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Abstract

Conventional sampling theory is widely used in environmental and health hazard assess-
ment. However, spatial sampling techniques are among the most efficient methods when
sampling units are spatially correlated. Spatial sampling has been introduced and used for
population mean estimation. In addition, few works have also been focused for the popu-
lation proportion estimation. However, in many health-related data applications, we are
interested to also know the proportion of non-rare specific health condition (e.g. asthma)
or rate of rare specific health condition (e.g. cancer) in each small area rather than over-
all population to inform public and policy-makers to focus on areas which are most in
need. In this paper, we develop design-based and model-based approaches for overall and
area-specific proportion and rate estimation. In particular, we expand dependent unit
sequential technique method on model-assisted (ranked set sampling) and model-based
(small area estimation) approaches which are more efficient than the sampling methods
originated from simple random sampling. We evaluate the performance of proposed ap-
proaches using stimulation studies and also by a real data application on teen birth rate
in Georgia, USA.

Keywords: Dependent Unit Sequential Technique, Proportion/Rate Estimation, Ranked
Set Sampling, Small Area Estimation, Spatial Data

1. Introduction

Collecting observations in a two-dimensional framework is the main aim of spatial
sampling and has been applied to many disciplines such as soil, mining and health. Two
common strategies for spatial sampling are design-based and model-based which differ in
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their elements of randomness [1]. More precisely, in the design-based approach, the only
source of randomness comes from selecting locations randomly, where at a given location
the value of the variable of interest is assumed to be fixed, but unknown, whereas in
the model-based approach each location is not associated with one fixed value, however,
with different possible values, each with a defined probability of occurring, thus forming
a random variable. Design-based and model-based approaches have been widely used for
the population mean estimation of spatially correlated data. In below, we provide more
details on the existing approaches for the population mean estimation.

Design-based sampling is generally used for tackling ‘how much’ questions and should
be used for estimating global properties of the (realized) population of values. Broadly
speaking, in the case of a discrete population, the target of inference is a global property
such as the population mean, say,

(1/N)
N∑
i=1

z (si), (1)

where N is the number of members of the population, and si is the location of i-th area.
If z (si) is quantity value of interest at location i, then (1) is the population mean of some
specified attribute. Fundamentally, individual z (si) could be the target of inference, how-
ever, because design-based estimators disregard most of the information that is available
on where the samples are located in the study area, in practice this is either not possible
or lead to estimators with poor properties [2]. So, this approach should not be used for the
purpose of constructing maps and estimating individual values. All design-based sampling
techniques such as systematic sampling, stratified random sampling, cluster sampling and
two-step random sampling originate from simple random sampling (SRS) and can only be
fully understood with proper knowledge of it [3].

An intuitively simple estimator in the problem of estimating (1) (which we now denote
Z̄) is given by:

(1/n)
n∑
i=1

z (si) = z̄, (2)

where z (s1) , . . . , z (sn) denote the values in the sample and the error variance of z̄ as an
estimator of Z̄ with finite population correction f = n/N is

1− f
n

N

N − 1

σ2 − 2
N (N − 1)

∑
j

∑
i

j<i

Cov [z (sj) , z (si)]

 , (3)
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in which σ2 is the population variance and the second term inside the square brackets
measures the average covariance between all pairs of individuals in the population [2].
The result (3) is based on taking expectations both over the positioning of the randomized
sample points and over the distribution of the values {Z (si)} which have a constant mean
(say, µ) and spatial covariance that depends only on distance separation and possibly di-
rection. The estimator (2) can also be used for estimating the proportion of the population
when z (si) is 0 or 1.

Generally, there is a probabilistic guarantee that each measured observation in a SRS
can be considered as a representative of the population. All above mentioned design-based
sampling techniques have been developed to provide a good representation of the popu-
lation. However, another goal in most data collection settings is to minimize the costs
associated with obtaining the data. Ranked set sampling (RSS) has been used as a design-
based approach for population mean estimation of spatially correlated data. The RSS
introduced by [4] in a non-spatial context (and frequently used in spatial analysis), is a
relatively recent development that addresses both of these issues. It uses additional infor-
mation from the population to provide more structure to the data collection process and
minimizes the number of measured observations required to achieve the desired precision
in making inferences.

To obtain an RSS of n observations from a population, we proceed as follows: first m2

sample units are drawn at random from the population. These units are then randomly
assigned to m sets, each of size m. The m units in each set are ranked from least to
greatest on the variable of study without making actual measurement on the units. Let
Z[r] (r = 1, . . . ,m) denote the r-th judgment order statistic in a set of size m. The lowest
ranked item, Z[1], is selected for quantification from the first set, Z[2] is selected from the
second set, and so on until the highest ranked item, Z[m], is selected from the m-th set.
In general, in the r-th set the observation having the r-th judgment rank is quantified
for r = 1, . . . ,m. The entire process is repeated independently K times (called cycles) to
obtain a total ranked set sample of size mK. Thus, to obtain a ranked set sample of size
n = mK, a total of m2K units must be randomly selected, but only mK units need to
be quantified. The other mK (m− 1) units taken for ranking purposes provide additional
information which leads to the improvement of population parameter estimation.

