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In this paper, we study numerically the dispersion of a passive scalar released from an instantaneous
point source in a built-up (urban) environment using a Reynolds-averaged Navier–Stokes method. A non-
linear k–� turbulence model [Speziale, C.G., 1987. On nonlinear k–l and k–� models of turbulence. J. Fluid
Mech., 178, 459–475] was used for the closure of the mean momentum equations. A tensor diffusivity
model [Yoshizawa, A., 1985. Statistical analysis of the anisotropy of scalar diffusion in turbulent shear
flows. Phys. Fluids, 28, 3226–3231] was used for closure of the scalar transport equations. The concentra-
tion variance was also calculated from its transport equation, for which new values of Yoshizawa’s clo-
sure coefficients are used, in order to account for the instantaneous tracer release and the complex
geometry. A new dissipation length-scale model, required for the modelling of the dissipation rate of con-
centration variance, is also proposed. The numerical results for the flow, the pollutant concentration and
the concentration variance, are compared with experimental data. This data was obtained from a water-
channel simulation of a full-scale field experiment of tracer dispersion through a large array of building-
like obstacles known as the Mock Urban Setting Trial (MUST).

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The environmental and toxicological impact arising from the
dispersion of contaminants released into the urban environment,
where the population density is high, has become an increas-
ingly important problem. A number of recent papers have de-
scribed the measurement of urban flow and pollutant
dispersion in field experiments. Large-scale urban field studies
in the United States have included the URBAN 2000 meteorolog-
ical and tracer field campaign conducted in Salt Lake City, Utah
in October 2000 (Allwine et al., 2002), the Mock Urban Setting
Trial (MUST) (Biltoft, 2001; Yee and Biltoft, 2004) conducted at
US Army Dugway Proving Ground in northwestern Utah in Sep-
tember 2001, the Joint Urban 2003 Experiment conducted in
Oklahoma City, Oklahoma (Allwine et al., 2004; Flaherty et al.,
2007), and the Urban Dispersion Program (UDP) conducted in
New York City, New York over the period from 2004 to 2007
(Allwine et al., 2007). Important urban field studies have been
conducted in Europe such as the Dispersion of Air Pollution
and its Penetration into the Local Environment (DAPPLE) which
ll rights reserved.
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investigated the characteristics of flow in a street canyon inter-
section in London, UK (Arnold et al., 2004) and the Basel Urban
Boundary-Layer Experiment (BUBBLE) which measured the flow
of the wind through and above a homogeneous urban area (Ro-
tach et al., 2004).

Modelling of the pollutant dispersion in an urban area has
been the subject of much recent effort. To this purpose, computa-
tional fluid dynamics (CFD) has been applied to the problem of
urban dispersion. There are essentially two major approaches that
have been used for the numerical modelling of urban dispersion
using CFD; namely, the Reynolds-averaged Navier–Stokes (RANS)
and large-eddy simulation (LES) approaches. The application of
CFD to pollutant dispersion in the urban environment using
either RANS or LES include Baik and Kim (1999), Kim and Baik
(1999), Liu and Barth (2002), Camelli et al. (2005), Coirier et al.
(2005), Hsieh et al. (2007) and Milliez and Carissimo (2007). All
these studies, with the exception of Hsieh et al. (2007), have fo-
cussed primarily on the prediction of the mean pollutant concen-
tration. However, with the availability of measurements of
concentration fluctuations in plumes and clouds dispersing in
an urban environment (and particularly in the MUST field exper-
iment as described by Yee and Biltoft (2004)), there have been ef-
forts undertaken recently to model also the concentration
variance field in the dispersing plume or cloud. These efforts in-
clude Andronopoulos et al. (2002), Hsieh et al. (2007), Wang
et al. (2007) and Milliez and Carissimo (2008).
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Nomenclature

c instantaneous concentration
�c mean concentration
c02 concentration variance
Cl closure constant for eddy-viscosity
C�1, C�2 closure constants (Eq. (4))
Cs source concentration
Cs1, Cs2 closure constants (Eq. (10))
Cv21

, Cv22
closure constants (Eq. (20))

