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A.1 Technical results and proofs
Following Jiang et al. (2002) and Das, Jiang and Rao (2004), we consider a sequence

of subsets, Ψm ⊂ Ψ, where Ψ is the natural parameter space for ψ, and Ψm is a compact
subset that lies strictly in Ψo, the interior of Ψ, and approaches Ψ as m → ∞ in the
sense that Ψm ⊂ Ψm+1 for any m ≥ 1, and any point in Ψo will be covered by Ψm

for sufficiently large m. For example, for the Fay-Herriot model, the parameter vector
is ψ = (β′, A)′, whose natural parameter space is Ψ = {ψ : β ∈ Rp, A ≥ 0}, where
Rp is the p-dimensional Euclidean space. A choice of Ψm may be Ψm = {ψ : |β| ≤
C(logm)L, c1(logm)−L ≤ A ≤ c2(logm)L}, where C,L, c1, c2 are any fixed positive
constants. Let ψ̂o be the original estimator of ψ. A truncated estimator (e.g., Das et al.
2004) is defined as ψ̂ = ψ̂o if ψ̂o ∈ Ψm, and ψ̂ = ψ∗ otherwise, where ψ∗ is a known vector
that belongs to Ψm. Note that, if the true ψ ∈ Ψo and ψ̂o is a consistent estimator, then
we have with probability tending to one that ψ̂ = ψ̂o; in other words, asymptotically, the
truncated estimator is equal to the original estimator. Also, since the constants C,L, c2 can
be chosen arbitrarily large, and c1 arbitrarily close to 0, in practice the truncation does not
change the value of the estimator.

1. Notations and a lemma. We first state a lemma that plays a key role in verifying
a key assumption of Theorem 1. The lemma is regarding an asymptotic expansion of an
estimator that is a root to an estimating equation. Expansion of this type has a well-traveled
line in the literature, for example, in the context of maximum likelihood estimation (e.g.,
Cox and Hinkley 1973, ch.9, Pfanzagl 1980, Das et al. 2004, and Jiang 2010, ch. 4). The
proof of the lemma is deferred to an online manuscript in arxiv (Jiang and Torabi 2019).

Consider an objective function of the following form, l(ψ) =
∑m

t=1 lt(ψ, zt), where
zt, 1 ≤ t ≤ m are independent random vectors. Define Jψ = (∂/∂ψ)l(ψ), Hψ =
Eψ{(∂2/∂ψ∂ψ′)l(ψ)}, Dψ = (∂2/∂ψ∂ψ′)l(ψ) − Hψ, qj,ψ = (∂3/∂ψ∂ψ′∂ψj)l(ψ), where
ψj is the jth component of ψ, and Qj,ψ = Eψ(qj,ψ). Here, Eψ and Pψ mean expectation
and probability, respectively, under the distribution with ψ being the true parameter vector.
Let g(ψ) = ∂l/∂ψ =

∑m
t=1 gt(ψ, zt) be an estimating function, where gt(ψ, zt) = ∂lt/∂ψ.

The estimator, ψ̂, is a root to the estimating equation g(ψ) = 0.
It should be noted that, in asymptotic analysis of mixed effects models (e.g., Miller
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1977, Jiang 1996), various notations such as theX andD in Section 4.2, and those involved
in (A.3) below, depend on the sample sizes, which are (much) more complicated than in the
i.i.d. case. For example, in the case of Fay-Herriot model (Section 4.1), the sample size is
determined bym; in the case of mixed logistic model (Section 4.3), the sample sizes depend
not only on m but also on ni, 1 ≤ i ≤ m. However, following the standard notational
treatment as in the above references, the dependency on the sample size is suppressed from
the notation. So, for example, we will write X instead of Xm in Section 4.2. The same
simplification also applies to the notations involved in (A.3) below and elsewhere.

Lemma A.1. Suppose that (i) lt is four-times continuously differentiable with respect
to ψ, 1 ≤ t ≤ m; (ii) there is a constant 0 < δ < 1/24 such that

lim inf
m→∞

mδ−1 inf
ψ∈Ψm

λmin(Hψ) > 0; (A.1)

(iii) there is M ≥ 1 such that when m ≥ M we have Sm,ψ = {ψ̃ : |ψ̃ − ψ| ≤ m4δ−1/2} ⊂
Ψo, the interior of Ψ, for all ψ ∈ Ψm; (iv) Eψ{(∂/∂ψ)lt(ψ, zt)} = 0, 1 ≤ t ≤ m and there
is a constant b ≥ 2 such that the bth moments of the following are uniformly bounded for
m ≥M , ψ ∈ Ψm, 1 ≤ t ≤ m, and 1 ≤ j, k, l, q ≤ s:

m−δ
∣∣∣∣ ∂∂ψj lt(ψ, zt)

∣∣∣∣ ,m−δ ∣∣∣∣ ∂2

∂ψj∂ψk
lt(ψ, zt)

∣∣∣∣ ,m−δ ∣∣∣∣ ∂3

∂ψj∂ψk∂ψl
lt(ψ, zt)

∣∣∣∣ ,
m−δ sup

ψ̃∈Sm,ψ

∣∣∣∣ ∂4

∂ψj∂ψk∂ψl∂ψq
lt(ψ̃, zt)

