted values in Figure 2 belong to Winnipeg

health region (region 56, largest population).

“Figure 2 around here”

We now consider the provincial ratio of children asthma visits over time. Figure 3

shows the overall crude ratios of children hospital visits over time,
∑I

i=1 yit/
∑I

i=1 eit, and

estimated ratios exp(m+
∑4

k=1 βkBk(t)). It shows that over the study period, the cubic
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B-spline produces smooth estimates of the crude ratios, and also an overall decrease in

children asthma visits ratios over time exists.

“Figure 3 around here”

One of the main features of DC is the ability to predict the random effects. To have bet-

ter understanding of the estimated spatial risk profile, we obtained the adjusted asthma

ratio exp(ηi+ θit) using DC, which provides a spatial risk profile. Figure 4 presents maps

of the estimated spatial effects based on the fitted model, where the regional risk factor

of asthma cases corresponds to some selected years. The overall spatial pattern suggests

that some regions in the south and many regions in the north-central part of the province

have relatively high children asthma visits ratio. Generally, the spatial pattern does not

change much over time. More investigation may be needed to explore the reasons for

seemingly higher asthma ratios in these regions compared to other parts of the province.

“Figure 4 around here”

We also provide the regional asthma visits ratio estimate obtained from fitting the

spatio-temporal mixed model given by exp(m+ S(t) + ηi + θit). Figure 5 plots the fitted

asthma visits ratio with corresponding 95% prediction intervals, for example, for health

regions 37, 42, 52, and 56 using DC. The crude ratio estimates are yit/eit, and are also

plotted in Figure 5. We indeed chose two regions with extreme population sizes; region

42 with least population and region 56 with largest population. As expected in Figure

5, our asthma visits ratio estimates provide smoothed estimates while crude ratios are

very unstable over time particularly for region 42 with low population size. In general,

a specific pattern in estimated log ratio over time for a region would suggest that the

underlying asthma visits rate in that region has also the same pattern relative to the

provincial average.
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“Figure 5 around here”

4.2. Simulation study

We conducted a simulation study to evaluate the performance of ML estimates, via DC

approach, and compare with PQL and HB methods using a scenario similar to our chil-

dren asthma dataset. More specifically, data are generated from the model (1) with the

parameters (m,β1, β2, β3, β4, σ
2
η, λη, and σ2

θ) as listed in Table 2. The neighborhood struc-

ture and the population sizes are exactly as for the asthma dataset. Estimates for methods

DC, PQL, and HB approaches are obtained with analyzing 1, 000 datasets generated from

the mixed Poisson model (1).

Table 2 presents the bias values of the model parameters estimate, as well as the stan-

dard deviation of the estimated parameters and mean values of the estimated standard

errors. In DC, the estimates are fairly unbiased and it seems that their standard errors

are estimated reasonably well; noting that the conditional spatial dependence parameter

(λη) had higher standard error and the spatial random effect (σ2
η) was most biased in our

simulation set-up which may indicate of underestimation of model parameters related

to spatial random effects. The estimates in HB approach are also comparable with DC

method unlike the PQL approach. Overall, it seems that DC approach, which provides

a Monte carlo estimate of the MLE, gives good point estimates and standard errors for

this data analysis.

“Table 2 around here”
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5. Conclusion

Often, for fitting complex models in the spatio-temporal context, Bayesian methods

are advocated because they are computationally more convenient than the likelihood-

based methods. Analysis based on DC overcomes the computational difficulties of the

ML method.

Using DC, we have implemented a model for spatio-temporal analysis that focused

on the mapping of area level disease ratios (or rates). The model accommodated a CAR

model for the spatial random effects and B-spline smoothing over the temporal effects. We

proposed the DC method which provides a Monte carlo estimate of the MLE to estimate

the model parameters, and also to provide prediction (and prediction intervals) of the

smoothing incidence ratios over space and time. As another advantage of DC approach

is that the non-estimable parameters are flagged automatically (Lele et al. 2010). In

particular, we considered the model (1) with incorporating an iid regional random variable

with Normal distribution and then fitted it to the dataset in Section 4.1 and observed that

with increasing number of clones, the variances of posterior distributions also increase.

We adjusted our expected number of asthma cases by an important factor of gender.