Cs1, Cs2, Cs3 closure constants (Eq. (8))
d0 diameter of the point source
D molecular diffusivity
Djk tensor diffusivity
Dn normalized total dosage (� D=Cs)
D total dosage
H height of the obstacle (in the vertical direction)
k turbulent kinetic energy (TKE)
lx, ly streamwise and spanwise spacing between obstacles
L length of the obstacle (in the streamwise direction)
�p kinematic mean pressure
Pk rate of TKE production
Re Reynolds number
S source strength of the tracer

t time
td dissipation time scale
ts characteristic time scale (�L/Ub)
�ui mean velocity component in the i-th coordinate direc-

tion
Ub free stream velocity
vn normalized mean spanwise velocity (� �v=Ub)
W width of the obstacle (in the spanwise direction)
x, y, z streamwise, spanwise and vertical coordinates
�xc , �yc , �zc x, y and z coordinates of the cloud centroid
d boundary-layer thickness
dij Kronecker delta
� rate of TKE dissipation
�c rate of concentration variance dissipation
K0 initial cloud size
Kd dissipation length-scale of a cloud
KI integral length-scale of turbulence
mt kinematic eddy-viscosity
rx, ry, rz cloud spreads in the x-, y- and z-directions
rk, r� closure constants (Eqs. (3) and (4))
ð�Þ ensemble-averaged quantity
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1.1. Laboratory and numerical simulations of MUST

The MUST field experiment, conducted at US Army Dugway
Proving Ground in September 2001, was designed to provide
measurements of fluctuating concentrations in a plume or cloud
dispersing through a large array of building-like obstacles. After
the completion of the original MUST field experiment, a series of
scaled laboratory experiments were conducted. A wind-tunnel
simulation of the MUST array at a 1:50 scale was undertaken by
the Defence Science and Technology Organisation of Australia in
the 1.5-MW boundary-layer wind-tunnel at Monash University,
Victoria, Australia (Gailis and Hill, 2006; Yee et al., 2006). A
water-channel simulation of the MUST array at 1:205 scale was
conducted in the water-channel facility at Coanda R&D Corpora-
tion, Burnaby, British Columbia, Canada in a study sponsored by
Defence Research and Development Canada (Yee et al., 2006; Hil-
derman and Chong, 2007).

The series of MUST experiments provided high-quality data
sets, that have been used for validation of numerical models for ur-
ban flow and pollutant dispersion. Towards this objective, the full-
scale MUST field experiments have been used to evaluate the
empirical urban dispersion models in Hazard Prediction Assess-
ment Capability (HPAC) (Warner et al., 2006). Camelli et al.
(2004, 2005) and Milliez and Carissimo (2007, 2008) simulated
the MUST field trials using the LES and RANS methodologies,
respectively. Hsieh et al. (2007) and Wang et al. (2007) simulated
the MUST water-channel experiments using both the RANS and
unsteady RANS (URANS) approaches.

A unique feature of the MUST water-channel experiment was
the performance of a sufficient number of controlled repeat re-
leases to enable the behavior of concentration fluctuations in
clouds dispersing in a built-up environment to be studied. The cur-
rent series of tracer experiments involving instantaneous clouds
provide an extensive new data set that can be used to evaluate
the predictive accuracy of numerical models for the transient re-
lease of passive scalars in a built-up environment. To date, numer-
ical studies of dispersion in the MUST array (Camelli et al., 2004,
2005; Milliez and Carissimo, 2007, 2008) have focused primarily
on the simulation of dispersing plumes resulting from the contin-
uous release of a tracer for the full-scale field experiment. The pre-
liminary results reported in Hsieh et al. (2007) is the first
numerical study that has modelled the dispersion of a passive sca-
lar from both continuous and instantaneous releases in an ideal-
ized obstacle array (including comparisons with experimental
data obtained from the water-channel simulation of the MUST
array).

This paper focusses on a detailed numerical study of cloud
transport and dispersion within and above an urban canopy
(MUST array). This study was undertaken using a RANS model
incorporating more sophisticated turbulence closure schemes
than those that have been used previously. Indeed, previous
numerical studies of the flow and dispersion in the MUST array
(Milliez and Carissimo, 2007, 2008; Hsieh et al., 2007; Wang
et al., 2007) have used only a simple eddy-viscosity model (Bous-
sinesq eddy-viscosity approximation) for the Reynolds stress ten-
sor required for closure of the mean momentum equation and a
simple isotropic eddy-diffusivity model (gradient diffusion
hypothesis) for the turbulent scalar flux vector required for clo-
sure of the transport equations for the mean concentration and
for the concentration variance.

There are many nonlinear k–� turbulence models for the Rey-
nolds stress tensor and these have been reviewed by Wilcox
(1998). In this paper, we consider only the nonlinear k–� turbu-
lence model proposed by Speziale (1987) for closure of the mean
momentum equations. Similarly, there are a variety of tensor dif-
fusivity scalar flux models available in the literature, such as
those developed by Yoshizawa (1985, 1988), Rogers et al.
(1989), Rubinstein and Barton (1991), Wikström et al. (2000),
Younis et al. (2005) and So et al. (2004). Moreover, recent reviews
of these types of models can be found in So and Speziale (1999),
Hanjalić (2002) and Younis et al. (2005). In this study, we focus
on a critical assessment of the performance of only one of these
tensor diffusivity scalar flux models for the prediction of urban
dispersion; namely, the tensor diffusivity scalar flux model of
Yoshizawa (1985).