∣∣∣∣ , (A.2)

Then, there is N ≥ 1 such that the following holds for m ≥ N :
(I) for every ψ ∈ Ψm there is a ψ̂ ∈ Ψm and event set Bm,ψ such that on Bm,ψ we have
(∂/∂ψ)l(ψ̂) = 0 and |ψ̂ − ψ| ≤ c1m

3δ−1/2, where c1 is a constant not depending on ψ;
(II) Pψ(Bc

m,ψ) ≤ c2m
−bδ, where c2 is a constant not depending on ψ;

(III) on Bm,ψ, the following asymptotic expansion holds for m ≥M :

ψ̂ − ψ = −H−1
ψ Jψ +H−1

ψ DψH
−1
ψ Jψ −

1

2
H−1
ψ [J ′ψH

−1
ψ Qj,ψH

−1
ψ Jψ]1≤j≤s +R, (A.3)

where |R| ≤ m12δ−3/2u = o(m−1)u and E(ub/3) is uniformly bounded for ψ ∈ Ψm.
To see the orders of the terms in the expansion (A.3), consider, for example, the Fay-
Herriot model. Then, under regularity conditions, we have Jψ = O(m1/2), Hψ = O(m),
Dψ = O(m1/2) and Qj,ψ = O(m) (note that here ψ stands for the true parameter vector).
It follows that the leading term on the right side of (A.3) is O(m−1/2), the nest two terms
are both O(m−1), and R is o(m−1).

More notation: Let yi denote the vector of observations from the ith small area, i =
1, . . . ,m. The mixed effect of interest is θ = θi, which is a characteristic of interest
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associated with the ith small area. For example, under the Fay-Herriot model, yi is the
direct survey estimator from the ith small area, and θi is the small area mean, which can
be expressed as θi = x′iβ + vi. Under the mixed logistic model, yi = (yij)1≤j≤ni , where
yij, 1 ≤ j ≤ ni are binary outcomes sampled from the ith small area, and θi = pi, which is
a conditional probability associated with the ith area.

Suppose that, when the true ψ is known, the predictor of θi can be expressed as

θ̃i = h0(yi, ψ) (A.4)

for some function h0(·, ·). Assumption B0 below implies that the conditional moments,
hj(y, ψ) = E(θji |y), j = 1, 2 involved in (2) have similar expressions:

hj(y, ψ) = hj(yi, ψ), j = 1, 2 (A.5)

for some functions hj(·, ·), j = 1, 2 [because E(θji |y) = E(θji |yi) (e.g., Shao 2003, p. 41)].
Strictly speaking, the functions hj(·), j = 0, 1, 2 also depend on i. But, because we

are considering the MSPE of θ̂i for a fixed i, the dependency of i is suppressed from the
notation (e.g., h0 instead of hi0). Likewise, O’s and o’s that appear in this paper, such
as those in Theorems 1–4 and Theorem A.1 below, may depend on i, and therefore non-
uniform across different i’s. This is standard in the SAE literature (e.g., Rao and Molina
2015, Jiang 2017, ch. 4).

Sometimes, instead of considering yt directly, we consider zt = yt − E(yt), 1 ≤ t ≤
m, where E(yt) is the true expectation of yt. Of course, zt is unobserved, but this does
not affect our theoretical arguments. In such a case, the right sides of (A.4), (A.5) will
be written as hj(zi, ψ), j = 0, 1, 2, respectively, for (slightly) different functions hj, j =
0, 1, 2. The theory below will be developed under the notation zt, which includes the case
zt = yt and the case zt = yt − E(yt).

It should be noted that an objective function in Lemma A.1 does not always exist; nev-
ertheless, the estimating function, hence the estimating equation, exists more widely (see
Section A.2.1 of Jiang and Torabi 2019). What is a key to our proof is an asymptotic expan-
sion like (A.3), whose derivation can be done via the solution to an estimating equation.
The objective function is only used in the first half of Lemma A.1 [i.e., (I) and (II)] to
ensure the existence of a solution to an estimating equation; however, if a solution to the
estimating equation, such as (A.6) below, is known to exist, one does not need an objective
function to obtain the asymptotic expansion.

Sometimes, the estimating function may not be expressed as sum of gt, which only
depends on zt; an additional term, ∆(ψ, z), is involved, where z = (zt)1≤t≤m, so that the
estimating equation can be expressed as

m∑
t=1

gt(ψ, zt) + ∆(ψ, z) = 0 (A.6)
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(again, see Section A.2.1 of Jiang and Torabi 2019). When dealing directly with the es-
timating function, the previous notation Hψ and Qj,ψ are now extended, with ∂lt/∂ψ re-
placed by gt(ψ, zt). Note that, in case the objective function exists, we have ∆(ψ, z) = 0.

Define H̄ψ = m−1Hψ, Q̄j,ψ = m−1Qj,ψ, Dt(ψ, zt) = ∂2lt/∂ψ∂ψ
′ − Eψ(∂2lt/∂ψ∂ψ

′),
pj(zi, ψ) = ∂hj/∂ψ, j = 0, 1, d1(zi, ψ) = ∂h2/∂ψ − 2h0(∂h1/∂ψ), and d2(zi, ψ) =
∂2h2/∂ψ∂ψ

′ − 2h0(∂2h1/∂ψ∂ψ
′) [see (A.4), (A.5) for the definitions of hj, j = 0, 1, 2].