Now let Z[r]k (r = 1, . . . ,m; k = 1, . . . ,K) denote the quantified r-th judgment order
statistic in the k-th cycle. The RSS estimator of the population mean µ is the average of
the RSS observations; that is,

µ̂ = 1
mK

m∑
r=1

K∑
k=1

Z[r]k. (4)

On the other hands, model-based approach is of great importance for tackling ‘where’
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questions: identifying where in the population threshold values of an attribute are exceeded
or where the extreme values are located. This strategy should be used for estimating the
parameters of the underlying stochastic model (such as the model mean, say, µ) but not
quantities like Z̄ (which now represents the mean of just one realization) unless the model
is known [2]. In this case, since Z̄ is itself a random variable, it is usual to speak of
predicting its value which depends on model properties and is optimal with respect to the
selected model. Therefore, model-based approach could also be used for predicting values
at particular locations and mapping.

Considering model-based approach, two kinds of mean estimation problems have been
arisen: the mean of the realized values, Z̄, and the mean of the underlying model, µ. The
best linear unbiased predictor (BLUP) of Z̄ is given by

(1/N)
 n∑
i=1

z (si) +
N∑

i=n+1
ẑ (si)

 (5)

where ẑ (si) is the BLUP of an unsampled z (si), i = n + 1, . . . , N , and z (s1) , . . . , z (sn)
are sample units and the realization of a stochastic model with mean µ (·) and variance-
covariance matrix Σ. The BLUP of the attribute value at location s0, which is not included
in the sample, is of the form

ẑ (s0) = µ (s0) + c>Σ−1 (z− µ) , (6)

where c = (Cov [z (s0) , z (s1)] , . . . , Cov [z (s0) , z (sn)])>, z = (z (s1) , . . . , z (sn))>, µ =
(µ (s1) , . . . , µ (sn))> and µ (s0) is the mean evaluated at location s0. The second term in
(6) identifies the simple kriging weights, c>Σ−1, assigned to each datapoint, that yield
the BLUP of the unknown attribute value. By contrast, in the design-based strategy
(1/n)∑n

i=1 z (si) is used as an estimation of the population mean which clearly leads to
high variation in particular if the sample size n is small compared to the population size.

What emerges from the literature is that design-based inference may be more robust
than model-based inference, but that an appropriate model-based analysis may perform
substantially better, provided that the model-based inferences are consistent with the
target population [5]. [6] discussed the differences and the choice between the design-based
and model-based approaches to sampling. The average suitability of design-based and
model-based methods was illustrated in Figure 1 [7]. [8] studied that, in general, design-
based method ignores the spatial variation of a population and model-based method ignores
the sampling design, while in empirical studies, both of the spatial variation and sampling
design influence the inference about the model which may lead to wrong conclusions,
if ignored. They proposed to incorporate the population, sample, and inference which
constitute a so-called spatial statistic trinity (SST) as a novel approach for integrating
spatial autocorrelation and spatial stratified heterogeneity into design-based and model-

4



Figure 1: Average relative suitability of the design-based and model-based approaches to sampling,
as a function of the spatial resolution at which estimates are required [7].

based framework.
In many health-related data applications, our interest is to estimate population pro-

portion of non-rare specific health condition (e.g. asthma) or estimate population rate of
rare specific health condition (e.g. cancer). In particular, [9] used the RSS approach to
estimate the population proportion. However, public and policy-makers are also interested
to know which (small) areas are more at risk for planning and resource allocation. It also
appears that there is no literature on spatial sampling of population rate estimate and also
for (small) areas. In this paper, our aim is to address the above issues.

The rest of the paper is organized as follows. In Section 2, we explain design-based
and model-assisted approaches, and introduce a model-based approach for the estimation
of population proportion and also for small areas. In Section 3, we introduce design-based
and model-based approaches for the estimation of population rate and also for small areas.
Performance of the proposed approaches is evaluated through stimulation studies (Section
4). We also employ our proposed approach in estimating population rate and also at small
areas for the teen birth data in Georgia, USA (Section 5). Finally, concluding remarks are
given in Section 6. Computer codes are provided as supplementary materials.

2. Proportion Estimation

When the variable of interest is binary, for instance, diagnosis of asthma, there are
only two possible outcomes, present or absent of the asthma where the population mean
is equal to the population proportion, say p. In such applications, administrative data
initiatives on a health condition may provide unprecedented information about some areas

5



of interest, e.g., the number of people diagnosed with asthma in small geographic areas.
By making use of some auxiliary information, one can help to improve the precision of
the proportion estimate [10]. Spatial dependency among the adjacent units and covariates
related to the study binary variable are two important pieces of auxiliary information in
making a more efficient statistical inference. In this section, first assuming the proportions
of the areal units are known, we estimate the population proportion using the proportions
of the areal units in design-based and model-assisted sampling frameworks. Then, in the
second part, a more practical problem is developed in a model-based framework where
the proportions in the areal units are assumed to be unknown. Subsection 2.1 presents
a design-based strategy based on dependent unit sequential technique (DUST) to select
more informative samples than the SRS. Subsection 2.2 describes a model-assisted ranking
strategy presented by [9] for estimating the proportions of areal units. These proportion
estimates are then used to estimate the population proportion. Therefore, for any small
area containing respondents to a sample survey, direct estimator for a local area uses
sample observations which only come from the sample units in the small area. However,
these direct small area estimators typically have low precision due to the fact that the
sample sizes in the small areas are disproportionate to the corresponding population. In
Subsection 2.3, we develop a model-based approach to estimate the population proportion
and also proportion estimate for each small area.