It is challenging to implement a tensor diffusivity scalar flux
model for the numerical simulation of the concentration statistics
in an instantaneous cloud dispersing in a built-up environment for



Fig. 1. MUST array in water-channel.
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a number of reasons. Firstly, investigations of the application of
tensor diffusivity scalar flux models for urban dispersion are
non-existent. Secondly, tensor diffusivity scalar flux models have
been designed primarily for closure of the transport equation for
the mean concentration. The efficacy of these models for closure
of the transport equation for the concentration variance is un-
known. Thirdly, most of the tensor diffusivity models (including
that of Yoshizawa (1985)) have been designed for distributed sca-
lars (e.g., temperature field in a non-buoyant flow). The predictive
accuracy of these models for an instantaneous release of a passive
scalar from a localized source will need to be carefully assessed. Fi-
nally, the closure coefficients for conventional tensor diffusivity
models have been primarily calibrated against simple (canonical)
test cases. How well these anisotropic scalar flux models work
for the highly disturbed flows in an urban canopy (e.g., MUST
obstacle array) will need to be investigated.

This paper is organized in the following manner. In Section 2,
the water-channel experiment conducted to study flow and disper-
sion in the MUST obstacle array will be briefly introduced. In Sec-
tion 3, the numerical methodology and turbulence stress and scalar
flux models will be described, and a new dissipation length-scale
model required for the closure of the concentration variance trans-
port equation will be proposed. In Section 4, the proposed model-
ling approach is validated by comparing the model predictions
with the experimental results. Finally, in Section 5, the major con-
clusions will be summarized.
2. Water-channel simulations of MUST

The water-channel experiment for MUST is fully described in
Hilderman and Chong (2007), and only the important details of
the experiment will be summarized here. The experiment was con-
ducted in the boundary-layer water-channel facility at Coanda
R&D Corporation (Burnaby, British Columbia, Canada). This
water-channel has a working test section of length 10 m, width
1.5 m and height 0.9 m.

The water-channel experiment simulated a deep neutrally
stratified atmospheric boundary-layer flow over an array of
three-dimensional (3-D) building-like obstacles used for MUST.
The MUST obstacle array was simulated at a scale of 1:205, so each
sharp-edged obstacle in the array had a length (L) of 11.8 mm,
width (W) of 59.4 mm and height (H) of 12.4 mm. A total of 120
obstacles was placed in an aligned array of 12 rows of 10 obstacles
(see Fig. 1 for a photograph of the scaled-down version of the
MUST array and Figs. 2a and b for a description of its geometry).
The streamwise and spanwise spacing between obstacles was
lx = 5.33L = 62.9 mm and ly = 3.26L = 38.5 mm, respectively.

The fully developed flow upstream of the MUST array was cre-
ated in the channel using a combination of a ‘‘turbulence grid” of
square bars and a sawtooth fence placed at the channel inlet. The
free stream velocity (velocity at the top of the boundary-layer with
depth d = 275 mm) is Ub = 0.38 m s�1. The Reynolds number of the
flow in the water-channel simulation was approximately
ReH = 4700 (based on Ub and H). In our analysis of the experimental
results and numerical simulations, flow quantities were non-
dimensionalized using Ub and L (implying that the time scale for
non-dimensionalization was ts = L/Ub = 0.031 s). Fig. 2 illustrates
the geometry of the MUST array and shows the coordinate system
that was used for the numerical simulations. All streamwise (or x)
distances are referenced relative to the upstream edge of the first
row of obstacles at x/L = 0, and the origin of the coordinate system
in the spanwise (or y) direction is taken to be along the centerline
(y/L = 0) of the fifth column of obstacles in the array.

The ground-level point source for the instantaneous release was
located at row 1.5 (viz., at a position halfway between the first and
second rows of obstacles in the array) along the centerline of the
fifth column of obstacles. The x and y coordinates of the source
location are xs/L = 3.67 and ys/L = 0. The diameter of the point
source was d0 = 2.8 mm. The instantaneous point source emitted
a sodium fluorescein dye tracer at a volume flow rate of
24 ml min�1 for a duration of 1.25 s. For each puff experiment, a
series of 100 individual puffs were released and this set of realiza-
tions of cloud dispersion allowed ensemble-averaged concentra-
tion statistics (e.g., mean concentration, concentration variance)
in the developing cloud to be determined. The puff-cloud passages
from each replicate of the instantaneous release were sampled for
33.3 s after each initial release. This sampling duration was long
enough to contain the entire passage of the cloud at any receptor
location in the array.