The theorem below shows that, when the objective function exists, A2 holds with

q(ψ) = q1(ψ)− q2(ψ) +
1

2
{q3(ψ)− q4(ψ)}+ 2q5(ψ), (A.7)

where q1(ψ) = Eψ{φ1,i(zi, ψ)} and qj(ψ) = m−1
∑m

t=1 Eψ{φj,t(zi, zt, ψ)}, j = 2, 3, 4, 5
with φ1,i(zi, ψ) = d1(zi, ψ)′H̄−1

ψ gi(ψ, zi),

φ2,t(zi, zt, ψ) = d1(zi, ψ)′H̄−1
ψ Dt(ψ, zt)H̄

−1
ψ gt(ψ, zt),

φ3,t(zi, zt, ψ) = d1(zi, ψ)′H̄−1
ψ [gt(ψ, zt)

′H̄−1
ψ Q̄j,ψH̄

−1
ψ gt(ψ, zt)]1≤j≤s,

φ4,t(zi, zt, ψ) = gt(ψ, zt)
′H̄−1

ψ d2(zi, ψ)H̄−1
ψ gt(ψ, zt),

φ5,t(zi, zt, ψ) = gt(ψ, zt)
′H̄−1

ψ p0(zi, ψ)p1(zi, ψ)′H̄−1
ψ gt(ψ, zt).

When the objective function does not exist, but (ii) of B2 below holds, A2 holds with

q(ψ) = q1(ψ)− q2(ψ) +
1

2
{q3(ψ)− q4(ψ)}+ 2q5(ψ) + q6(ψ), (A.8)

where q6(ψ) = Eψ{φ6,i(z, ψ)} with φ6,i(z, ψ) = d1(zi, ψ)′H̄−1
ψ ∆(ψ, z).

2. Verifiable conditions for Theorem 1. Assumption A1 of Theorem 1 is a natural
condition. On the other hand, assumption A2 may not be straightforward to verify. Here,
we focus on the SAE case, and provide sufficient conditions for A2 that are easier to verify.

Theorem A.1. The assumptions of Theorem 1, hence its conclusion, hold under (A.4),
(A.5) and conditions B0–B5 below for some 0 < δ < 1/28 and any b > 0:
B0. (θi, yi), i = 1, . . . ,m are independent,
B1. There is M ≥ 1 such that when m ≥ M , the true ψ ∈ Ψm, and ψ ∈ Ψm implies
|ψ| ≤ C(logm)L for some constants C,L > 0 and Sm,ψ = {ψ̃ : |ψ̃−ψ| ≤ m4δ−1/2} ⊂ Ψo.
B2. Either (i) the objective function exists and ∆(ψ, z) = 0; or (ii) ψ̂ satisfies (A.6), Hψ is
symmetric and, for any ψ ∈ Ψm, there is Bm,ψ such that |ψ̂ − ψ| ≤ cm3δ−1/2 on Bm,ψ and
Pψ(Bc

m,ψ) ≤ cbm
−bδ, where c, cb are constants that do not depend on ψ.

B3. Eψ{gt(ψ, zt)} = 0, 1 ≤ t ≤ m, (A.1) holds, and E(θ2
i ) <∞.

B4. There are constants cj > 0, Kj ≥ 0 and functions fj(·), j = 0, 1, 2 such that the
absolute values of the following and their up to 3rd-order partial derivatives, with respect
to ψ: (i) gt(ψ, zt), 1 ≤ t ≤ m, (ii) hj(zi, ψ), j = 0, 1, 2, and (iii) ∆(ψ, z) are bounded by
(i) c1(|ψ| ∨ 1)K1f1(zt), 1 ≤ t ≤ m, (ii) c2(|ψ| ∨ 1)K2f2(zi), and (iii) c0(|ψ| ∨ 1)K0f0(z),
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respectively. Furthermore, there is 0 < δ1 < δ such that m−δ1b supψ∈Ψm Eψ{f b1(zt)},
1 ≤ t ≤ m, m−δ1b supψ∈Ψm Eψ{f b2(zi)}, and m−δ1b supψ∈Ψm Eψ{f b0(z)} are bounded.
B5. We have the following expressions: Eψ{φ1,i(zi, ψ)} = E{w1,i(ξi, ψ)},

Eψ{φj,t(zi, zt, ψ)} = E{wj,t(ξi, ξt, ψ)}, j = 2, 3, 4, 5,Eψ{φ6,i(z, ψ)} = E{w6,i(ξ, ψ)},

where z = (zt)1≤t≤m, ξ = (ξt)1≤t≤m such that the distribution of ξ does not depend on ψ.
Furthermore, there are constants c3 > 0, K3 ≥ 0 and functions f3(·), f4(·, ·), f5(·) such
that the absolute values of the first-order partial derivatives of the following, with respect
to ψ: (i) w1,i(ξi, ψ), (ii) wj,t(ξi, ξt, ψ), j = 2, 3, 4, 5, and (iii) w6,i(ξ, ψ) are bounded by (i)
c3(|ψ| ∨ 1)K3f3(ξi), (ii) c3(|ψ| ∨ 1)K3f4(ξi, ξt), and (iii) c3(|ψ| ∨ 1)K3f5(ξ), respectively,
and E{f 2

3 (ξi)}, E{f 2
4 (ξi, ξt)}, 1 ≤ t ≤ m, E{f 2

5 (ξ)} are bounded.
Proof: We need to verify assumptions A1, A2 of Theorem 1, where ψ stands for the true

parameter vector. Without loss of generality, we can assume that b ≥ 2. Below c denotes a
generic constant whose value may be different at different places.