2.1. Design-Based Strategy: Dependent Unit Sequential Technique (DUST)
Spatial dependency among the adjacent areas makes the neighboring areas to be homo-

geneous. In presence of spatial dependency, near objects are usually more correlated than
distant ones, and so, once a particular area is selected in a sample, selection of neighbor-
ing areas may not provide considerable information about the underlying population. A
spatial sampling method should consider the autocorrelations among the neighbors. This
can reduce the costs of surveys based on area sampling whilst maintaining the same level
of accuracy.

[10] suggested DUST as a GIS-based sample selection procedure for selection of areal
units from spatially correlated population. In this technique, the spatial correlation based
on auxiliary character has been used to assign the probability of selection to each area in
the population, and so, inclusion probabilities vary at each step. The first area (unit) is
selected randomly and the subsequent units are selected sequentially by assigning weights
in such a manner that units nearer to earlier selected units in the sample get less probability
of selection as compared to the units which are far away from earlier selected unit(s). This
sampling procedure is characterized by variable inclusion probabilities at each step. In
summary, the DUST works along three steps:

Step I. The spatial autocorrelation γ (which reflects intra-sample correlation, that is,
a measure of similarity -correlation- between nearby observations) is estimated at various
spatial lags, γ1, . . . , γl, l ≥ 1, where γl shows the spatial autocorrelation at the lag l.
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Table 1: Selection weights for individual sample units.

Sample unit number Weights
1 1
2

(
1− γd12

1

)
3

(
1− γd13

1

) (
1− γd23

1

)
... ...
n

∏n−1
i=1

(
1− γdin

1

)

Let U = {1, 2, . . . ,A} be the set of all areal units in the population. If Pi and Pj are
respectively the proportions of the binary variable of interest z at i-th and j-th areal
units, then the spatial autocorrelation γ is given by Moran’s I statistic [11] as

γ =

∑∑
ωij

(
Pi − P̄

) (
Pj − P̄

)
i 6=j=1,...,A

/∑∑
ωij

i 6=j=1,...,A

A∑
i=1

(
Pi − P̄

)2
/
A

,

where P̄ is the population proportion, and ωij are the weights such that ωij = 1, if i and j
are neighbors (e.g., common border) and ωij = 0, otherwise. The spatial autocorrelation
between immediate neighbors is shown by γ1. In order to compute the higher order spatial
autocorrelations we assume, for simplicity, γl = γl with l ≥ 1 the lag order.

Step II. Stationarity of the various order correlations is tested usually by the moving
sampling techniques [12]. In case not all γls are stationary through space one needs to
identify zones where they are at least locally stationary so that each zone can be treated
as described in the third step.

Step III. The spatial autocorrelation is employed to assign drawing weights to the
individual sample units in the following way: If γl = 0, we locate samples randomly as in
SRS. If not, the sample is drawn sequentially by assigning a weight varying at each step
according to the scheme presented in Table 1, where dij is the distance between the i-th
and the j-th areal unit measured in terms of physical distance between centroids or in
terms of the order of neighborhood.

Therefore, any sampling unit has a probability of being drawn which increases as the
distance from the areas already sampled increases. It is clear that after a certain distance
spatial autocorrelation vanishes, and as a consequence 1 − γ tends to 1 for each unit
which means that the criterion for choice is simply randomness. More precisely, in zones
displaying a positive spatial autocorrelation, we can save sampling units by scattering
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them. In contrast, zones where the spatial autocorrelation is negative need to be sampled
more intensely due to the higher irregularity with which data are distributed over space.

2.2. Model-Assisted Strategy: Ranked Set Sampling (RSS)
In addition to spatial dependency, the auxiliary information may also be an easy-to-

rank covariate, related to the variable of interest, which helps one ranks a reasonably large
set of sample units. Using a logistic regression to aid in the ranking of a binary variable
of interest, [9] showed that the estimation of population proportion from a balanced RSS
procedure, which features an equal allocation of order statistics in the sample, is at least
as efficient as the corresponding SRS estimation.

Let x denote a vector of explanatory variables. The binomial logistic regression model
has the form

logit (pi) = log
(

pi
1− pi

)
= x>i β, (7)

where pi is the probability of success at area i, “logit” denotes the logit function and βq×1
is the vector of regression coefficients with corresponding covariates xi. Let pr denote the
probability of success and xr denote the vector of explanatory variables for an area r in
a set of size m which selected using SRS (as stated by Chen et al. 9). Accordingly, the
estimated probability of success for this area based on a fitted logistic regression model is

p̂r =
exp

(
x>r β̂

)
1 + exp

(
x>r β̂

) , r = 1, . . . ,m. (8)

Then, the m sample units can be ranked according to their estimated probabilities of
success, p̂1, . . . , p̂m, and the RSS estimator for the population proportion p is

p̂RSS = 1
mK

m∑
r=1

K∑
k=1

Zh[r]k. (9)

However, in the spatially correlated data, it is well-known that if a particular area
is selected in the sample, the adjacent areas are not likely to provide any more relevant
additional information about the underlying population. An appropriate sampling design
for a spatial data is a sampling design which avoids the selection of such neighboring areas.
Such a spatial sampling design will be able to reduce the duplication of information which
partly contained in areas already sampled. It will also provide more efficient estimation
procedure by reducing sample size and survey cost without reducing the reliability of
estimators. One may suggest DUST instead of SRS and sample more intensely in the
zones where the spatial autocorrelation is negative due to the higher irregularity with
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which data are distributed over space. This procedure provides a more efficient estimator
for the population proportion in spatially correlated data. We evaluate the performance
of this approach in the simulation study.