The velocity field was measured using a 4-beam 2-component
fibre-optic laser doppler anemometer (LDA) powered by an ar-
gon-ion laser. Titanium dioxide particles were used as seed parti-
cles. The LDA data were collected over a sampling time of 500 s
at each position. The data rate for the LDA measurements de-
pended upon the flow velocity, particle seeding density, and opti-
cal properties of the lenses, but was typically 50–500 Hz.

The concentration field was measured using a laser-induced
fluorescence (LIF) linescan system. The linescan LIF system allows
simultaneous multi-point concentration measurements to be
made along the laser beam. The fluorescent intensity of the tracer
was measured using a Dalsa monochrome digital linescan CCD
camera with 12-bit amplitude resolution (4096 digitization levels)
at a rate of 300 Hz. Each linescan consisted of 1024 pixels, giving a
spatial resolution between 0.5 and 1 mm depending on the relative
position of the camera and laser line.
3. Numerical model and turbulence closure

In this section, we first describe the governing equations for the
simulation of the disturbed flow within and over an idealized
obstacle array and the concomitant dispersion of a tracer released
into this flow. Next, the nonlinear models required to close these
equations are described. In particular, we formulate a new scalar
dissipation length-scale model required to close the transport
equation for the concentration variance. Finally, the numerical
framework used to solve the system of modelled governing equa-
tions is briefly described.
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Fig. 2. Geometry of the obstacles and the coordinate system of the MUST array (L = 11.8 mm). The x-axis is aligned along the fifth column of obstacles in the array. The point
source is located at y/L = 0 and at row 1.5 (i.e., at x/L = 3.67, or halfway between the first and second rows of obstacles in the array). The grid system shown here is for the small
domain.
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3.1. Governing equations

The mean flow, mean concentration and concentration variance
fields are described by the conservation laws of mass and momen-
tum and the transport equations for the mean concentration and
concentration variance. In addition to these equations, the trans-
port equations for TKE and for the rate of dissipation � of TKE are
also required. These governing equations for an incompressible
and neutrally stratified fluid flow and a conservative passive scalar
assume the following form in a Cartesian coordinate system:
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Here, �ui is the mean (or, ensemble-averaged) velocity in the xi-coor-
dinate direction, with i = 1, 2 or 3 representing the streamwise x,
spanwise y or vertical z directions; �p is the kinematic mean pres-
sure; �c is the mean concentration; c02 is the concentration variance;
S is the source density distribution of the scalar; D is the molecular



Fig. 3. Mean vortex shedding in the array visualized using isopleths of the
normalized spanwise velocity vn � �v=Ub obtained in a horizontal plane at height z/
H = 0.61. This result shown here is for the small domain.
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diffusivity of the scalar; m is the kinematic viscosity of the fluid;
mt � Clk2/� is the kinematic eddy-viscosity; u0iu

0
j is the kinematic

Reynolds stress tensor; u0jc
0 is the turbulent flux of concentration;

u0jc
02 is the turbulent flux of concentration variance;

Pk � �u0iu
0
j@�ui=@xj is the production of TKE; and, �c is the concentra-

tion variance dissipation rate defined as

�c ¼ 2D
@c0

@xj

@c0

@xj
: ð7Þ

The closure constants are given as follows: Cl = 0.09, rk = 1.0,
r� = 1.3, C�1 = 1.44 and C�2 = 1.92.

3.2. Nonlinear constitutive relations for stress and scalar flux

In order to close the governing equations, the kinematic
Reynolds stresses (i.e., u0iu

0
j) and turbulent fluxes of the concentra-

tion and concentration variance (i.e., u0jc
0 and u0jc

02, respectively)
need to be modelled. We use an explicit algebraic nonlinear model
formulation for the Reynolds stresses; namely, the quadratic model
of Speziale (1987) to close the mean momentum equation:
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where dij is the Kronecker delta, and an asterisk indicates the devi-
atoric part of a tensor, i.e. ð�Þ�ij � ð�Þij � ð�Þkkdij=3. The three model
coefficients appearing in this equation are: Cs1 = 0.041, Cs2 = 0.014
and Cs3 = �0.014.

