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Abstract. Mixed models are widely used to analyze longitudinal data. In their conven-
tional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a
commonly indispensable assumption in settings involving longitudinal non-Gaussian
data is that the longitudinal observations from subjects are conditionally independent,
given subject-specific random effects. Although conventional Gaussian LMMs are able
to incorporate conditional dependence of longitudinal observations, they require that
the data are, or some transformation of them is, Gaussian, a serious limitation in a wide
variety of practical applications. Here, we introduce the class of Gaussian copula con-
ditional regression models (GCCRMs) as flexible alternatives to conventional LMMs
and GLMMs. One advantage of GCCRMs is that they extend conventional LMMs and
GLMMs in a way that reduces to conventional LMMs, when the data are Gaussian, and
to conventional GLMMs, when conditional independence is assumed. We implement
likelihood analysis of GCCRMs using existing software and statistical packages and
evaluate the finite-sample performance of maximum likelihood estimates for GCCRM
empirically via simulations vis-à-vis the ‘naive’ likelihood analysis that incorrectly as-
sumes conditionally independent longitudinal data. Our results show that the ‘naive’
analysis yields estimates with possibly severe bias and incorrect standard errors, lead-
ing to misleading inferences. We use bolus count data on patients’ controlled analgesia
comparing dosing regimes and data on serum creatinine from a renal graft study to
illustrate the applications of GCCRMs.
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1 Introduction

A common example of correlated data arise frequently in longitudinal studies, where
an outcome or outcomes are measured repeatedly over a period of time (i.e., longi-
tudinally) from the same subjects. As such, the resulting observations are correlated,
as when weekly blood pressure readings are obtained from cohorts of treated and
untreated patients. Such longitudinal data, especially in health and medical research
(Brown and Prescott, 2015; Magezi, 2015), are often analyzed using conventional (i.e.,
Gaussian) linear mixed models (LMMs) (Searle, Casella, and McCulloch, 2006) and
generalized LMMs (GLMMs) (McCulloch, Searle, and Neuhaus, 2008) to account for
population heterogeneity, over- or under-dispersion, and within-subject correlations
in the data via the inclusion of subject-specific random effects. They also enable the
borrowing of information across different subjects for subject-specific predictions, as
opposed to population-averaged predictions based on marginal models.
Let Yi= (Yi1, · · · ,YiTi)

> be the vector of longitudinal observations on a single outcome
for subject i(= 1, · · · ,n) up to and including time Ti(≥ 1). Suppose that Yit is amenable
to be modelled by a LMM (e.g., it is not strictly positive, such as a survival endpoint)
but it may not follow the Gaussian distribution. Suppose further that normalizing Yit
via transformations is not attractive for reasons of interpretability. Any longitudinal
analysis of the data needs to account for the marginal longitudinal dependence in Yi
as captured by the marginal longitudinal correlations corr(Yit,Yit′) between any pair of
longitudinal observations Yit and Yit′ , with t , t′.
The default approach in practice relies on a conventional LMM for Yit defined as

Yit = x>itβ + z>i Bi + εit, (1.1)

where β is the vector of regression coefficients for the vector xit of covariates (possibly
including time t), Bi is the vector of subject-specific Gaussian random effects (possibly
containing random slopes of time) with the design vector of zi, and εi1, · · · , εiTi are
either independent or correlated Gaussian residual errors. The Gaussian random effects
and Gaussian residual errors together imply that Yi is, conditionally and marginally,
Gaussian as well.
Note that conventional LMMs rely on the assumption that the outcome, or some trans-
formation of it, follows a Gaussian distribution. This has been shown to be very restric-
tive in many applications and working with a transformed outcome often engenders
issues concerning interpretability. While conventional LMMs can incorporate condi-
tional dependence in the model by allowing for correlated Gaussian residual errors,
the absence of a general multivariate non-Gaussian model similar to the multivari-
ate Gaussian distribution for non-Gaussian Yi often necessitates assuming conditional
independence of the non-Gaussian longitudinal observations Yi1, · · · ,YiTi , given the
random effects Bi. This is tantamount to assuming that the marginal longitudinal
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dependence between successive observations is completely explained by Bi, a very
strong and oftentimes invalid assumption in practice, since the observations may be
intrinsically correlated over time, as when Yi1, · · · ,YiTi are biologically linked (Das et
al., 2013).
In non-Gaussian settings involving longitudinal observations Yi= (Yi1, · · · ,YiTi)

> that
do not fit the LMM (e.g., a survival endpoint or a binary/count outcome), GLMMs are
widely and typically adopted. Given a non-identity link g(·), a conventional GLMM
for Yit is given by

g[E(Yit|Bi)] = x>itβ + z>i Bi, (1.2)

where Yit, given Bi, has some parametric non-Gaussian distribution (e.g., gamma, bi-
nomial, Poisson). Conditional independence of Yi1, · · · ,YiTi conveniently allows for the
construction of a conditional joint model (i.e., conditional distribution of Yi) as simply
the product of the conditional marginal models (i.e., conditional marginal distributions
of Yi1, · · · ,YiTi). Such an assumption, which may not hold in practice, becomes indis-
pensable because convenient multivariate generalizations of the gamma, Bernoulli and
Poisson distributions, among many other non-Gaussian models, are likewise gener-
ally unavailable. Conditional dependence in this situation may be accommodated by
adopting a factorization or conditioning approach, as in so-called transition models;
however, except in the case of conventional LMMs, the use of transition models for
non-Gaussian data are not without its own complications.
Our objective in this paper is to explore the impact on estimation in LMMs and GLMMs
when conditional independence of longitudinal non-Gaussian observations is incor-
rectly assumed in the analysis. Wu, de Leon and Withanage (2013) and Wu and de Leon
(2014) addressed the related issue of conditional dependence among different outcomes
in the context of joint modelling of correlated data on multiple disparate non-Gaussian
outcomes (e.g., mixed binary and continuous outcomes); to our knowledge, a similar
investigation has yet to be carried out in relation to conditional dependence among
longitudinal observations on a single non-Gaussian outcome. Work by Masarotto and
Varin (2012) on Gaussian copula marginal models and by Wu and de Leon (2014) (see
also de Leon and Wu, 2011) on Gaussian copula mixed models together provide an
especially appropriately convenient framework for directly incorporating conditional
dependence in the analysis, thus allowing us to isolate the effect of this particular model
mis-specification on the analysis while still assuming that the outcome’s mean model
is correctly specified.
The paper is organized as follows. We first review conventional LMMs and GLMMs
in Section 2, highlighting their inadequacies as far as accounting for conditional de-
pendence in the analysis is concerned. Section 3 briefly reviews copulas and the way
they are employed in the construction of (conditional) joint models based on the (con-
ditional) marginal models, with particular attention given to the Gaussian copula on
which Masarotto and Varin’s (2012) marginal models and Wu and de Leon’s (2014)
mixed models are based. A brief discussion of marginal longitudinal dependence in
terms of correlations among longitudinal observations is included as well; likelihood
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analysis for the resulting model is likewise discussed. In Section 4, empirical results of
simulation studies on the effect on the bias and efficiency of likelihood-based estimates
of mis-specifying the joint model by ignoring conditional dependence are reported.
Section 5 illustrates the methodology on longitudinal data from two studies (a study
on bolus count data on patient controlled analgesia comparing two different dosing
regimes (Weiss, 2005) and another study on renal graft failure (Fieuws and Verbeke,
2008). Section 6 concludes the paper.