2.3. Model-Based Strategy: Small Area Estimation (SAE)
In the case that the proportions in the areal units are unknown, direct small area

estimators lead to unacceptably large standard errors. This low precision making them
statistically unreliable which makes it necessary to find indirect or model based estimators
that decrease the standard error for sufficient statistical precision. Small Area Estima-
tion (SAE) models generally provide estimates with adequate precision with borrowing
strengths from other resources (e.g., previous surveys and administrative and census data
sets) where direct estimation from sample is statistically inadequate [13]. More precisely,
this can be done by using the variables of interest from related resources to increase the
“effective” sample size. These variables are brought into the estimation process through a
model (either implicit or explicit) that provides a link to related areas (domains) through
the use of supplementary information related to the variables of interest, such as recent
census counts and current administrative records. Therefore, some key areal units are se-
lected through the DUST to form a SAE model. In the context of binomial data, small area
methods have been developed using empirical Bayes (EB) and hierarchical Bayes (HB). In
this paper, we use the HB approach for the inference since it is straightforward, inferences
are “exact” and complex problems using the Markov chain Monte Carlo (MCMC) meth-
ods can be handled. Moreover, the HB method is preferred because the EB method may
not be feasible for complex models. Proportion for small area i is estimated through the
following logit-normal:

• Zi| Pi ∼ Bin (ni,Pi)

• θi = logit (Pi) = x>i β + νi, with νi
iid∼N (0, σ2

ν)

• β and σ2
ν are mutually independent with f (β) ∝ 1 and σ−2

ν ∼ Gamma (a, b),

where νi is an area-specific random effect and Zi = ∑ni
j=1 Zij, where Zij is a binary variable

for unit j at area i. We note that parameter Pi is the target of the estimation in this
study. One can easily show that:

• β |P , σ2
ν , z ∼ Nq

[
β∗, σ2

ν

(∑
i xix>i

)−1
]
; β∗ =

(∑
i xi>xi

)−1 (∑
i x>i θi

)
• σ2

ν |β,P , z ∼ Gamma
(
A
2 + a, 1

2
∑
i

(
θi − x>i β

)2
+ b

)
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• f (Pi |β, σ2
ν , z) ∝ H (Pi |β, σ2

ν )K (Pi), where K (Pi) = Pzi
i (1− Pi)ni−zi and

H
(
Pi
∣∣∣β, σ2

ν

)
∝ ∂θi
∂Pi

exp

−
(
θi − x>i β

)2

2σ2
ν

 . (10)

The hierarchical Bayes estimate of Pi and the posterior variance of Pi are obtained directly
from MCMC samples

{
P(k)

1 , . . . ,P(k)
m ,β(k), σ2(k)

ν

}d+D

k=d+1
generated from the joint posterior

f (P1, . . . ,Pm,β, σ2
ν |Z) as

P̂HBi ≈ 1
D

d+D∑
k=d+1

P(k)
i = P(·)

i , V ar
(
Pi
∣∣∣P̂i) ≈ 1

D − 1

d+D∑
k=d+1

(
P(k)
i − P

(·)
i

)2
(11)

[13].

3. Rate Estimation

In many applications, it is common to collect count data observed in spatial locations
assuming they have Poisson distribution. For instance, we are interested to know that
rate of a specific disease (e.g., lung cancer) at the provincial level and also for small health
regions. Our aim in this section is to estimate rate at the population level as well as small
area levels in spatially correlated data. In this section, we start assuming small area rates
are known. Then, we relax this assumption, similar to the population proportion estimate,
and study small area rate for our population study. First, assuming that small areas rates
are known, we estimate the population rate using the DUST and SRS approaches and
provide their variations through mean squared error (MSE).

To that end, two samples of size ` areas (out of A population areal units) are selected
from the population study using DUST and SRS. The set λ1, . . . , λ` is used to show the
rates in the areal units selected by DUST and the set λ′1, . . . , λ′` is used to show the rates
in the areal units selected by SRS. The population rate estimates based on DUST and
SRS are respectively denoted by λ̂ = ∑`

h=1 nhλh/
∑`
h=1 nh and λ̃ = ∑`

h=1 nhλ
′
h/
∑`
h=1 nh,

where nh shows the sample size of area h; noting that the areas selected by the DUST
method may not be the same areas selected by the SRS method.

In the following, a more practical problem is examined while the rates in the areal units
are assumed to be unknown. To that end, we consider three approaches: A SRS design is
used to estimate the population rate in the areas selected using the SRS (called SRS-SRS)
and the DUST (called DUST-SRS). The third approach is DUST-SAE which adopts a
SAE approach to estimate the areas selected using the DUST. To do the first approach, a
sample of size ` areal units is selected using the SRS. The rates of the selected areal units,
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denoted by λh, h = 1, . . . , `, are estimated using SRS which is given by λ̃h = zh/nh where
zh denotes the observed number of cases and nh is the number of people at risk in the h-th
area. The population rate is estimated as λ̃ = ∑`

h=1 nhλ̃h/
∑`
h=1 nh.