A1: B3 implies that E(θ2|y) = E(θ2
i |y) <∞ with probability one. Also, by (2), (A.4),

(A.5), and B4, it is easy to show that |a(y, ψ)| ∨ |a(y, ψ̂)| ≤ c(1 + logm)2K2{f2(zi) ∨ 1}2.
Thus, both E{a(y, ψ)} and E{a(y, ψ̂)} exist by B4.

A2: We first show that the conditions of Lemma A.1 are satisfied in case of (i) of B2.
Conditions (i)–(iii) are obvious. For (iv), the first part is obvious. As for the boundedness
of the bth moments, (A.2), note that ∂lt/∂ψ = gt(ψ, zt), 1 ≤ t ≤ m, hence

∂

∂ψj
lt(ψ, zt) = gtj(ψ, zt), · · · ,

∂4

∂ψj∂ψk∂ψl∂ψq
lt(ψ̃, zt) =

∂3

∂ψk∂ψl∂ψq
gtj(ψ̃, zt),

where gtj(·, ·) is the jth component of gt(·, ·). Thus, we have, for any ψ ∈ Ψm,∣∣∣∣ ∂∂ψj lt(ψ, zt)
∣∣∣∣ = |gtj(ψ, zt)| ≤ c1(|ψ| ∨ 1)K1f1(zt) ≤ c(1 + logm)LK1f1(zt),

E

(
m−δ

∣∣∣∣ ∂∂ψj lt(ψ, zt)
∣∣∣∣)b ≤ cm−δb(1 + logm)LK1bE{f b1(zt)} ≤ cm−δ1bE{f b1(zt)},

which is bounded. Similarly, one can show that the bth moments ofm−δ|(∂/∂ψk)gtj(ψ, zt)|
and m−δ|(∂2/∂ψk∂ψl)gtj(ψ, zt)| are bounded for ψ ∈ Ψm. Finally, since ψ ∈ Ψm and
ψ̃ ∈ Sm,ψ imply |ψ̃| ≤ |ψ|+ m4δ−1/2 ≤ C(logm)L + m4δ−1/2 ≤ c(1 + logm)L,m ≥ M ,
by a similar argument, it can be shown that the bth moments of

m−δ sup
ψ̃∈Sm,ψ

∣∣∣∣ ∂3

∂ψk∂ψl∂ψq
gtj(ψ̃, zt)

∣∣∣∣
are bounded. Thus, all of the conditions of Lemma A.1 are verified under case (i) of B2.
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Next, we show that, under case (ii) of B2, the conclusion of part (III) of Lemma A.1
holds. This follows by going through the proof of the lemma (see Jiang and Torabi 2019).
In particular, (A.1) continues to hold because, with J4 = ∆(ψ̂, z), we have |H−1

ψ J4| ≤
cmδ−1(1 + logm)LK0f0(z) ≤ cm3δ−1u4 and Eψ(ub4) uniformly bounded for ψ ∈ Ψm. This
leads to the next-step expansion, the one with R1 + R2 + R3. Now two more terms will
be added to this equation: ∆(ψ, z) and R4 = {(∂/∂ψ′)∆(ψ̃, z)}(ψ̂ − ψ), where ψ̃ lies
between ψ and ψ̂. By B3, B4, it is easy to show that |H−1

ψ R4| ≤ cm5δ−3/2U7 with E(U b
7)

uniformly bounded for ψ ∈ Ψm. It follows that the asymptotic expansion (A.3) holds with
an additional term, −H−1

ψ ∆(ψ, z), on the right side before R, whose order is unchanged.
Now, in view of Lemma A. 1, we can write

d(ψ) = Eψ[{a(y, ψ)− a(y, ψ̂)}1B] + Eψ[{a(y, ψ)− a(y, ψ̂)}1Bc ] = I1 + I2, (A.9)

where B is the Bm,ψ in Lemma A.1. Note that

a(y, ψ)− a(y, ψ̂) = 2h0(zi, ψ̂){h1(zi, ψ̂)− h1(zi, ψ)} − {h2(zi, ψ̂)− h2(zi, ψ)}. (A.10)

Thus, by B4, it is easy to show that |a(y, ψ) − a(y, ψ̂)| ≤ c(1 + logm)2LK2{f2(zi) ∨ 1}2.
It follows, by the Cauchy-Schwarz inequality, that

I2 ≤ [E{|a(y, ψ)− a(y, ψ̂)|2}]1/2P1/2(Bc) ≤ c(1 + logm)2LK2m−b(δ−δ1)/2. (A.11)