2 Conditional Dependence in Longitudinal Data

Marginal dependence is often modeled in conventional LMMs and GLMMs by assum-
ing conditional independence of the correlated observations, given subject-specific
random effects. We discuss these models’ flexibility in accounting for conditional
dependence of Gaussian and non-Gaussian longitudinal data in what follows.

2.1 LMMs for longitudinal Gaussian data

For longitudinal observation Yit from subject i(= 1, · · · ,n) at time t(= 1, · · · ,Ti) described
by LMM (1.1) with Gaussian residual errors and Gaussian random effects, the vector
Yi= (Yi1, · · · ,YiTi)

> of longitudinal observations from subject i has a Ti-dimensional
Gaussian marginal distribution with marginal covariance matrix

Vi = Zicov(Bi)Z>i + cov(εi) = ZiΣBZ>i + Σi, (2.1)

with εi = (εi1, · · · , εiTi)
> and Zi = ITi ⊗ z>i the Kronecker product of the Ti-dimensional

identity matrix ITi and z>i , and where var(εit) = var(εi′t), for all i , i′ such that t ≤
min(Ti,Ti′), so that we indexed Σi by i only because its dimension depends on Ti.
The decomposition of Vi in (2.1) implies that the marginal longitudinal dependence of
Yi1, · · · ,YiTi can arise from either εi alone (i.e., conditionally, given Bi) or Bi alone (with
inclusion of random slopes of time), or induced by both.

Assuming Σi is diagonal is equivalent to assuming that the Gaussian observations
Yi1, · · · ,YiTi are conditionally independent, given Bi. That is, cov(Yit,Yit′) = z>i ΣBzi,
so that the marginal longitudinal dependence between Yit and Yit′ , for t < t′, is com-
pletely characterized by Bi. Inclusion of random slopes of time implies zi ≡ zit, so that
Zi = diag(z>i1, · · · , z

>

iTi
); it follows that cov(Yit,Yit′) = z>itΣBzit′ , and the marginal longi-

tudinal correlation varies with time, a desirable dependence structure for longitudinal
(i.e., temporally ordered) data. Note, however, that such a marginal longitudinal de-
pendence structure does not account for conditional dependence, since the latter may
not even be longitudinal in nature.

Conditional dependence of Yi1, · · · ,YiTi is conveniently accommodated by a non-
diagonal specification for Σi. For example, an AR(1) specification for Σi corresponds to
a stationary first-order autoregressive model for Yi (Molenberghs and Verbeke, 2005);
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this follows easily from the Gaussian distribution’s closure properties under condition-
alization and marginalization. Such a model assumes that the conditional dependence
of Yi1, · · · ,YiTi is longitudinal as well, in which case, inclusion of random slopes of time
in Bi may not be necessary. It is likewise possible to have, say, a compound symmetric
(i.e., exchangeable) specification for Σi — a non-longitudinal conditional dependence
structure for Yi1, · · · ,YiTi — thus implying that the marginal longitudinal dependence
of Yi1, · · · ,YiTi is completely characterized by Bi, which necessitates inclusion of ran-
dom slopes of time in order for the resulting marginal longitudinal correlations to be
time-varying.

Conventional LMMs provide a straightforward way of accommodating conditional
dependence in the longitudinal data, provided the longitudinal observations are, or
some transformation of them is, Gaussian. The lack of similar multivariate analogues
of common non-Gaussian distributions presents a difficulty for non-Gaussian longitu-
dinal data.

2.2 GLMMs for longitudinal non-Gaussian data

If the longitudinal observations Yi1, · · · ,YiTi are non-Gaussian (e.g., binary, count or
survival outcome), then no standard multivariate model exists that mimics the closure
properties of the multivariate Gaussian distribution. As such, given the respective con-
ditional marginal probability density functions (PDFs) fYi1|Bi(yi1|bi), · · · , fYiTi |Bi(yiTi |bi) of
Yi1, · · · ,YiTi , given Bi = bi, the conditional joint model of Yi1, · · · ,YiTi , as defined by their
conditional joint PDF fYi1,··· ,YiTi |Bi(yi1, · · · , yiTi |bi) = fYi|Bi(yi|bi), with yi= (yi1, · · · , yiTi)

>,
is constructed by assuming conditional independence of Yi1, · · · ,YiTi :

fYi|Bi(yi|bi) =

Ti∏
t=1

fYit|Bi(yit|bi), (2.2)

so that the resulting marginal joint model given by the marginal joint PDF fYi1,··· ,YiTi
(yi1, · · · , yiTi) =

fYi(yi) becomes

fYi(yi) =

∫ Ti∏
t=1

fYit|Bi(yit|bi) fBi(bi)dbi, (2.3)

where fBi(bi) is the PDF of random effects Bi, i = 1, · · · ,n. Without random slopes of
time in GLMM (1.2), it follows that cov(Yit,Yit′) = cov(Yit,Yit′′), for any t and any t′ , t′′,
thus ignoring the marginal longitudinal (i.e., time-varying) dependence of Yi1, · · · ,YiTi ;
such a time-independent marginal dependence structure is clearly inadequate, since,
for example, we expect cov(Yit,Yit′) ≥ cov(Yit,Yit′′), for |t − t′| ≤ |t − t′′|.

Except in the case of longitudinal binary or ordinal observations Yi1, · · · ,YiTi , for
which autoregressive LMMs for some assumed underlying latent Gaussian variables
become the basis of transition models in the form of autocorrelated probit GLMMs (i.e.,
transition models) for Yi1, · · · ,YiTi (Renard et al., 2002), exhibiting conditional depen-
dence for non-Gaussian longitudinal data in addition to that induced by the random
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effects — as in decomposition (2.1) for conventional LMMs — is not straightforward.
Molenberghs and Verbeke (2005) advocate using linearization as a form of data approx-
imation à la penalized quasi-likelihood (PQL) estimation to ‘reduce’ the GLMMs for
the non-Gaussian data to LMMs for the corresponding ‘linearized’ pseudo-data. While
quite general and convenient, the reliance on pseudo-data renders the model opaque;
in addition, the resulting estimates tend to inherit the bias from the use of PQL.