The second approach is similar to the first approach but we only select the areal units
using the DUST rather than the SRS. In the third approach, a sample of size ` areal units
is first selected using the DUST. Then, a conventional approach in SAE is used to estimate
the rate at each small area selected by the DUST. In particular, we estimate λi through
the following HB approach:

• Zi |λi
ind∼ P (niλi)

• ξi = log (λi)|β, σ2 iid∼N
(
x>i β, σ2

)
• β and σ2 are independent with f (β) ∝ 1 and σ−2 ∼ Gamma (a, b),

and,

• f (λi |β, σ2, z) ∝ λzi−1
i exp

{
−niλi − 1

2σ2

(
ξi − x>i β

)2
}

• β |λ, σ2, z ∼ Nq

[
β∗, σ2

(∑
i xix>i

)−1
]

• σ2 |λ,β, z ∼ Gamma
(
A
2 + a, 1

2
∑A
i=1

(
ξi − x>i β

)2
+ b

)
,

[14].

4. Simulation Study

4.1. Proportion estimation
In this subsection we illustrate the proposed approaches related to proportion esti-

mation numerically through a simulation study and compare the results with their SRS
counterparts. For demonstration purpose, we need to generate spatially correlated binary
data. Several authors have proposed different methods for generating correlated binary
data. [15] developed a copula method to generate spatial correlated binary data. Based on
their proposed method, spatially correlated binary variables Z (si) with E [Z (si)] = p (si)
and ρ [Z (si) , Z (sj)] = ρij can be generated through the following algorithm:

We assume that Z (si) are spatially correlated based on the spatial correlation of V (si).
Let (0, 10)×(0, 10) is the regular grid under study with A = 100 areas and a random set of
locations of size N = 3500 has been chosen to generate spatially correlated binary variables
Z (si) with E [Z (si)] = P , for P = 0.35 and 0.65. These locations have been presented
in Figure 2. The exponential correlation type ρ (‖h‖) = exp {−‖h‖ /ϕ} with ϕ = 3 was
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Algorithm 1 Generate spatially correlated binary data through a copula method
I. Generate normally distributed and spatially correlated V (si) with the cumulative
distribution function F (v (si)) and ρ [V (si) , V (sj)] = ρij,
II. Determine U (si) = F (V (si)),
III. Define Z (si) = I {U (si) < p (si)}.
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Figure 2: Sampling locations in each area under population study.

considered for V (si), which allows spatial correlation to vary freely from 0.01 to 0.99. V (si)
is generated on the selected locations with the mentioned correlation and mean β0 + β1xi,
where β0 = 1, β1 = 0.5 and xi ∼ N (0, 1). R = 5000 independent datasets (spatial binary
variable Z (si)) are generated by the simple transformation, Z (si) = I {F (V (si)) < P}.

In each simulation run, ` = 20 areal units are selected through the DUST method and
the estimation of population proportion is calculated. We also estimate the population
proportion using a SRS and with the same sample size as in the DUST (` = 20). We
observed that the spatial autocorrelation vanishes after the third lag as γ3 ≤ 0.001 which
means that beyond the third-order neighborhood any areal unit has the same probability
as in SRS. We refer P̂ and P̃ as an estimation of the proportion parameter P with the
DUST and the SRS designs, respectively. Table 2 shows that the estimate based on the
DUST is more efficient than the SRS design. The ratio of mean squared error (MSE) of the
DUST over the MSE of SRS (called RM) shows a reduction in MSE of the estimate based
on the DUST compared to its SRS counterpart. Another essential concept of geographical
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Table 2: Proportion estimation (and standard error) using SRS and DUST methods based on
R = 5000 simulations for different values of P assuming the small areas proportion are known;
RM is the ratio of MSE of DUST over the MSE of SRS.

P SRS DUST RM
0.35 0.358 (0.062) 0.350 (0.059) 0.8763
0.65 0.620 (0.061) 0.649 (0.054) 0.8508

Moran’s I 0.21 0.69
q-statistic 0.18 0.78

phenomena besides spatial autocorrelation (as a property of either the population or the
sample [8]) is spatial stratified heterogeneity (SSH). The SSH refers to the phenomena
that within strata are more similar than between strata which results in the within strata
variance is less than the between strata variance. [16] proposed a q-statistic ∈ [0, 1] for
measuring the degree of spatial stratified heterogeneity as

q = 1−
∑A
i=1 Niσ

2
i

Nσ2 ,

where N stands for the size of the population and σ2 stands for variance of the attribute.
In particular, q = 0 shows no spatial stratified heterogeneity and q = 1 indicates a fully
spatial stratified population. Therefore, q discloses the percent of the variance of an
attribute explained by the stratification. Table 2 also reports the measurements of both
Moran’s I and q values. The results confirm better performance of DUST method than
SRS since the q value indicates that 78% of the spatial variation in population has been
explained by the sample was taken by DUST. Moreover, Figure 3 shows the empirical
semi-variogram of the sampled data by DUST (left panel) and SRS (right panel) which
also shows the sampled data by DUST are more spatially correlated than the SRS sampled
data.

To evaluate the performance of the model-assisted RSS and compare with its SRS
counterpart, we generate two covariates x1 ∼ Ber (0.5) (e.g. gender; with 1 for male) and
x2 which is a random number from 1 to 4 (e.g. age-group: child, young, middle-aged and
elderly). Then two model-assisted ranking settings are considered: DUST-RSS and SRS-
RSS. To obtain a ranked set sample of size n = 360, the logistic regression model in (7) is
considered with two values 3 and 6 as the set size, m, which requires K = 120 and K = 60
cycles, respectively. The simulation results in Table 3 show that RSS design outperforms
its SRS counterpart in terms of bias and MSE for different value of proportion parameter
P and also different set size m.