The model of Speziale (1987) provides a nonlinear constitutive
relation between the Reynolds stress tensor and the mean velocity
gradients. The original model of Speziale (1987) contained the con-
vective derivatives of the mean velocity gradients, which have
been removed in the present treatment in order to improve the
numerical stability (see Gatski and Speziale, 1993; Lien and
Leschziner, 1994a). Because the objective of the current study is
the transport and dispersion of contaminants in a built-up environ-
ment, we will simply treat Speziale’s nonlinear k–� model as a
standard turbulence closure model and focus our attention instead
on the modelling of the turbulent concentration flux and the con-
centration variance dissipation rate.
For the turbulent scalar fluxes, we use the tensor (anisotropic)
diffusivity model of Yoshizawa (1985); namely,

u0jc
0 ¼ �Djk

@�c
@xk

and u0jc
02 ¼ �Djk

@c02
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; ð9Þ

where the tensor diffusivity Djk is defined as
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Here, Cs1 and Cs2 are two model coefficients. It is important to note
that Yoshizawa’s tensor diffusivity model has only been applied to
closure of the turbulent concentration flux (first part of Eq. (9)).
To the authors’ knowledge, this model has never been applied to
the closure of the turbulent flux of concentration variance (second
part of Eq. (9)), and one of the objectives of the current work is to
investigate the applicability of this model for the representation
of u0jc

02.
The two model coefficient Cs1 and Cs2 were calibrated for Eq. (5)

and not for Eq. (6), using simple test cases for isotropic turbulence
and thin shear flows. As such, the values of these two coefficients
might not be treated as universal, especially when this model is
used for predicting the concentration variance in a cloud dispers-
ing in an urban environment.

3.3. Concentration variance dissipation model

In order to close Eq. (6), the concentration variance dissipation
rate �c needs to be modelled. One approach to this problem is to
solve a transport equation for �c. This approach involves several
higher-order correlation terms that need to be modelled (e.g.,
terms that involve a triple correlation of the gradients of the fluc-
tuating velocity and scalar). The modelled transport equation for �c

then contains six closure coefficients (for detailed description of
the modelled �c-transport equation, see Yoshizawa (1988) and So
and Speziale (1999)). Unfortunately, there is little experience con-
cerning this approach and its applicability to cloud dispersion in an
urban canopy is questionable.

In view of this, it is simpler to try to formulate an appropriate
algebraic model for �c. In this approach, �c is modelled simply as
(Warhaft and Lumley, 1978)

�c ¼ Cv1

1
td

c02 ¼ Cv1

�
k

c02; ð11Þ

in which the dissipation time scale (td) is proportional to the inte-
gral turbulence time scale tI = k/� (with an associated integral tur-
bulence length-scale given by KI = k3/2/�). The value of the closure
constant Cv1

varies in the literature (Warhaft, 2000). This constant
is usually set to 2, following the suggestion of Béguier et al.
(1978). In this paper, we refer to this conventional model as Mod-
el-1.

It is useful to consider an alternative model for �c. To this end,
consider a formulation for the dissipation time scale td in terms
of a characteristic velocity for the turbulence (which can be chosen
as k1/2) and a scalar dissipation length-scale Kd:

�c ¼ Cv2

k1=2

Kd
c02; ð12Þ

where Cv2
is a closure constant. The key issue in this model is the

determination of the value of Kd. Note that for the conventional
Model-1, Kd = KI. Recently, Hsieh et al. (2007) proposed a simple
model for the dissipation length-scale, which evaluates Kd using a
local scale for the dispersing cloud taken as the geometric mean
of the cloud spreads in the three coordinate directions:

Kd3D ¼ Kd3DðtÞ ¼ ðrxðtÞryðtÞrzðtÞÞ1=3
; ð13Þ
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Fig. 4. Vertical profiles of the normalized mean streamwise velocity, �u=Ub , obtained at five x-locations along y/L = 0.
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where rx(t), ry(t) and rz(t) are the cloud spreads in the x-, y-, and z-
directions, respectively, at (travel) time t after the initial release.
The streamwise cloud spread is defined as

rxðtÞ ¼
R R R

ðx� �xcÞ2�cðx; y; z; tÞdxdydzR R R
�cðx; y; z; tÞdxdydz

 !1=2

; ð14Þ

with the streamwise position of the cloud centroid determined
from

�xc ¼ �xcðtÞ ¼
R R R

x�cðx; y; z; tÞdxdydzR R R
�cðx; y; z; tÞdxdydz

: ð15Þ

The cloud spread in the other two coordinate directions are defined
in an analogous manner.
A modification to the dissipation length-scale model used by
Hsieh et al. (2007) is proposed. Experience with the use of this
model seems to suggest that Kd given by Eq. (13) can significantly
over-estimate the scalar dissipation length-scale, owing to en-
hanced streamwise dispersion resulting from the strong shear flow
that exists at or near the top of an urban canopy. This over-estima-
tion of Kd leads to an under-estimation in the scalar dissipation
rate �c. In particular, Fig. 6 shows the time evolution of the cloud
spreads in the three coordinate directions, for one of our simula-
tions of the MUST case. This figure shows that the x-wise growth
of the cloud occurs much more quickly than the cloud growth in
the other two coordinate directions. This is the result of the
shear-enhanced streamwise dispersion in the obstacle array. The
non-uniformity of the mean velocity field here distorts the shape
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Fig. 5. Vertical profiles of the normalized turbulent kinetic energy, k=U2
b , obtained at five x-locations along y/L = 0.
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of the cloud by greatly stretching and elongating it in the stream-
wise direction, relative to the other two coordinate directions.