In the sequel, we adopt a conditional version of Masarotto and Varin’s (2012)
Gaussian copula marginal regression model (GCMRM) as a convenient generaliza-
tion of conventional LMMs and GLMMs in this context that yields a straightforward
approach, akin to that for conventional LMMs, for accommodating conditional depen-
dence in non-Gaussian longitudinal data.

3 Gaussian Copula Conditional Regression Model

To construct a conditional joint model for the non-Gaussian longitudinal observations
Yi1, · · · ,YiTi , given the random effects Bi, via their conditional joint PDF fYi1,··· ,YiTi |Bi(yi1, · · · , yiTi |bi) =
fYi|Bi(yi|bi), we adopt the Gaussian copula conditional regression model (GCCRM) for
Yi1, · · · ,YiTi defined by

fYi|Bi(yi|bi) =
∂
∂yi

FYi|Bi(yi|bi), (3.1)

with the conditional cumulative distribution function (CDF) FYi|Bi(yi|bi) = FYi1,··· ,YiTi |Bi(yi1, · · · , yiTi |bi)
modeled by the Ti-dimensional Gaussian copula given by

FYi|Bi(yi|bi) = ΦTi[qi1(bi), · · · ,qiTi(bi); Ri], (3.2)

where qit(bi) = Φ−1[uit(bi)] = Φ−1[FYit|Bi(yit|bi)] is the realization of the conditional nor-
mal score Qi1(bi) = Φ−1[Uit(bi)] = Φ−1[FYit|Bi(Yit|bi)] ∼ N(0, 1), for t = 1, · · · ,Ti, with
FYit|Bi(yit|bi) the marginal conditional CDF of Yit, ΦTi(zi1, · · · , ziTi ; Ri) the CDF of the
Ti-dimensional standard Gaussian distribution (i.e., with standard normal margins)
with correlation matrix Ri, and Φ−1(z) is the quantile function of the standard normal
distribution N(0, 1). Given Bi = bi, note that the conditional probability integral trans-
forms (PITs) are such that Uit(bi) ∼ U(0, 1), with corresponding conditional normal
scores Qit(bi) ∼ N(0, 1), for i = 1, · · · ,n, and for t = 1, · · · ,Ti, provided Yi1, · · · ,YiTi

are continuous random variables; this suggests that the conditional normal correlation
matrix Ri containing the conditional normal correlations ritt′ = corr[Qit(bi),Qit′(bi)],
provides a margin-free measure of conditional dependence of Yi1, · · · ,YiTi . We assume
ritt′ = ri′tt′ = rtt′ , for all i , i′ and for all t, t′ ≤ min(Ti,Ti′), and we index Ri by i for
precisely the same reason as we did Σi in (2.1); hence, we can drop the index i from ritt′ .

If Yit is amenable to be modeled by a (non-Gaussian) LMM, its marginal conditional
CDF FYit|Bi(yit|bi) has conditional mean given in (1.1), with possibly non-Gaussian error
εit. For example, a logistic residual error εit corresponds to a marginal conditional
logistic model for Yit, given Bi; more generally, εit can have a distribution from the
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location-scale family, which include the Gaussian and logistic models, among oth-
ers. It is easy to see that the GCCRM in (3.1) reduces to the conventional LMM for
conditionally Gaussian residual error εi.

For a marginal conditional GLMM for Yit with non-identity link g(·), its marginal
conditional mean follows from (1.2) as E(Yit|Bi) = g−1(x>itβ + z>i Bi). With diagonal Ri,
the GCCRM in (3.1) specializes into the conditional joint model (2.2) with conditionally
independent marginal conditional GLMMs for Yi1, · · · ,YiTi .

Note that the GCCRM in (3.1) makes use of the Gaussian copula to construct the
conditional joint distribution of the longitudinal observations on a single outcome from
a given subject; this contrasts with Wu and de Leon’s (2014) GCMM, which relies on the
Gaussian copula to model the conditional dependence between multiple outcomes (but
not between observations on the same outcome) in correlated data settings. Indeed,
(2.3) is more akin to Masarotto and Varin’s (2012) GCMRM, albeit rendered conditional
by conditioning it on Bi. As such, it preserves the properties of the marginal conditional
LMMs/GLMMs, including the usual marginal and conditional interpretations of the
model parameters.

3.1 Conditional and marginal dependence

The matrix Ri of conditional normal correlations plays the role of the residual error
covariance matrix Σi in the conventional LMMs. As such, it models the conditional
dependence of the non-Gaussian observations Yi1, · · · ,YiTi via the conditional normal
correlations rtt′ , for t < t′. SinceρM(Yit,Yit′ |bi) = |rtt′ | (Klaassen and Wellner, 1997), where
ρM(Yit,Yit′ |bi) = sup

∀a1,a2
corr(a1(Yit), a2(Yit′)|bi) is the maximum conditional correlation

between Yit and Yit′ , where a1(y) and a2(y) are any functions such that var(a1(Y)|bi) < +∞
and var(a2(Y)|bi) < +∞, it follows that

ρtt′ = corr(Yit,Yit′ |bi) ≤ |rtt′ |, (3.3)

with ρtt′ the conditional correlation between Yit and Yit′ . Observe that the GCCRM does
not model ρtt′ directly and uses the normal correlation rtt′ instead as the conditional
dependence measure. Although interest is usually on ρtt′ , rtt′ is frequently adopted as a
proxy for ρtt′ , or as a bound for ρtt′ , using (3.3). Alternatively, rtt′ can be calculated from
ρtt′ via Kugiumtzis and Bora-Senta’s (2010) piecewise linear approximation method.

To mimic the AR(1) specification, for example, of Σi in conventional LMMs, we can
specify a similar AR(1) specification of Ri = Ri(ρ), where rtt′ = ρ|t−t′|, for t , t′, for
some |ρ| < 1; it is also possible to adopt a non-longitudinal specification for Ri, as in
the compound symmetric structure Ri = ρITi (i.e., rtt′ = ρ, for all t, t′).