To evaluate the performance of the model-based DUST-SAE and compare with its
DUST-SRS counterpart, we pursue two goals. The first goal is to estimate the population

13
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Figure 3: The empirical semi-variogram of the sampled data by DUST (left panel) and SRS (right
panel).

Table 3: Proportion estimation (and standard error) using SRS-RSS and DUST-RSS methods
based on R = 5000 simulations for different values of P and m.

m = 3 m = 6
P SRS-RSS DUST-RSS SRS-RSS DUST-RSS

0.35 0.355 (0.056) 0.350 (0.048) 0.354 (0.056) 0.350 (0.047)
0.65 0.671 (0.058) 0.651 (0.052) 0.668 (0.058) 0.650 (0.052)

proportion for the overall study using the DUST and SAE technique (DUST-SAE) and
compare the results with the direct estimate using the SRS (DUST-SRS). The second
goal is to assess the performance of DUST-SAE and DUST-SRS in estimating each areal
proportion.

To do the first goal, we assume that small areas proportions are unknown. We consider
a regular grid (0, 5) × (0, 5) with A = 25 small areas, and N = 20, 000 binary variables
are spatially generated all over the grid (0, 5) × (0, 5) which will fall into 25 small areas.
We also generate two covariates for the all population individuals: x1 ∼ Ber (0.5) and x2
as a random number from 1 to 4. Then, in each small area, we draw a sample of size
ceiling (0.05× ni) = d0.05× nie from the locations and assume that the values of Z (si)
are available only for these ni individuals, however, we have values of x>i = (xi1,xi2) for
i = 1, . . . , 25, as average values of x1 and x2 in the i-th small area and collect them in
matrix X25×2 = (x1,x2). Values of Z (si) are generated using algorithm 1 with E [V (si)] =
0.5x1 + 0.8x2 and V ar [V (si)] = 0.1. The true population proportion for 20,000 generated
data is P = 0.3001.
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` = 6 areas are selected using the DUST. Here, R = 5000 simulations are carried out.
First, we use the SRS for each selected area to estimate the proportion, and then use those
areas proportion estimates to calculate the population proportion (DUST-SRS). Second,
we use the SAE method to estimate the proportion for each selected area by the DUST.
In particular, based on the independence of the regression coefficients vector β = (β1, β2)>
and σ2

ν , we assume f (β) ∝ 1 and σ−2
ν ∼ Gamma (a, b) where a and b are chosen to reflect

vague prior information. In particular, we proceed the following steps for each selected
area with letting d = 0:

I. Draw P∗i from a uniform distribution on (0, 1),
II. Generate θ(d)

i ∼ N25
(
x>i β, σ2

ν

)
, and calculate

P(d)
i = logit−1

(
θ

(d)
i

)
= eθ

(d)
i

1 + eθ
(d)
i

,

III. Calculate

r
(
P(d)
i ,P∗i

)
= min

 K (P∗i )
K
(
P(d)
i

) , 1
 ,

IV. Select u from a uniform distribution on (0, 1) and let P(d+1)
i = P∗i if u ≤ r

(
P(d)
i ,P∗i

)
,

The above algorithm is repeated until D, (d = 1, ..., D), samples are obtained. A simple
estimate of the i-th areal proportion and its posterior variance can be calculated using (11).
The model was fitted using JAGS software interfaced to R through rjags package. We then
estimate the population proportion using ` = 6 selected areas proportion estimate (DUST-
SAE). The results of the DUST-SRS and DUST-SAE methods for R = 5000 simulations
are shown in Table 4. As it shows, the population proportion estimate using the SAE
method is unbiased with smaller standard error unlike the SRS method.

As the second goal for this particular simulation study, we now use the SAE and SRS to
estimate each area proportion. In the case of SAE technique, we follow the same procedure
as above (for selected areas) to estimate each area proportion. Similarly, we can estimate

Table 4: Model parameter estimates using the DUST-SAE method, and population proportion
estimate (and standard error) using the DUST-SAE and DUST-SRS methods.

DUST-SAE DUST-SRS
Parameter β1 β2 σ2

ν P P

Estimate 0.43 0.71 0.19 0.30 0.24
SE 0.02 0.02 0.04 0.02 0.11
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each area proportion using the SRS method. The results are shown in Figures 4 and
5. In particular, the boxplots of areal proportion estimates through the R simulations
are shown in Figure 4 for the both SRS and SAE methods. As shown in Figure 4, the
variations of areal proportions estimate for the SAE method are smaller than the SRS
method. In Figure 5, we present the boxplots of population proportion estimate for the
SAE and SRS and also true methods. As it is clear from this Figure, the population
proportion estimates using the SAE method resemble the true method unlike the SRS
method. We also provide the standard errors (SEs) of areal proportions using the SRS
and SAE methods (Figure 5). It shows that the SEs of areal proportion estimates using
the SAE method are consistently smaller than the SRS method. We also provide the
empirical mean squared prediction error (EMSPE) as (1/R)∑Ri=1

(
P̂i − Pi

)2
for the SAE

method and similarly (1/R)∑Ri=1

(
P̃i − Pi

)2
for the SRS (direct estimate). Figure 6 shows

boxplots of EMSPE for the both SAE and SRS methods and corresponding variances of
areal proportion estimates. Again, we see superiority of SAE method compared to the
SRS method in terms of MSPE of areal proportion estimates.
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Figure 4: Boxplots of areal proportion estimates using SRS and SAE methods. The horizontal
line in each area shows the true proportion.