The right side of (A.11) is o(m−1) uniformly for ψ ∈ Ψm if b > 4 ∨ {2(δ − δ1)−1}. We
next consider I1. First consider case (i) of B2. From (A.10), we can further write

a(y, ψ)− a(y, ψ̂) = 2h0(zi, ψ){h1(zi, ψ̂)− h1(zi, ψ)} − {h2(zi, ψ̂)− h2(zi, ψ)}
+2{h0(zi, ψ̂)− h0(zi, ψ)}{h1(zi, ψ̂)− h1(zi, ψ)}. (A.12)

Denote the first three terms on the right side of (A.3) by J1, J2, and −J3/2, respectively.
Some tedious evaluations, using B1–B4, show that

Eψ

[
h2−j

0 {hj(zi, ψ̂)− hj(zi, ψ)}1B

]
= −Eψ

(
h2−j

0

∂hj
∂ψ′

J1

)
+ Eψ

(
h2−j

0

∂hj
∂ψ′

J2

)
−1

2

{
Eψ

(
h2−j

0

∂hj
∂ψ′

J3

)
− Eψ

(
h2−j

0 J ′1
∂2hj
∂ψ∂ψ′

J1

)}
+ ∆j, j = 1, 2,

Eψ

[
{h0(yi, ψ̂)− h0(yi, ψ)}{h1(yi, ψ̂)− h1(yi, ψ)}1B

]
= Eψ

(
∂h0

∂ψ′
J1
∂h1

∂ψ′
J1

)
+ ∆3

with sup
ψ∈Ψm

|∆j| = o(m−1), j = 1, 2, 3. (A.13)

A “trick” that is repeatedly used in the evaluation is the following: Suppose that J =∑m
t=1 ηt(ψ, zt) such that |ηt(ψ, zt)| ≤ c(|ψ| ∨ 1)af(zt) for some constants c, a > 0 and
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function f(·), and m−δ1bEψ{f b(zt)} are bounded uniformly for ψ ∈ Ψm for some b ≥
2. Then the following hold: (i) If Eψ{ηt(ψ, zt)} = 0, 1 ≤ t ≤ m, the bth moment of
m−1/2−δ|J | is bounded uniformly for ψ ∈ Ψm (this is shown by Burkholder’s and Jensen’s
inequalities; see the proof of Lemma A.1). (ii) Without assuming that the means of ηt are
zero, the bth moment of m−1−δ|J | is bounded uniformly for ψ ∈ Ψm (this is shown by
Jensen’s inequality). Combining (A.9), (A.11)–(A.13), we obtain

d(ψ) = Eψ{d′1(zi, ψ)J1} − Eψ{d′1(zi, ψ)J2}+
1

2
[Eψ{d′1(zi, ψ)J3}

−Eψ{J ′1d2(zi, ψ)J1}] + 2Eψ{p′0(zi, ψ)J1p
′
1(zi, ψ)J1}+ r(ψ) (A.14)

with supψ∈Ψm |r(ψ)| = o(m−1).
Furthermore, direct computation shows that Eψ{d′1(zi, ψ)Jj} = m−1qj(ψ), j = 1, 2, 3,

Eψ{J ′1d2(zi, ψ)J1} = m−1q4(ψ), and Eψ{p′0(zi, ψ)J1p
′
1(zi, ψ)J1} = m−1q5(ψ). This leads

to the expression of d(ψ) in A2 with q(ψ) given by (A.7).
We now consider I1 in (A.9) under (ii) of B2. As noted above, this results in an extra

term on the right side of (A.3), −H−1
ψ ∆(ψ, z) ≡ −J4. Some careful evaluation shows that

this results in, up to a term that is o(m−1) uniformly for ψ ∈ Ψm, an extra term equal to
Eψ{d′1(zi, ψ)J4} = m−1q6(ψ). Thus, A2 holds with q(ψ) given by (A.8).

It remains to show that E{|q(ψ̂) − q(ψ)|} = o(1). It suffices to show that E{|qj(ψ̂ −
qj(ψ)|} = o(1), j = 1, . . . , 6. We consider j = 2 as an example; the rest can be
proved similarly. By B5, we have Eψ{φ2,t(zi, zt, ψ)} = E{w2,t(ξi, ξt, ψ)}, so q2(ψ) =

m−1
∑m

t=1 E{w2,t(ξi, ξt, ψ)}. Let E{|q2(ψ̂)−q2(ψ)|} = E{|q2(ψ̂)−q2(ψ)|1B}+E{|q2(ψ̂)−
q2(ψ)|1Bc} = ∆1+∆2. For ∆1, note that for any 1 ≤ t ≤ m, we have, by Taylor expansion,

w2,t(ξi, ξt, ψ̂)− w2,t(ξi, ξt, ψ) =

{
∂

∂ψ′
w2,t(ξi, ξt, ψ̃)

}
(ψ̂ − ψ),

where ψ̃ lies between ψ and ψ̂. For large m we have ψ ∈ Ψm; also ψ̂ ∈ Ψm by definition,
hence ψ̃ ∈ Ψm. It follows, by B5, that on B

|w2,t(ξi, ξt, ψ̂)− w2,t(ξi, ξt, ψ)| ≤ c(1 + logm)LK3m3δ−1/2f4(ξi, ξt), (A.15)

1 ≤ t ≤ m. It follows that ∆1 ≤ c(1 + logm)LK3m3δ−1/2m−1
∑m

t=1 E{f4(ξi, ξt)} = o(1).
For ∆2, we have, similar to (A.15) but without using the property of B,

|w2,t(ξi, ξt, ψ̂)− w2,t(ξi, ξt, ψ)| ≤ c(1 + logm)LK3f4(ξi, ξt)(|ψ̂|+ |ψ|)
≤ c(1 + logm)L(K3+1)f4(ξi, ξt), 1 ≤ t ≤ m.