Because Ri is the correlation matrix of the conditional normal scores — a non-linear
transformation of Yi1, · · · ,YiTi — an AR(1) structure, say, for Ri does not necessarily
translate into an AR(1) specification for the correlation matrix of Yi1, · · · ,YiTi . Clemen
and Reilly (1999) recommend instead the non-parametric rank-order correlations Spear-
man’s rho ρS and Kendall’s tau τ, which are invariant to monotonic transformations,
including the conditional normal scores Qit(bi), and then using the well-known rela-
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tionships between the Pearson’s correlation coefficient and ρS and τ for the Gaussian
distribution to assess Ri.

The corresponding marginal longitudinal correlation corr(Yit,Yit′) is obtained via
the decomposition

corr(Yit,Yit′ ) =
cov(Yit,Yit′ )√

var(Yit)var(Yit′ )
=

E(cov(Yit,Yit′ |Bi)) + cov(E(Yit|Bi),E(Yit′ |Bi))√
var(Yit)var(Yit′ )

, (3.4)

where E(Yit|Bi) = x>itβ + z>it Bi (i.e., E(Yit|Bi) includes random slopes of time) in the case
of a LMM for Yit or E(Yit|Bi) = g−1(x>itβ + z>it Bi) for a GLMM for Yit. Although E(Yit|Bi)
and cov(Yit,Yit′ |Bi) have closed-forms, getting the marginal expectation and covariance
in (3.4) may be analytically intractable. One notable exception would be for the identity
link (i.e., LMMs), in which case, we have

corr(Yit,Yit′) =
ρtt′σtσt′ + z>itΣBzit′√

(σ2
t + z>itΣBzit)(σ2

t′ + z>it′ΣBzit′)
, t ≤ t′, (3.5)

where σ2
t = var(Yit|Bi); in practice, we may simplify the model by assuming homogene-

ity over time (i.e., σ2
t = σ2, for all t). The value (say, an estimate) of ρtt′ may be obtained

from that of rtt′ via piecewise linear approximation (Kugiumtzis and Bora-Senta, 2010).
For non-identity links (i.e., GLMMs), a crude first-order Taylor series approximation

around Bi = 0 can be used to approximate corr(Yit,Yit′); see, e.g., Vangeneugden et al.
(2011) for details.

3.2 Likelihood estimation

Given longitudinal data y1, · · · , yn from the n subjects, the marginal likelihood function
is then

L(Θ; y1, · · · , yn) =

n∏
i=1

∫
fYi|Bi(yi|bi) fBi(bi)dbi, (3.6)

where Θ contains all the unknown parameters. We then maximize (3.6) to obtain the
maximum likelihood estimate (MLE) Θ̂ ofΘ. The evaluation and maximization of (3.6)
is carried out numerically using Newton-type algorithm for the case of Gaussian data,
and Gaussian quadrature or importance sampling, among other methods, for the case
of non-Gaussian data. We implemented this via the R function optim (R, 2020). To
calculate the standard errors (SEs), we rely on standard likelihood theory, which states
that, for large n, Θ̂ is asymptotically Gaussian with meanΘ and covariance matrix

cov(Θ̂) =
(
E
{
S(Θ)S>(Θ)

})−1
=

(
E
{

∂

∂Θ∂Θ>
log L(Θ; Y1, · · · ,Yn)

})−1

, (3.7)

where S(Θ) = ∂ log L(Θ; y1, · · · , yn)/∂Θ; the SEs of the MLEs are then calculated by
evaluating (3.7) at Θ = Θ̂ to obtain the estimated covariance matrix ĉov(Θ̂). One can
also use the estimated Hessian matrix from optim to obtain the SEs. The R packages
lme and nlme, among many others, conveniently implement these for conventional
LMMs and GLMMs.
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4 Simulation Study

In this section, we investigate empirically via simulations how mis-specifying the con-
ditional dependence in longitudinal data analysis impacts estimation. We report three
such simulation studies: the first involves a conventional LMM (for which conditional
dependence can be easily incorporated) while the second and third concern GLMMs
for non-Gaussian binary and gamma distributed outcomes, respectively (which con-
ventionally assume conditional independence).

4.1 Simulation study 1

This study involves the conventional Gaussian LMM, for which the residual errors are
conditionally, given subject-specific random effects, dependent (i.e., Σi is non-diagonal,
∀i). We compare the MLEs from the correct model that accounts for conditional de-
pendence with those obtained “naively” based on the incorrect assumption of condi-
tional independence. Our aim is to show the efficiency lost from incorrectly assuming
conditional independence of longitudinal observations for subjects. We consider the
following LMM for longitudinal observation Yit at time t(= 1, · · · ,Ti) from subject
i(= 1, · · · ,n):

Yit = β0 + β1 × timeit + Bi + εit, (4.1)

where timeit = (t − 1)/10, Bi
iid
∼ N(0, σ2

B), and εi = (εi1, · · · , εiTi)
>
∼ NTi(0,Σi), with Σi

having an AR(1) structure. That is, we assume that cov(εit, εit′) = cov(Yit,Yit′ |Bi) =
σ2ρ|t−t′|, for t, t′ = 1, · · · ,Ti, where σ2 = var(εit) = var(Yit|Bi) and ρ = corr(εit, εi,t+1) =
corr(Yit,Yi,t+1|Bi), ∀i, t. Note that (4.1) only includes a random intercept and no random
slope of time since the conditional dependence structure is already longitudinal (i.e., Σi
is AR(1)), which render the marginal longitudinal correlations to be time-dependent.
Observe as well that (4.1) is a special case of GCCRM with Gaussian LMM margins.

In the simulations, we set n = 200, T1 = · · · = Tn = 5 (i.e., balanced design), β0 = 1,
β1 = 0.5, σ2

B = 1, ρ = 0.3, 0.6, and σ2 = 0.25, 0.5, 1. For each of 2 × 3 = 6 parame-
ter settings, we generated R = 5000 independent datasets {y(r)

i = (y(r)
i1 , · · · , y

(r)
iTi

)>, i =

1, · · · ,n; t = 1, · · · ,Ti}, where y(r)
it is generated as y(r)

it = β0 + β1 × timeit + B(r)
i + ε(r)

it , for

i = 1, · · · ,n, t = 1, · · · ,Ti, and r = 1, · · · ,R. The MLE Θ̂
(r)
c = (β̂(r)

c,0, β̂
(r)
c,1, σ̂

2(r)
c,B , σ̂

2(r)
c , ρ̂(r)

c )>

of Θc = (β0, β1, σ2
B, σ

2, ρ)>, the parameter vector for the correct model, was obtained
for each simulation repeat r = 1, · · · ,R; similarly, we also calculated the ‘naive’ MLE

Θ̂
(r)
m = (β̂(r)

m,0, β̂
(r)
m,1, σ̂

2(r)
m,B, σ̂

2(r)
m )> of Θm = (β0, β1, σ2

B, σ
2)>, the parameter vector for the mis-

specified model that incorrectly assumes conditional independence (i.e., ρ = 0, when
ρ > 0).