16



DUST−SAE DUST−SRS True

0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0

Box plots

P
ro

p
o
rt

io
n

5 10 15 20 25

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8

Districts

S
E DUST−SAE

DUST−SRS

Figure 5: Left panel: Boxplots for the estimates of population proportions based on two approaches
(SRS and SAE) vs. true values. Right panel: Standard errors of areal proportion estimates based
on SRS and SAE methods.
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Figure 6: Left panel: Empirical mean squared prediction error of areal proportion estimates.
Right panel: Boxplots of EMSPE for SAE (MSPE.SAE) and SRS (MSPE.SRS) and corresponding
variances of the areal proportion estimates (V.DSAE and V.DSRS).

4.2. Rate Estimation
This subsection demonstrates the objectives of Section 3. A simple way to simulate

spatial correlated counts has already proposed by [17] through the algorithm 2 below.
For the simulation study on rate estimation, we consider a grid (0, 10) × (0, 10) with

A = 100 areas and the random set of locations of size N = 500 are considered (Figure
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Algorithm 2 Generate spatially correlated count data
I. Spatially correlated normals V (si) are generated (see the Algorithm 1),
II. V (s1) , . . . , V (sn) are transformed to lognormals exp {V (si)} for i = 1, 2, . . . , n,
III. Conditionally independent Zi ∼ Poisson (exp {V (si)}) are generated.
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Figure 7: Sampling locations of spatial count data.

7). To evaluate the performance of the DUST and SRS methods on population rate
estimate, we first assume that the areal rates are known. We follow the algorithm 2 to
generate spatially correlated count data Zi for area i (= 1, . . . ,A). We carry out R = 4000
simulations and consider two different values for population rate (0.019 and 0.022). The
results of population rate estimate using the SRS and DUST (based on ` = 15 selected
areas) methods are shown in Table 5. As you can see from Table 5, the DUST rate estimate
has less bias and MSE compared to the SRS rate estimate. Moreover, the measurements of
both Moran’s I and q values indicate better performance of DUST method than SRS since
the q value indicates that 70% of the spatial variation in population has been explained
by the sample was taken by DUST. Figure 8 shows the empirical semi-variogram of the
sampled data by DUST (left panel) and SRS (right panel) which also shows that the
sampled data by DUST are more spatially correlated than the SRS sampled data.

We now assume that the areal rates are unknown, and evaluate the performance of
three approaches: SRS-SRS, DUST-SRS, and DUST-SAE. Table 6 presents the results
of the SRS-SRS and DUST-SRS where ` = 15 areas are selected based on the DUST
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Table 5: Population rate estimates based on DUST and SRS methods.

MSE
λ SRS DUST SRS DUST

0.019 0.017 0.018 0.048 0.032
0.022 0.025 0.023 0.051 0.031

Moran’s I 0.17 0.62
q-statistic 0.15 0.70
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Figure 8: The empirical semi-variogram of the sampled data by DUST (left panel) and SRS (right
panel).

approach for two different values of true population rate.We also observe that, in the case
of areal rates are unknown, the population rate estimate using the DUST-SRS outperforms
the SRS-SRS in terms of bias and MSE.

We now evaluate the performance of the DUST-SRS and DUST-SAE methods in the
case of areal rates are unknown. In particular, for the SAE method, we consider the same
two covariates (binary, and a random number from 1 to 4 for the second covariate) as in the
proportion estimation simulation study (subsection 4.1). The results are shown in Table
7 and Figure 9. In Table 7, we have population rates estimates using the DUST-SRS and
DUST-SAE methods with also model parameter estimates. As expected, the DUST-SAE
outperforms the DUST-SRS in terms of bias and MSE, and also model parameters are
estimated well using the SAE technique. In Figure 9, we have boxplots of population rate
estimates using the DUST-SRS, DUST-SAE, and true methods which show the DUST-
SAE method resembles the true population rates very well unlike the DUST-SRS method.
In Figure 9, we also see that the standard errors of population rate estimates using the
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Table 6: Population rate estimates using the SRS-SRS and DUST-SRS approaches.

MSE
λ SRS-SRS DUST-SRS SRS-SRS DUST-SRS

0.020 0.023 0.022 0.062 0.045
0.032 0.026 0.036 0.067 0.050

DUST-SAE are consistently smaller than the corresponding values from the DUST-SRS
method. Figure 10 shows boxplots of EMSPE of areal rate estimates using the DUST-
SRS and DUSRT-SAE methods. It is clear from this Figure that the MSPE of areal rate
estimates for the DUST-SAE is consistently smaller than the DUST-SRS method. We also
provide boxplots of EMSPE and variances of areal rate estimates using the DUST-SRS
and DUST-SAE methods (Figure 10). It is also clear from the boxplots that the DUST-
SAE method is doing better than the DUST-SRS method in terms of MSPE of areal rate
estimate and corresponding variances.