The model can be also easily extended to include some covariates directly. For instance,

if the data are available, one may also want to consider other covariates such as exposure

to dust and pollution, family history, obesity and so on.

Overall, it was suggested by the model estimates that the high asthma incidence

ratios for children were mainly located in some parts in the south and many parts in

the north-central part of the province. These findings may represent real increases or

different distributions of important covariates that are unmeasured and unadjusted for

in our modeling. Further investigation is needed to explore these findings.

Our proposed approach to use DC is very general in the context of spatio-temporal

models. In this paper, we used CAR and B-spline models for spatial and temporal effects,
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respectively, however, one may consider other variants of spatial and temporal effects;

for example CAR model (MacNab and Dean, 2001) for spatial random effects and AR

models (Torabi and Rosychuk, 2010) for temporal random effects. We have planned to

study model selection in the context of spatio-temporal models in the sense of frequentist

approach using DC (Ponciano et al., 2009).
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Figure 1. Data cloning convergence diagnostics for asthma visits to hospital dataset.

The standardized maximum eigenvalues (solid line) converge to zero at the expected rate

1/K (dashed line)
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Figure 2. The deviance residuals versus log-predicted diagnostic plot of childhood

asthma visits dataset based on data cloning approach

20



Figure 3. Provincial childhood asthma visits ratios over time. The solid black line

represents cubic B-spline with blue and red lines as 95% confidence intervals; the dashed

line is crude ratios
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Figure 4. Adjusted childhood asthma ratios for the spatial effects of the regional

asthma risks for some selected years; Manitoba childhood asthma data (2000–2010). Ma-

jor urban centre (Winnipeg region) is provided as inset
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Figure 5. Fitted childhood asthma visits ratio to hospital for selected regions, 37, 42,

52, and 56 with yearly average population sizes 3821, 319, 2864, and 173439, respectively,

during 2000–2010. The solid black line represents fitted ratios with blue and red lines as

95% prediction bands; the dashed line is crude ratios
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Table 1. Parameter estimates (and standard errors), spatio-temporal mixed model for
maximum likelihood estimation via data cloning (DC-MLE), penalized quasi-likelihood
(PQL), and hierarchical Bayes (HB) methods, childhood asthma visits to hospital in the
province of Manitoba, during 2000–2010

Parameter Estimate (Standard error)

DC-MLE PQL HB
m -1.210(0.810) -1.184(0.890) -1.195(0.930)
β1 -0.296(0.088) -0.117(0.088) -0.446(0.100)
β2 -0.397(0.130) -0.271(0.129) -0.506(0.140)
β3 -0.593(0.120) -0.405(0.114) -0.737(0.124)
β4 -0.662(0.067) -0.493(0.066) -0.798(0.074)
σ2
η 0.336(0.072) 5.893(1e-7) 0.355(0.080)

λη 0.177(0.005) 0.281(0.0002) 0.173(0.007)
σ2
θ 0.083(0.010) 0.075(0.008) 0.095(0.012)

Table 2. Mean values of biases and standard errors, and simulated standard errors of
maximum likelihood estimation via data cloning (DC-MLE), penalized quasi-likelihood
(PQL), and hierarchical Bayes (HB) methods based on 1,000 simulated datasets

DC-MLE PQL HB
Parameter Bias Standard error Bias Standard error Bias Standard error

DC-MLE Simulated PQL Simulated HB Simulated
m =-1.20 0.001 0.814 0.791 0.010 0.851 0.810 0.001 0.805 0.780
β1 =-0.10 -0.004 0.104 0.105 0.024 0.079 0.009 -0.001 0.104 0.106
β2 =-0.25 0.001 0.151 0.158 0.147 0.138 0.012 0.001 0.152 0.158
β3 =-0.40 -0.004 0.135 0.134 0.049 0.117 0.008 -0.004 0.135 0.135
β4 =-0.50 0.001 0.079 0.078 -0.030 0.057 0.004 0.001 0.079 0.078
σ2
η =1.00 -0.126 0.552 0.538 -0.923 0.116 0.035 -0.101 0.547 0.499

λη =0.01 -0.066 0.169 0.099 0.356 0.003 0.018 -0.063 0.127 0.054
σ2
θ =0.08 -0.001 0.011 0.011 -0.006 0.010 0.0002 0.0001 0.011 0.011

24