Thus, by Jensen’s inequality, we have

E{|q2(ψ̂)− q2(ψ)|2} ≤ c(1 + logm)2L(K3+1)E

{
1

m

m∑
t=1

f4(ξi, ξt)

}2

≤ c(1 + logm)2L(K3+1).
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Finally, by the Cauchy-Schwarz inequality, we have

∆2 ≤ [E{|q2(ψ̂)− q2(ψ)|2}]1/2Pψ(Bc)1/2 ≤ c(1 + logm)L(K3+1)m−bδ/2 = o(1).

3. Proof of Theorem 2. Recall d(ψ) = b(ψ)−c(ψ), where b(ψ) = E{a(y, ψ)}, c(ψ) =
E{a(y, ψ̂)}. Note that b(ψ) is the MSPE when ψ is the true parameter vector. Denote the
right side of (12) by d̂(ψ), which is an approximation to d(ψ). Note that, in (12), y[k] is
y generated under ψ through ξ, introduced above Theorem 2, which does not depend on
ψ and is independent of ψ̂, the estimator of ψ based on the original data. Furthermore,
ψ̂[k] is a function of y[k]. Thus, the summand in (12) is a function of ξ[k], the kth Monte-
Carlo copy of ξ, and ψ. Denote the summands by ∆(ξ[k], ψ), 1 ≤ k ≤ K. Then, we
have d(ψ) = Ed{a(y, ψ)− a(y, ψ̂)} = Emc{∆(ξ, ψ)}, where Ed denotes expectation with
respect to the data, and Emc that with respect to the Monte-Carlo simulation, that is, with
respect to ξ (see the paragraph above Theorem 2). The two expectations are equal because
y can be generated the same way as y[k], through ξ and given the same ψ. It follows that

Emc{d̂(ψ)} =
1

K

K∑
k=1

Emc{∆(ξ[k], ψ)} = Emc{∆(ξ, ψ)} = d(ψ). (A.16)

The Sumca estimator, (13), can now be expressed as

M̂SPEK = a(y, ψ̂) + d̂(ψ̂), (A.17)

where, in d̂(ψ̂), that is, the summand in (13), y[k] is generated via ξ[k] and ψ = ψ̂ as
described above Theorem 2. In other words, the summands in (13) are ∆(ξ[k], ψ̂).

By the proof of Theorem 1, we have Ed{d(ψ̂)− d(ψ)} = o(m−1). Thus, we have

E{d̂(ψ̂)− d(ψ)} = E{d̂(ψ̂)− d(ψ̂)}+ o(m−1), (A.18)

where E denotes expectation with respect to both the data and Monte-Carlo simulation.
Note that d(ψ̂)− d(ψ) depends only on y and not ξ.

On the other hand, we have E{d̂(ψ̂) − d(ψ̂)} = E[E{d̂(ψ̂) − d(ψ̂)|ψ̂}]. For any given
value of ψ, we have, by the independence of ξ and y, and (A.16), E{d̂(ψ̂) − d(ψ̂)|ψ̂ =
ψ} = E{d̂(ψ)− d(ψ)|ψ̂ = ψ} = Emc{d̂(ψ)− d(ψ)} = 0. Note that d̂(ψ)− d(ψ) depends
only on ξ and not y; thus, E{d̂(ψ̂)− d(ψ̂)|ψ̂} = 0, hence

E{d̂(ψ̂)− d(ψ̂)} = 0. (A.19)

Combining (A.18), (A.19), we have E{d̂(ψ̂)− d(ψ)} = o(m−1). Therefore, by (A.17), we
have E(M̂SPEK) = E{a(y, ψ̂)}+d(ψ)+E{d̂(ψ̂)−d(ψ)} = c(ψ)+b(ψ)−c(ψ)+o(m−1) =
b(ψ) + o(m−1) = MSPE + o(m−1).
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4. An example: Exponential convergence rate in model selection. Consider a simple
case of model selection via hypothesis testing in the i.i.d. case. Suppose that X1, . . . , Xn

are independent and distributed as N(µ, 1). There are two candidate models, M0 : µ = 0
and M1 : µ 6= 0. Model selection is done by testing the hypothesis H0 : µ = 0 vs
H1 : µ 6= 0. Consider the t-test, which rejects H0 if |t| =

√
n|X̄| > zα/2, where X̄ is

the sample mean and zα/2 the α/2 critical value so that P(Z > zα/2) = α/2, α being the
level of significance and Z ∼ N(0, 1). If H0 is rejected, M1 is selected; otherwise, M0 is
selected. Thus, M̂ = M0 if

√
n|X̄| ≤ zα/2, and M̂ = M1 if

√
n|X̄| > zα/2.