5. Application: Teen Birth Rate Data

The teen birth rate (TBR) in the USA hit a high of 61.8 percent in 1991 and over the
past two decades USA teens have been far more likely to give birth than in any other indus-
trialized country in the world. For instance, USA teens are two and a half times as likely
to give births as compared to teens in Canada, around four times as likely as teens in Ger-
many or Norway, and almost 10 times as likely as teens in Switzerland [18]. In 2016, TBR
in the USA was 20.3 births for every 1000 females aged 15-19 and is substantially higher
than other western countries, although disparities exist between racial/ethnic groups and
geographic regions. However, limited information is available about teenage pregnancy
and childbearing specially in rural areas. Determining rate estimates of teen pregnancy
is important to design and implement prevention programs to reduce the TBR. Georgia
County Health Rankings data in 2018 contains TBR and county-level socio-demographic

Table 7: Population rate estimates using the DUST-SAE and DUST-SRS with corresponding
standard errors (SEs), and also model parameters estimate using the SAE method.

DUST-SAE DUST-SRS
Parameter β1 β2 σ2 λ λ

True 3 4 5 0.016 0.016
Estimate 3.26 3.91 5.27 0.017 0.025
SE 0.82 0.91 1.19 0.032 0.073
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Figure 9: Left panel: Boxplots of the average of areal rate estimates based on DUST-SAE, DUST-
SRS , and true values. Right panel: Standard errors of areal rate estimates based on DUST-SRS
and DUST-SAE methods.
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Figure 10: Left panel: Empirical mean squared prediction error (MSPE) of areal rate estimates
using the DUST-SRS and DUST-SAE methods. Right panel: Boxplots of EMSPE of areal rate
estimates using the DUST-SAE (MSPE.SAE) and DUST-SRS (MSPE.SRS) methods, and corre-
sponding variances of the areal rate estimates (V.DSAE and V.DSRS).

information for 159 counties. Georgia was chosen because it has one of the higher TBR in
the USA and had no missing data for key variables. Various individual, family and com-
munity characteristics have been previously linked to teen pregnancy, e.g., race/ethnicity,
community-level socio-economic status (SES), urban vs rural and single-parent household.
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Table 8: Overall TBR estimate and corresponding MSE based on SRS-SRS, DUST-SRS, and
DUST-SAE methods.

MSE
Observed SRS-SRS DUST-SRS DUST-SAE SRS-SRS DUST-SRS DUST-SAE

0.0306 0.048 0.038 0.031 0.12 0.08 0.03

The SES index (consists of percentages of unemployed and single parent households,
high school graduation rate, and median household income), the percentage of African-
American and the percentage of uninsured teens (with coefficients β1, β2 and β3, in order)
are included in the model. Since the locations of the events were not known, the centroid
of each district is considered as the location in demand for modeling. Table 8 demonstrates
the overall TBR estimate using the SRS-SRS, DUST-SRS, and DUST-SAE methods, and
corresponding MSE, note that ` = 15 areas are selected based on the DUST method. It
shows that the DUST-SAE method outperforms other methods in terms of point estimate
and corresponding MSE. Figure 11 provides the boxplots of district-level TBR estimate
for the SRS-SRS, DUST-SRS, and DUST-SAE methods which show that the DUST-SAE
method has smaller variation unlike the other methods. We also provide the standard
error of district-level TBR estimate where the DUST-SAE method has consistently smaller
standard errors compared to the SRS-SRS and DUST-SRS methods. Model parameters
estimate based on the SAE method is provided in Table 9. The results are also supported
by the literature where higher SES results in lower TBR, and higher African-American and
uninsured teens result in higher TBR, and these contributions are statistically significant.

Table 9: Model parameters estimate and corresponding standard error for the TBR data based
on the SAE method.

Parameter β0 β1 β2 β3 σ2

Estimate 1.02 -0.35 1.9 1.6 1.05
SE 0.15 0.03 0.04 0.07 0.08

6. Conclusion

In this paper, we have developed efficient estimations for the population proportion
and rate when the variable of study is spatially correlated. In particular, in the context of
spatial statistic trinity (SST) [8], our “population” is a spatially correlated population, our
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Figure 11: Left panel: Boxplots of the average of district-level TBR estimate based on SRS-SRS,
DUST-SRS, and DUST-SAE methods. Right panel: Standard errors of district-level TBR estimate
based on SRS-SRS, DUST-SRS, and DUST-SAE methods.

“sampling” is a DUST approach, and our “estimator/predictor” is small area estimation
technique. In above set-up, our approach outperforms its counterparts.

The literature for proportion estimate on spatially correlated binary data was mainly
focused on the population level assuming area-level proportion is known. However, some-
times public and policy-makers need to also know proportion estimate of certain conditions
(e.g., asthma) at area-level to identify areas which are more at risk for resource allocation.
To that end, we have developed two approaches (DUST-RSS and DUST-SAE) which were
more efficient than the SRS-SRS method. We also showed that the DUST-SAE method
is the best one for population proportion estimate when area-level proportions are not
known.

To the best of our knowledge, we could not find any literature on rate estimation
(overall or area-level) for spatially correlated count data. This design is very useful when
our interest is to know rate estimate of rare conditions (e.g., cancer) at area-level to help
policy-makers for resource allocation and possible interventions and prevention. To that
end, we have developed novel techniques for the overall rate estimate and also for area-level
rate estimate. We have shown that the proposed DUST-SRS and DUST-SAE methods
are more efficient than the SRS-SRS method, and in particular the DUST-SAE method is
the best one for population rate estimate when area-level rates are not known.

The proposed approaches for the proportion and rate estimates have been evaluated
using simulation studies. We have also employed our rate estimation approach to the teen
birth rate dataset in Georgia, USA.
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Supplementary materials

Supplementary materials contain R codes and corresponding “readme” files for the
simulations and real data application conducted in this paper.
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