Rectangular powers and Ramsey theory

Bob Quackenbush

ABSTRACT

For a finite structure A (e.g., a graph, poset, group, or lattice), let its set of finite powers be $Pow(A) = \{A^n \mid n \ge 0\}$ with $P_{m,n}(A)$ the set of all substructures of A^n isomorphic to A^m .

Choose positive integers n, m, k, c with n > m > k. Then we call an onto map $\Delta: P_{k,n}(\mathbf{A}) \to [c] = \{1, \ldots, c\}$ a *c*-colouring. We seek $\mathbf{B} \in P_{m,n}(\mathbf{A})$ such that the restriction of Δ to $\{\mathbf{C} \in P_{k,m}(\mathbf{A}) \mid C \subseteq B\}$ is constant; such a **B** is said to be *monochromatic* with respect to Δ .

I will discuss the positive and negative results of this quest, couched in the language of rectangular powers and polymorphism clones.