Suppose that Mo = M1. Then, ψo = µ, whose parameter space is (−∞,∞) \ {0}.
Define a regularized estimator of µ as follows. Let µ̂ = X̄ if |X̄| ≤ an, µ̂ = −an if
X̄ < −an, and µ̂ = an if X̄ > an, where an is a sequence of positive constants such that
limn→∞ an =∞. It is easy to see that µ̂ is a consistent estimator of µ, whose value belongs
to the parameter space with probability one.

It can be shown that P(M̂ 6= Mo) = Φ(zα/2 −
√
nµ)− Φ(−zα/2 −

√
nµ), where Φ(·)

is the cdf of N(0, 1). It follows, by the integral mean value theorem, that

P(M̂ 6= Mo) =

∫ zα/2−
√
nµ

−zα/2−
√
nµ

1√
2π
e−u

2/2du

=

√
2

π
zα/2 exp

{
−(b−

√
nµ)2

2

}
=

(√
2

π
zα/2e

−b2/2

)
exp

{
−µ

2

2

(
1− 2b

µ
√
n

)
n

}
≤ c exp

(
−µ

2

4
n

)
for some constant c > 0, if n is large, where b ∈ [−zα/2, zα/2].

5. Proof of Theorem 3. Denote the right side of (18) by r(ψ̂f). Then, we have

E(M̂SPE) = E(M̂SPE1) + E{r(ψ̂f)}. (A.20)

For any ψf ∈ Ψf,m, we have, by the Cauchy-Schwarz inequality,

|r(ψf)| ≤ 2‖h1(y, ψ̂f)− h1(y, ψf)‖2‖(θ̂P − θ̂o)1(M̂ 6=Mo)‖2

= 2‖h1(y, ψ̂f)− h1(y, ψf)‖2‖θ̂P − θ̂o‖2, (A.21)

because θ̂P− θ̂o = 0 when M̂ = Mo. The first ‖ · ‖2 on the right side of (A.21) is uniformly
bounded by cmδ for ψf ∈ Ψf,m by condition (i). It follows that |r(ψ̂f)| ≤ 2cmδ‖θ̂P − θ̂o‖2

by the definition of ψ̂f , hence |E{r(ψ̂f)}| = o(m−1) by condition (iii).
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Next, by similar arguments as in the proof of Theorem 1, it can be shown that

E(M̂SPE1) = E(θ̂o − θ)2 + o(m−1). (A.22)

Finally, we have {(θ̂o−θ)2− (θ̂P−θ)2}1(M̂ 6=M0) = (θ̂o−θ+ θ̂P−θ)(θ̂o− θ̂P)1(M̂ 6=Mo).
Thus, we have, again by the Cauchy-Schwarz inequality,∣∣∣E [{(θ̂o − θ)2 − (θ̂P − θ)2}1(M̂ 6=M0)

]∣∣∣ ≤ ‖θ̂o − θ + θ̂P − θ‖2‖(θ̂P − θ̂o)1(M̂ 6=Mo)‖2

≤ (‖θ̂o − θ‖2 + ‖θ̂P − θ‖2)‖θ̂P − θ̂o‖2

≤ (2‖θ̂o − θ‖+ ‖θ̂P − θ̂o‖2))‖θ̂P − θ̂o‖2

= {O(mδ) + o(m−1−δ)}o(m−1−δ)

= o(m−1), (A.23)

by conditions (ii) and (iii). By (A.23), we have

MSPE = E(θ̂P − θ)2

= E{θ̂P − θ)21(M̂ 6=Mo)}+ E{(θ̂o − θ)21(M̂=Mo)}

= E(θ̂o − θ)2 + E
[
{(θ̂P − θ)2 − (θ̂o − θ)2}1(M̂ 6=Mo)

]
= E(θ̂o − θ)2 + o(m−1) (A.24)

The conclusion then follows by combining (A.20), the proved fact that E{r(ψ̂f)} = o(m−1),
(A.22), and (A.24).

A.2 Additional empirical results
1. Further detail about Section 5.1. Figure A.1 shows performance of different MSPE

estimators in terms of variability. Figure A.2 shows closeness of Sumca and PR estimates
in terms of the area-specific %RB; for m = 50 the values are hardly distinguishable.

2. Mixed logistic model with BIC model selection. We carry out another simulation to
investigate a case of PMS (see Section 3). This time, the context is a mixed logistic model
(see Section 4.3), and the method for model selection is the Bayesian information criterion
(BIC; Schwarz 1978). We consider the following mixed logistic model: logit(pij) = x′ijβ+
vi, i = 1, ...,m; j = 1, ..., ni, where vi ∼ N(0, A) with A = 1,m = 100, ni = 5, and
pij = P(yij = 1|vi), yij being the binary response. There are two candidate models for
x′ijβ, Model 1: x′ijβ = β0; and Model 2: x′ijβ = β0 + β1xij . We consider xij = xi,
generated from the Uniform[0, 1] distribution, and fixed throughout.
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Figure A.1: Boxplots of MSPE estimates using Sumca, DB (Boot1 and Boot2) and PR

methods: (a) m = 20; (b) m = 50; (c) m = 200.
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Figure A.2: % RB of MSPE estimates using Sumca and Prasad-Rao methods: (a) m = 20

and (b) m = 50. Blue color: Sumca estimator; Red color: Prasad-Rao estimator.
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We generate the data under Model 2 (the true model) with β0 = β1 = 1. We then carry
out the BIC procedure to select the model; after the model is selected, we obtain the small
area predictor of pij = pi under the selected model. The Sumca estimator is computed
with K = 100. Note that, according to Section 4, the Sumca estimator is always computed
under the full model, which is Model 2 in this case. As an alternative method to Sumca,
we obtain the JLW MSPE estimator under the selected model (in a way, this is similar to
the DHM method, discussed in Sections 3.2 and 4.2). We then calculate the EMSPE of
p̂