In view of this, we modified Eq. (13) so that only the cloud
spreads in the cross-stream directions are used in the determina-
tion of Kd, so

Kd2D ¼ Kd2Dðx; tÞ ¼ ðr2D
y ðx; tÞr2D

z ðx; tÞÞ
1=2
; ð16Þ

where the ‘‘cloud spreads” r2D
y ðx; tÞ and r2D

z ðx; tÞ are evaluated lo-
cally in the vertical y–z (or, cross-stream) plane. The ‘‘cloud spread”
r2D

y ðx; tÞ in the y-direction is determined as

r2D
y ðx; tÞ ¼

R R
ðy� �y2D

c Þ
2�cðx; y; z; tÞdydzR R

�cðx; y; z; tÞdydz

 !1=2

; ð17Þ
with the y-location of the cloud centroid in the local y–z plane eval-
uated from

�y2D
c ¼ �y2D

c ðx; tÞ ¼
R R

y�cðx; y; z; tÞdydzR R
�cðx; y; z; tÞdydz

: ð18Þ

The expression for r2D
z ðx; tÞ is defined in an analogous manner to Eq.

(17).
Following from these arguments, our model for the concentra-

tion variance dissipation rate follows from the general form of
Eq. (12):

�c ¼
k1=2

Kd
c02; ð19Þ



Fig. 6. Temporal evolution of (a) cloud centroid and (b) cloud spread in the three
coordinate directions. The result shown here is for the large domain. Here, ts � L/Ub

is a characteristic time scale for the flow in the obstacle array.
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with the closure constant Cv2
absorbed into the definition of Kd and

with the following formulation proposed for modelling Kd:

Kd ¼ Kdðx; tÞ ¼max K0;min
Kd2D

Cv21

;
KI2D

Cv22

� �� �
: ð20Þ

Here, Cv21
¼ Cv22

¼ 1:5 are two model constants, and K0 is the initial
cloud size taken as K0 = d0/2 (for this case). The model constants
Cv21

and Cv22
were fixed to values that provided good quantitative

agreement with the MUST dispersion data; and, more specifically,
with the observed decay of the concentration variance along the
cloud centerline. This model ensures that the scalar dissipation
length-scale Kd is greater than or equal to the initial source size,
and the imposition of this lower limit also prevents any potential
numerical instability from occurring (viz., if Kd ? 0) in Eq. (19). Fur-
thermore, in Eq. (20), KI2D

3 is the integral length-scale of turbulence
averaged over a vertical cross-section of the cloud, viz.
3 The integral lengthscale KI(x,y,z) is a function of x, y and z in the highly disturbed
and strongly inhomogeneous flow in an urban canopy. Because Kd2D(x) in Eq. (20)
involves an average over the cloud in a cross-stream plane, it is more appropriate to
compare the magnitude of Kd2D(x) with the magnitude of the turbulence integral
length-scale averaged also over the cloud in the same cross-stream plane (viz., with
KI2D(x)).
KI2D ¼ KI2Dðx; tÞ ¼
R R

KI�cðx; y; z; tÞdydzR R
�cðx; y; z; tÞdydz

: ð21Þ

This new length-scale model (i.e., Eq. (20)) also ensures that when
the cloud-averaged scalar length-scale Kd2D exceeds the cloud-
averaged integral turbulence length-scale KI2D, then it is the latter
scale which defines Kd. At this stage, the cloud has reached the re-
gime of homogeneous turbulent mixing. The proposed model repre-
sented by Eqs. (19) and (20) will be referred to henceforth as Model-
2.

3.4. Numerical framework

The numerical simulations were performed with two in-house
computer codes: the flow code urbanSTREAM and the dispersion
code urbanEU, both of which employ a fully collocated storage
arrangement for all transported properties (viz., mean velocity vec-
tor, pressure, k and � in urbanSTREAM and c and c02 in urbanEU). In
each code, the partial differential equations which model the un-
steady, three-dimensional flow field in urbanSTREAM and the
developing mean concentration and concentration variance fields
in urbanEU were developed in a general non-orthogonal (curvilin-
ear) coordinate system and solved using a finite volume method
(Yee et al., 2007).