The bias of parameter estimates, along with their SEs, and their corresponding
mean squared error (MSE) defined as MSE=bias2 + SE2 were calculated to evaluate the
bias and relative efficiency of the MLEs. The results, obtained using the R package lme,
are reported in Table 1 for different values of σ2 and ρ.
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Table 1: Bias estimates, with their standard errors (SEs), and corresponding mean
squared error (MSE), based on R = 5000 simulated datasets from LMM (4.1).

Parameter
Bias SE MSE

Mis-specified Correct Mis-specified Correct Mis-specified Correct

σ2 = 0.25

ρ = 0.3

β0 = 1 -0.0004 -0.0004 0.0770 0.0767 0.006 0.006
β1 = 0.5 0.0008 0.0007 0.1222 0.1211 0.015 0.015
σ2

B = 1 0.0320 -0.0065 0.1094 0.1101 0.013 0.012
σ2 = 0.25 -0.0385 0.0004 0.0110 0.0189 0.002 0.0004
ρ = 0.3 — -0.0023 — 0.0538 — 0.003

ρ = 0.6

β0 = 1 -0.0004 -0.0004 0.0785 0.0779 0.006 0.006
β1 = 0.5 0.0007 0.0007 0.1190 0.1164 0.014 0.014
σ2

B = 1 0.0950 -0.0094 0.1145 0.1185 0.022 0.014
σ2 = 0.25 -0.0013 0.0027 0.0086 0.0372 0.0001 0.001
ρ = 0.6 — -0.0036 — 0.0575 — 0.003

σ2 = 0.5

ρ = 0.3

β0 = 1 -0.0005 -0.0005 0.0833 0.0829 0.007 0.007
β1 = 0.5 0.0011 0.0010 0.1728 0.1712 0.030 0.029
σ2

B = 1 0.0700 -0.0077 0.1178 0.1203 0.019 0.020
σ2 = 0.5 -0.0770 0.0008 0.0220 0.0377 0.006 0.014
ρ = 0.3 — -0.0022 — 0.0536 — 0.003

ρ = 0.6

β0 = 1 -0.0005 -0.0005 0.0860 0.0851 0.007 0.007
β1 = 0.5 0.0010 0.0010 0.1682 0.1647 0.028 0.027
σ2

B = 1 0.1950 -0.0133 0.1279 0.1417 0.054 0.020
σ2 = 0.5 -0.0026 0.0054 0.0171 0.0737 0.0003 0.005
ρ = 0.6 — -0.0035 — 0.0570 — 0.003

σ2 = 1

ρ = 0.3

β0 = 1 -0.0006 -0.0006 0.0947 0.0940 0.009 0.009
β1 = 0.5 0.0015 0.0015 0.2444 0.2422 0.060 0.059
σ2

B = 1 0.1460 -0.0100 0.1344 0.1426 0.039 0.020
σ2 = 1 -0.1540 0.0020 0.0439 0.0752 0.026 0.006
ρ = 0.3 — -0.0022 — 0.0532 — 0.003

ρ = 0.6

β0 = 1 -0.0008 -0.0008 0.1004 0.0988 0.010 0.010
β1 = 0.5 0.0018 0.0016 0.2381 0.2330 0.057 0.054
σ2

B = 1 0.3950 -0.0211 0.1558 0.1964 0.180 0.039
σ2 = 1 -0.4054 0.0100 0.0352 0.1462 0.166 0.021
ρ = 0.6 — -0.0036 — 0.0570 — 0.003
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As expected, the ‘naive’ MLEs based on the mis-specified model generally exhibited
more bias and less efficiency than those based on the correct model. In particular, we
observed that regardless of the magnitude of σ2, the ‘naive’ MLEs of variance compo-
nents σ2

B and σ2 had non-negligible bias and lower efficiency (i.e., SEs of ‘naive’ MLEs
were generally smaller than those for the ‘correct’ MLEs), the latter a common conse-
quence of an incorrect independence assumption on the data. In particular, magnitude
of the corresponding MSE of σ̂2

B and σ̂2 in the case of large σ2 and ρ are much bigger
for the ‘naive’ method compared to the GCCRM approach. We should note, however,
that the regression coefficients were estimated generally well by both ‘naive’ and ‘cor-
rect’ MLEs; being marginal parameters, this is to be expected. However, while the
‘naive’ estimates of the regression coefficients remained unbiased, the corresponding
SEs generally tended to be smaller than what they should be, when ρ > 0.

Our results clearly show that if one ignores the conditional dependence between
longitudinal observations from subjects, one runs the risk of ending up with incorrect
conclusions; this is true even if interest lies only on the regression coefficients, since the
‘naive’ SEs tend to underestimate the true sampling variability of the estimates, which
in turn can lead to tests with inflated Type I error rates or CIs that are misleadingly
narrow.

4.2 Simulation study 2

We also conduct a simulation study to evaluate performance of the MLE of model
parameters for the GCCRM with logistic (conditional) margins. In particular, the
finite-sample performance of the ’naive’ MLEs, based on the mis-specified model that
incorrectly assumes conditional independence, is compared with that of the MLEs
based on the correct model (GCCRM). Specifically, we consider the following condi-
tional marginal logistic model for longitudinal observation Yit at time t(= 1, · · · ,Ti)
from subject i(= 1, · · · ,n):

Yit|Bi ∼ logistic
[
µit(Bi), ζ

]
, (4.2)

where µit and ζ are location and scale of the logistic distribution with µit(Bi) = β0 +

β1xit + Bi,Bi
iid
∼ N(0, σ2

B), and β0, β1 are intercept and slope of covariate xit(= t/10). We
adopt a GCCRM with conditional logistic margins given by (4.2) and with Ri having
an AR(1) to incorporate conditional dependence among the longitudinal observations
Yi1, · · · ,YiTi . Since no random slope of time is included in (4.2), such an Ri guarantees
that the marginal normal correlations rtt′ (hence, the marginal longitudinal correlations
ρtt′) are time-dependent. Note that the conventional logistic model specification of
conditional independence for Yi1, · · · ,YiTi corresponds to a diagonal Ri.