(r)
i over the simulated data sets r by (31). The % RB of MSPE estimation, (32), is used

to evaluate the performance of the two PMS MSPE estimators, Sumca and JLW under the
selected model. The boxplots of %RB are presented in Figure A.3.

It appears that the Sumca estimator performs slightly better than JLW under the selected
model in terms of %RB. Note that this is a situation in favor of JLW. In fact, according to
our simulation results (see Jiang and Torabi 2019), JLW performs slightly better, overall,
than Sumca when model selection is not involved. The current simulated example shows
that, in a PMS situation, it is the other way around, that is, Sumca performs slightly better
than JLW under the selected model.

JLW Sumca

−2
0

−1
0

0
10

20

Figure A.3: Boxplots of % RB: Sumca vs JLW under the selected model

3. Application: Minority health insurance data. We evaluate the performance of
Sumca and JLW MSPE estimators using a real data set that utilizes a mixed logistic model.
Additional real-data applications are provided in Jiang and Torabi (2019).

Ghosh et al. (2009) considered small domain estimation of the proportion of persons
without health insurance for different minority groups in the Asian population. The small
domains were constructed on the basis of age, sex, race, and region where the persons be-
longed. The authors used data provided by National Health Interview Survey (NHIS) for
the year 2000, which report the individual level binary responses on whether a person has
health insurance, along with his or her individual level covariates. The Asian group is com-
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posed of four categories: Chinese, Filipino, Asian Indian, and Others such as Korean, Viet-
namese, Japanese, Hawaiian, Samoan, Guamanian, etc. These individuals were assigned to
specific domains depending on their age, gender, race, and region they came from. There
were three age-groups (0-17, 18-64, 65+), two groups for gender, four regions depending on
the size of the Metropolitan Statistical Area (< 499, 999; 500, 000−999, 999; 1, 000, 000−
2, 499, 999;> 2, 500, 000), and four groups for race. The total number of domains is then
96 (= 3 × 2 × 4 × 4). The sample sizes for some domains of a targeted minority Asian
population were not large enough to produce reliable estimates; in fact, only 19 out of
the 96 domains have non-zero sample sizes. In order to address this issue, Ghosh et al.
(2009) employed both Hierarchical Bayes and empirical Bayes methodologies to obtain
small domain estimates and also to find the associated measures of precision. In particular,
they considered the following model: logit(pij) = β0 + β1xij1 + β2xij2 + β3xij3 + vi,
i = 1, ..., 96; j = 1, ..., ni, where vi

i.i.d.∼ N(0, A), pij = P(yij = 1|vi) with yij = 1 or
0 depending on whether or not the jth individual in the ith small domain does not have
health insurance; xij1, xij2, xij3 are family size, educational level, and total family income
of the jth unit in the ith small domain, respectively. We estimate the model parameters
as β̂0 = −4.19, β̂1 = 0.62, β̂2 = 0.005, β̂3 = 0.12, Â = 0.004. We then compute the
EBP p̂i, where pi = h(β0 + β1xi1 + β2xi2 + β3xi3 + vi) with h(u) = eu/(1 + eu) and
(xi1, xi2, xi3) being the average of (xij1, xij2, xij3) over domain i, and the Sumca estimate
M̂SPEi,K using (13) with K = 100 and JLW MSPE estimate M̂SPEi,JLW, as well as the
bootstrap MSPE estimator M̂SPEi,Boot (see Section 4.3). Figure A.4 shows boxplots of the
square roots of the MSPE estimates. It is observed that the Sumca estimates are relatively
(much) smaller than the JLW and bootstrap estimates. This seems to be consistent with our
simulation results (see Jiang and Torabi 2019) that JLW and bootstrap tend to over-estimate
the MSPE. It is known that the bootstrap MSPE estimator is only first-order unbiased (e.g.,
Hall and Maiti 2006b), so the overestimation by M̂SPEi,Boot is not surprising. As for JLW,
although it is known to be second-order unbiased (Jiang et al. 2002), its application in this
case involves Monte-Carlo simulation [to compute (30) in Section 4.3]. It is possible that
the Monte-Carlo sample size, K = 100, is not large enough to ensure that the Monte-Carlo
approximations to terms like (30) have combined error of the order o(m−1). Note that
K = 100 is chosen partially due to the computational intensity of JLW, which involves
evaluation of many O(m) terms [see (29)], and partially due to our intention to make a fair
comparison, as K = 100 is also used for computing the Sumca estimator.
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