The flow solver used in urbanSTREAM is based on the numerical
algorithms described by Lien and Leschziner (1994b). Advective fi-
nite volume face fluxes are approximated using a total-variation-
diminishing (TVD) variant (Lien and Leschziner, 1994c) of the high-
er-order quadratic upwind interpolation for the convective kine-
matics (QUICK) scheme developed by Leonard (1979). The
physical diffusive finite volume face fluxes are approximated using
a conventional second-order central difference scheme. The SIM-
PLE algorithm was used for the pressure correction (Patankar,
1980). Here, mass continuity is enforced by solving a pressure cor-
rection equation which, as part of the iterative sequence, steers the
pressure toward a state in which all mass residuals in the finite
volumes are negligibly small. In conjunction with the collocated
grid used here, this method is known to provoke checkerboard
oscillations in the pressure field as discussed in Patankar (1980),
reflecting a state of pressure-velocity decoupling. To avoid this,
the method proposed by Rhie and Chow (1983) is used to nonlin-
early interpolate the finite volume face velocities from the nodal
values at the centers of the finite volumes.

Within the iterative scheme, the transport equations for �ui

(i = 1,2,3), k and � and the pressure correction equation are solved
sequentially and iterated to convergence, defined by reference to
L1-residual norms for the mass and momentum equations. Here,
the L1-residual norm is defined as the sum of absolute residuals
over all grid points in the computational domain. The L1-residual
norms for the mass and momentum components were normalized
by the mass and momentum fluxes at the inflow plane. A conver-
gent solution was assumed after each normalized L1-residual norm
decreased below 0.00005. The discretized equations in urban-
STREAM are solved using an iterative method, known as the
strongly implicit procedure (SIP) proposed by Stone (1968) which
uses an incomplete lower–upper (LU) decomposition. The con-
verged mean velocity and turbulence fields from urbanSTREAM
were used to ‘‘drive” urbanEU, and the discretized transport equa-
tions for the mean concentration and concentration variance were
solved using the SIP method. Convergence was declared when the
ratio of the L1-residual norm for the discretized equation in the
current iteration to that for the first iteration is smaller than a pre-
scribed tolerance (typically 10�7).

At the inflow boundary plane, Dirichlet boundary conditions
were imposed for the mean velocity and turbulent kinetic energy
using the measured distributions for these quantities obtained
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Fig. 7. Time history of the normalized mean concentration, �c=Cs , in the cloud obtained at six x-locations along y/L = 0 and within the canopy at the height z/H = 0.75.
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from the experiment.4 Far downstream, at the outflow boundary
plane, the flow was assumed to reach a fully developed state in
which no changes occur in the flow direction. Hence, at the outflow
boundary, the horizontal gradients of all flow variables are assumed
to be zero. At the upper boundary, we used free-slip conditions for
all flow variables. A periodic boundary-condition was applied in
4 The vertical profiles of the mean velocity and turbulent kinetic energy in the inlet
boundary plane upwind of the MUST obstacle array were measured by Hilderman and
Chong (2007), who used this data to demonstrate the horizontal homogeneity of the
velocity statistics in the upstream approach flow.
the spanwise direction for all flow variables across the vertical
boundary planes that define the lateral boundaries for the computa-
tional domain. At all solid boundaries (ground, obstacle walls and
roofs) in the computational domain, standard wall functions (Laun-
der and Spalding, 1974) are used for mean velocities and turbulence
quantities. For the mean concentration and concentration variance,
at the computational flow domain boundaries and at all solid bound-
aries in the computational domain, zero-flux Neumann conditions
were applied.

In this study, two different grids and computational domains
were used in order to determine if the computed solutions for
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Fig. 8. Time history of the normalized mean concentration, �c=Cs , in the cloud obtained at six x-locations along y/L = 0 and above the canopy at the height z/H = 1.5.
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the velocity and concentration fields were grid-independent. These
two grids were also used to investigate the sensitivity of predicted
concentration and concentration variance fields to how well the
grid can resolve the spatial extent (size) of the localized source
used in the experiments. For these purposes, the size for the large
and small computational domains used in this study were, respec-
tively, as follows: 685.6L � 41.5L � 60L and 105.6L � 41.5L � 30L,
with 224 � 53 � 30 and 185 � 83 � 42 control volumes (in the
streamwise, spanwise, and wall-normal directions, respectively).
An upstream fetch of 15L (distance between the inflow plane and
the windward face of the first row of obstacles) was used for both
the large and small computational domains. The major difference
between these two computational domains was in the extent of
the downstream fetch between the last row of obstacles and the
outflow plane. Furthermore, the grid system for the small compu-
tational domain is finer (i.e., provides a higher-resolution grid)
than that for the large computational domain.