With β0 = 1, β1 = 2, ζ = 0.1, and four scenarios for σ2
B = 0.1, 0.5, 0.7, 1 and two

scenarios for ρ = corr(Qit(bi),Qi,t+1(bi)) = 0.5, 0.9, ∀i, t, we generate R = 1000 datasets
each with n = 200 subjects with five follow-ups per subject (balanced design) for each of
4 × 2 = 8 parameter settings. For each generated dataset, parameters are estimated for
the both naive and GCCRM using the R package copula to implement the simulations.
Tables 2 and 3 show the bias estimates along with their SEs and corresponding MSEs
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Table 2: Bias estimates, with their standard errors (SEs), and corresponding mean
squared error (MSE), based on R = 1000 simulated datasets from the GCCRM with
conditional logistic margins (4.2) in the case of ρ = 0.5.

Parameter
Bias SE MSE

Mis-specified Correct Mis-specified Correct Mis-specified Correct

σ2
B = 0.1

β0 = 1 –0.002 0.004 0.072 0.062 0.005 0.004
β1 = 2 –0.001 –0.016 0.146 0.113 0.021 0.013
ζ = 0.1 –0.002 0.000 0.018 0.017 0.0003 0.0003
σ2

B = 0.1 –0.002 –0.001 0.019 0.018 0.0004 0.0003
ρ = 0.5 — 0.000 — 0.034 — 0.001

σ2
B = 0.5

β0 = 1 –0.013 0.006 0.241 0.172 0.058 0.030
β1 = 2 0.021 –0.038 0.487 0.287 0.238 0.084
ζ = 0.1 0.003 0.007 0.040 0.042 0.002 0.002
σ2

B = 0.5 –0.031 –0.018 0.142 0.100 0.021 0.010
ρ = 0.5 — –0.002 — 0.091 — 0.008

σ2
B = 0.7

β0 = 1 –0.010 0.014 0.289 0.213 0.084 0.046
β1 = 2 0.021 –0.057 0.583 0.361 0.340 0.134
ζ = 0.1 0.006 0.010 0.055 0.052 0.003 0.003
σ2

B = 0.7 –0.068 –0.034 0.204 0.160 0.046 0.027
ρ = 0.5 — –0.004 — 0.107 — 0.011

σ2
B = 1

β0 = 1 0.002 0.000 0.308 0.225 0.095 0.051
β1 = 2 0.024 –0.063 0.628 0.368 0.395 0.139
ζ = 0.1 0.012 0.019 0.066 0.068 0.004 0.005
σ2

B = 1 –0.092 –0.043 0.299 0.223 0.098 0.052
ρ = 0.5 — –0.014 — 0.113 — 0.013

in the case of ρ = 0.5 and 0.9, respectively. Based on the results, it appears that the ML
estimates for the GCCRM perform well unlike the ‘naive’ estimates in terms of MSE
for the all model parameters. Our results clearly suggest the importance of accounting
for conditional dependence among longitudinal observations from subjects. One may
lead to wrong conclusions by ignoring conditional dependence by having severe bias
in estimates and/or incorrect SEs.

4.3 Simulation study 3

We also conduct a simulation study using a non-Gaussian gamma-distributed outcome
to compare the finite-sample performance of the ‘naive’ MLEs, based on the mis-
specified model that incorrectly assumes conditional independence, with that of the
MLEs based on the correct model. Specifically, we consider the following conditional
marginal GLMM for longitudinal observation Yit at time t(= 1, · · · ,Ti) from subject
i(= 1, · · · ,n):

Yit|Bi ∼ gamma
[
α,

1
α
µit(Bi)

]
, (4.3)
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Table 3: Bias estimates, with their standard errors (SEs), and corresponding mean
squared error (MSE), based on R = 1000 simulated datasets from the GCCRM with
conditional logistic margins (4.2) in the case of ρ = 0.9.

Parameter
Bias SE MSE

Mis-specified Correct Mis-specified Correct Mis-specified Correct

σ2
B = 0.1

β0 = 1 0.001 0.005 0.074 0.075 0.005 0.006
β1 = 2 –0.005 –0.017 0.025 0.020 0.025 0.020
ζ = 0.1 –0.002 –0.002 0.020 0.017 0.0004 0.0003
σ2

B = 0.1 –0.004 –0.002 0.022 0.018 0.0005 0.0003
ρ = 0.9 —- –0.013 —- 0.062 —- 0.004

σ2
B = 0.5

β0 = 1 0.002 –0.002 0.246 0.163 0.060 0.026
β1 = 2 –0.005 –0.026 0.502 0.256 0.252 0.066
ζ = 0.1 0.006 0.009 0.046 0.040 0.002 0.002
σ2

B = 0.5 –0.034 –0.008 0.128 0.109 0.018 0.012
ρ = 0.9 —- –0.032 —- 0.123 —- 0.016

σ2
B = 0.7

β0 = 1 –0.005 0.012 0.247 0.197 0.061 0.039
β1 = 2 –0.001 –0.052 0.502 0.327 0.252 0.110
ζ = 0.1 0.009 0.012 0.054 0.052 0.003 0.003
σ2

B = 0.7 –0.046 –0.024 0.182 0.150 0.035 0.023
ρ = 0.9 —- –0.040 —- 0.144 —- 0.022

σ2
B = 1

β0 = 1 0.010 0.001 0.288 0.213 0.083 0.045
β1 = 2 –0.011 –0.046 0.589 0.354 0.347 0.127
ζ = 0.1 0.011 0.018 0.066 0.068 0.004 0.005
σ2

B = 1 –0.081 –0.045 0.289 0.221 0.090 0.051
ρ = 0.9 —- –0.046 —- 0.152 —- 0.025

with

µit(Bi) = E(Yit|Bi) = exp(β0 + β1xit + Bi), (4.4)

where α is the shape parameter and Bi
iid
∼ N(0, σ2

B), with covariate xit generated from
U(0, 2). To incorporate conditional dependence among the longitudinal observations
Yi1, · · · ,YiTi , we adopt a GCCRM with GLMM margins given by (4.3) and with Ri
having an AR(1) structure. Since no random slope of time is included in (4.3), such an Ri
guarantees that the marginal normal correlations rtt′ (hence, the marginal longitudinal
correlations ρtt′) are time-dependent. Note that the conventional GLMM specification
of conditional independence for Yi1, · · · ,YiTi corresponds to a diagonal Ri.

We independently generate R = 1000 datasets with n = 200 and T1 = · · · = Tn = 5
(i.e., balanced design) from a GCCRM with conditional margins given by (4.3) and pa-
rameters β0 = 1, β1 = −1, α = 2, and σ2

B = 0.02. For Ri, we set ρ = corr(Qit(bi),Qi,t+1(bi)) =

0.2, ∀i, t. We obtained the MLE Θ̂
(r)
c = (β̂(r)

c,0, β̂
(r)
c,1, α̂

(r)
c , σ̂

2(r)
c,B , ρ̂

(r)
c )> from the correct model

with ρ = 0.2 as well as the ‘naive’ MLE Θ̂
(r)
m = (β̂(r)

m,0, β̂
(r)
m,1, α̂

(r)
m , σ̂

2(r)
m,B)> from the mis-

specified model with ρ = 0, for each simulation repeat r = 1, · · · ,R. We used the R
packages copula and glmer (also lme4) to implement the simulations.
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Table 4: Bias estimates, with their standard errors (SEs), and corresponding mean
squared error (MSE), based on R = 1000 simulated datasets from the GCCRM with
GLLM margins (4.3).

Parameter
Bias SE MSE

Mis-specified Correct Mis-specified Correct Mis-specified Correct
β0 = 1 –0.680 0.000 0.049 0.025 0.465 0.001
β1 = −1 2.003 –0.016 0.039 0.013 4.014 0.0004
α = 2 0.333 0.081 0.118 0.013 0.125 0.007

σ2
B = 0.02 0.059 0.002 0.012 0.009 0.004 0.0001
ρ = 0.2 — 0.006 — 0.014 — 0.0002

Table 4 displays the bias estimates along with their SEs, and corresponding MSEs.
Note that unlike the MLEs from the correct model, which are fairly unbiased, the ‘naive’
estimates suffer from severe bias with also larger MSEs. The large bias exhibited even
by the ‘naively’ estimated fixed effects β̂m,0 and β̂m,1 can be explained by noting that
these fixed effects are not the marginal effects because we have a non-identity link
function, and hence, the marginal mean model is likewise mis-specified whenever the
conditional dependence structure is mis-specified. We also observed similar behaviour
for different values of σ2

B and ρ as in the simulation study 2.
As in simulation studies 1 and 2, our results clearly suggest the importance of

accounting for conditional dependence among the longitudinal observations from sub-
jects. Failure to do so is likely to yield severe bias in estimates and incorrect SEs, thus
leading to possibly misleading conclusions.

5 Applications

5.1 Bolus count data

We now illustrate the GCCRM methodology on bolus count data, which have been
analyzed by Weiss (2005). This data is a study of 65 patients (n = 65) controlled
analgesia comparing two different dosing regimes. In particular, there are two groups,
a 1 milligram (mg) per dose group and a 2 mg per dose group. After each dose, there
is a lockout time where the patient may not administer more medication, noting that
the lockout time in the 2 mg dose group is twice as long as in the 1 mg dose group.
The number of doses is recorded for 12 consecutive (T = 12) 4-hour periods where the
lockout time allows for a maximum of 30 dosages in the 2 mg group and 60 dosages in
the 1 mg group. Note that there were no responses near the upper limit such that the
maximum count in each group for each four hour period was less than the theoretical
maximum number of dosages.
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Following Weiss (2005), we use the Poisson distribution to model the counts. It is
observed that the counts are higher for the 1 mg group as might be expected, although
the amount does not seem to be twice that in the 2 mg group. It seems that the counts
are decreasing over time, and there may be a bump up in counts at about t = 5 and
t = 10, and in particular for the 2 mg group in most cases (see Weiss, 2005 for more
details).

We fit a random intercept model to this data. Following Weiss (2005), for the fixed
effects, we keep a constant difference between groups and an unstructured mean for
the time trend, as the increases at times 5 and 10 are otherwise difficult to model. In
particular, we consider the following model:

Yit|Bi ∼ Poisson [λit(Bi)] , i = 1, ...,n; t = 1, ...,T, (5.1)

where log[λit(Bi)] = αt + α13xit + Bi, with xit = 1{1 mg group} and Bi
iid
∼ N(0, σ2

B). The
parameter α13 is the increase from 2 mg to the 1 mg group, and α j, ( j = 1, ...,T), is
the parameter at time j for the 2 mg group. Because the marginal GLMM (5.1) has
only a random intercept, we specify an AR(1) structure for the conditional normal
correlation matrix Ri of the GCCRM with GLMM conditional margins given by (5.1),
for Yi= (Yi1, · · · ,YiT)> to capture the time-varying marginal longitudinal correlations
between any longitudinal pair of observations Yit and Yit′ , for t < t′. We implemented
our analysis via the R package copula.

Table 5 provides the parameter estimates and corresponding standard errors based
on the GCCRM and naive method (Weiss, 2005) which ignores the possible conditional
dependence in the model. It is clear from Table 5 that conditional dependence among
the longitudinal observations from patients need to be accounted for in the analysis as
the estimated conditional normal correlation ρ̂ = ĉorr(Qit(bi),Qi,t+1(bi)) = 0.56 which is
statistically significant from zero and strong enough to impact the results of the analyses
based on GCCRM and naive method which assumes conditional independence. In
particular, the parameter α13 is different based on GCCRM and naive method in terms
of magnitude and sign. Also, there are differences in SEs of the estimates.

We can conclude that in the absence of a random slope of time in the marginal
GLMM for Yit, a naive analysis that ignores the conditional dependence among the lon-
gitudinal data yields marginal longitudinal correlations that are not time-dependence.
Consequently, a GCCRM with AR(1) specification for Ri, ∀i, avoids this and allows for
a time-varying marginal longitudinal correlation structure.

5.2 Serum creatinine data

We next illustrate the GCCRM methodology on data on serum creatinine, which are a
part of a larger dataset previously analyzed by Fieuws and Verbeke (2008). To predict
renal graft failure, Fieuws and Verbeke (2008) adopted a multivariate longitudinal
model using markers such as serum creatinine, urine proteinuria, mean of systolic
and diastolic blood pressure, and blood hematocrit level as predictors (see Fieuws and
Verbeke, 2008 for more details). Fieuws and Verbeke (2008) considered patients who
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Table 5: Longitudinal analysis of bolus count data based on a GCCRM with conditional
marginal GLMMs given by (5.1). Also included is the ‘naive’ analysis based on the
assumption of conditional independence of the longitudinal data.

Parameter
GCCRM Naive

Estimate SE Estimate SE
α1 2.09 0.011 2.00 0.054
α2 1.32 0.010 1.51 0.011
α3 1.34 0.012 1.63 0.055
α4 1.91 0.040 1.72 0.034
α5 1.98 0.052 1.88 0.059
α6 2.20 0.026 1.58 0.124
α7 1.18 0.035 1.40 0.019
α8 0.98 0.032 1.29 0.076
α9 1.49 0.005 1.28 0.038
α10 1.47 0.009 1.46 0.066
α11 1.36 0.012 1.32 0.104
α12 1.46 0.024 1.28 0.084
α13 –0.13 0.012 0.27 0.087
σ2

B 0.40 0.039 0.25 0.064
ρ 0.56 0.016 — —
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Figure 1: Histograms for serum creatinine with superimposed gamma density for
different time periods.
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received a kidney transplant and who were intensively monitored during the years
after the transplant. These patients underwent, between January 21, 1983, and August
16, 2000, a primary renal transplantation with a graft from a deceased or living donor in
the University Hospital Gasthuisberg at the Catholic University of Leuven in Belgium.

We considered serum creatinine as the outcome, measured on n = 1111 subjects
with different follow-up times over a 17-year period (i.e., 1983–2000). For convenience,
we divided the follow-up times into 4 based on quartiles of the follow-up times and
calculated the average of the observations (including the corresponding covariates) in
each of the T1 = · · · = Tn = 4 new revised follow-up times. Histograms of serum
creatinine at the revised follow-up times, shown in Figure 1, suggest the distribution
of serum creatinine is right-skewed.

Let Yit be the serum creatinine of patient i(= 1, · · · ,n) at follow-up time t(= 1, · · · ,Ti).
We assume the same conditional marginal GLMM for Yit as in (4.3):

Yit|Bi ∼ gamma
[
α,

1
α
µit(Bi)

]
, (5.2)
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Table 6: Longitudinal analysis of serum creatinine data based on a GCCRM with
conditional marginal GLMMs given by (5.2). Also included is the ‘naive’ analysis
based on the assumption of conditional independence of the longitudinal data.

Parameter
GCCRM Naive

Estimate SE Estimate SE
constant 0.5000 0.0130 0.4770 0.0440

sex –0.0790 0.0300 –0.0570 0.0120
BMI 0.0100 0.0160 0.0030 0.0010
SBP –0.0001 0.0050 –0.0002 0.0002
α 1.4980 0.0930 3.8500 1.9610
σ2

B 0.0070 0.0120 0.0170 0.1300
ρ 0.5000 0.0250 — —

where µit(Bi) = exp(x>itβ + Bi), with Bi
iid
∼ N(0, σ2

B). The vector xit of covariates consists
of sex (sexi), body mass index (BMIit), and systolic blood pressure (SBPit), which have
all been shown to be excellent predictors of a patient’s serum creatinine (Young, 2002).
Because the marginal GLMM (5.2) has only a random intercept, we specify an AR(1)
structure for the conditional normal correlation matrix Ri of the GCCRM with GLMM
conditional margins given by (5.2), for Yi = (Yi1, · · · ,YiTi)

> to capture the time-varying
marginal longitudinal correlations between any longitudinal pair of observations Yit
and Yit′ , for t < t′. We implemented our analysis via the R packages copula, lme4, and
glmer. Results are shown in Table 6.

It is clear from Table 6 that conditional dependence among the longitudinal observa-
tions from subjects needs to be accounted for in the analysis; the estimated conditional
normal correlation ρ̂ = ĉorr(Qit(bi),Qi,t+1(bi)) = 0.5 is statistically significant and strong
enough to impact the results of the analyses based on GCCRM and on the ‘naive’ as-
sumption of conditional independence. This can be seen in the differences in SEs of the
estimates: because GCCRM accounts for conditional dependence, thus adding another
source of variation to the analysis, the ‘naive’ analysis yielded possibly deflated SEs
— relative to those from GCCRM — for the regression coefficients corresponding to
the covariates sex, BMI and SBP. Computation of the exact marginal correlations in this
case is tedious; hence, one can use the first-order Taylor series-based approximation to

show that corr(Yit,Yit′) ≈
ασ2

B
ασ2

B+1
, t ≤ t′, which is 0.010 in our data analysis.

In the absence of a random slope of time in the marginal GLMM for Yit, a ‘naive’
analysis that ignores the conditional dependence among the longitudinal data yields
marginal longitudinal correlations that are not time-dependent; that is, it assumes
corr(Yit,Yit′) = corr(Yit,Yit′′) ≈ 0.061, ∀i, t, t′, t′′, an obviously inadequate model of the
correlation structure for temporally-ordered data. A GCCRM with AR(1) specification
for Ri, ∀i, avoids this and allows for a time-varying marginal longitudinal correlation
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structure.

6 Conclusion

Mixed models are widely used to analyze longitudinal data, especially in health and
medical research. In their conventional formulation as LMMs and GLMMs, a com-
monly indispensable assumption in settings involving longitudinal non-Gaussian data
is that the longitudinal observations from subjects are conditionally independent, given
subject-specific random effects. Although conventional Gaussian LMMs are able to
easily incorporate conditional dependence of longitudinal observations, they require
that the data are, or some transformation of them is, Gaussian, an admittedly serious
limitation in a wide variety of practical applications.

In this paper, we introduced the class of GCCRMs as flexible alternatives to con-
ventional LMMs and GLMMs. The proposed GCCRM is different from the GCMRM
(Masarotto and Varin, 2012) and GCMM (Wu and de Leon, 2014). First, unlike GCM-
RMs, which model population-averaged effects of covariates, GCCRMs are subject-
specific models that account for subject-specific heterogeneity; indeed, GCCRMs are
GCMRMs rendered conditional by conditioning GCMRMs on subject-specific random
effects. Second, GCCRMs consider only a single non-Gaussian outcome while Wu
and de Leon’s (2014) GCMMs involve multiple (e.g., mixed binary and continuous)
non-Gaussian outcomes in a cluster (e.g., longitudinal) setting. As such, GCCRMs
need only to account for conditional dependence of the longitudinal observations via
the Gaussian copula; GCMMs, on the other hand, incorporate conditional dependence
between only the outcomes via the Gaussian copula but not among the repeat (i.e.,
longitudinal) observations, which are still assumed to be conditionally independent.

One particularly attractive property of GCCRMs is that they extend conventional
LMMs and GLMMs in a conveniently natural way that reduces to conventional LMMs,
when the data are Gaussian, and to conventional GLMMs, when conditional indepen-
dence is assumed. Likelihood analysis of GCCRMs can also be implemented using
existing software and statistical packages.

We evaluated the finite-sample performance of MLEs for GCCRM empirically via
simulations vis-à-vis the ‘naive’ likelihood analysis that incorrectly assumes condition-
ally independent longitudinal data. Our results showed that the ‘naive’ analysis tends
to yield estimates with possibly severe bias and incorrect SEs. Finally, we illustrated
the proposed methodology on two datasets: bolus count data on patients’ controlled
analgesia comparing two different dosing regimes (Weiss, 2005), and another data on
serum creatinine from a study on renal graft failure (Fieuws and Verbeke, 2008). We
concluded that ignoring conditional dependence of longitudinal data may result in
wrong conclusions and inferences from tests and confidence intervals.
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