Both the large and small computational domains include 12
rows and 5 central columns of MUST obstacles. As shown later,
including only 5 central columns of the MUST obstacle array
(and imposing periodicity in the mean velocity and turbulence
fields in the spanwise direction) for the simulations was sufficient
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Fig. 9. Time history of the normalized concentration standard deviation, ðc02Þ1=2
=Cs , in the cloud obtained at six x-locations along y/L = 0 and within the canopy at the height

z/H = 0.75.
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to provide good predictions of the flow and concentration quanti-
ties. As depicted in Figs. 2b and c, the grid lines were preferentially
concentrated near the location of the source (which was at
x/L = 3.67 and y/L = 0) and in the vicinity of every solid surface
(e.g., walls, rooftops, ground) where the gradients in the flow prop-
erties are expected to be the greatest. The spacing between the grid
lines was gently stretched with increasing distance from the solid
surfaces.

In order to predict the mean concentration and concentration
variance of the puff-cloud as it evolves within and above the MUST
array, a total time of 25 s was simulated using URANS with a tem-
poral resolution of 0.05 s per time step.

4. Results

In this section, numerical predictions of the flow in terms of the
mean velocity and turbulence kinetic energy will be compared
with experimental values at five different streamwise locations.
Dispersion in terms of the mean concentration and concentration
variance will be compared to the corresponding experimental data
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Fig. 10. Time history of the normalized concentration standard deviation, ðc02Þ1=2
=Cs , in the cloud obtained at six x-locations along y/L = 0 and above the canopy at the height

z/H = 1.5.
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at six streamwise locations both within and above the obstacle
array.

4.1. Velocity statistics

This subsection assesses the ability of urbanSTREAM concerning
the simulation of the disturbed wind flow through the MUST
obstacle array. To this end, we compare RANS-predicted stream-
wise mean velocity and turbulent kinetic energy with the corre-
sponding measured quantities.
Fig. 3 displays isopleths of the normalized mean spanwise
velocity vn � �v=Ub in a horizontal plane through the MUST array
at the height z/H = 0.61. This figure shows the result for the simu-
lation undertaken on the small computational domain, which pro-
vides a qualitative visualization of the complex topology of vortex
shedding in the obstacle array predicted using the RANS approach.
It can be seen that as the flow passes by an obstacle in the array,
symmetrical mean vortical structures are generated, and these vor-
tical structures are much larger at the front and rear edges of the
array than inside the array where the size of these flow structures



Fig. 11. Normalized total dosage Dn � D=Cs isopleths displayed on a logarithmic
scale obtained in a horizontal plane at the height z/H = 0.61. The result shown here
is for the small domain.
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are inhibited due to the presence of the neighboring obstacles. A
careful examination of the topology of the mean flow patterns dis-
played in Fig. 3 suggests that the mean velocity field within the
second urban canyon (between second and third rows of obstacles)
is ‘‘typical” of its neighbors. This implies that in the MUST array
interior, a streamwise periodic boundary-condition could have
been imposed to model the flow in a unit cell of a single represen-
tative obstacle and the corresponding street canyon. In conse-
quence, in the MUST obstacle array, the model predicts that the
mean flow within the array adjusts to the canopy within a distance
of about 7.33L.

Fig. 4 exhibits vertical profiles of the normalized mean stream-
wise velocity, �u=Ub at five streamwise locations along the center-
line of the 5th column of obstacles (y/L = 0). Experimental
measurements for �u are shown for both configurations used in
the experiment (namely, the u–v and u–w configurations used by
the 2-component LDA system). Agreement of the predictions pro-
vided by the RANS model for both the small and large domains is
very good at almost all the streamwise locations. The two flow do-
mains which use two different grids provide virtually identical pre-
dictions for �u=Ub, implying negligible domain size and grid
sensitivity (for the purposes of this study) in the predictions of
the mean streamwise velocity.

In the impact region upstream of the windward face of the
MUST obstacle array at x/L = � 2.67 (or, row �0.5 – see Fig. 2),
the measurement and the prediction of �u do not show any reversal
in the mean flow close to the ground, but the RANS model over-
predicts �u for z/H [ 1. At x/L = 3.67 (row 1.5) in the adjustment re-
gion, the model prediction captures the very strong shear layer
that forms immediately downstream of the leeward (rear) face of
an obstacle in the first row, whose signature is seen in the inflec-
tion point in �uðzÞ at or near the obstacle height H. Furthermore,
the magnitude of the reverse flow in the first spanwise-oriented
street canyon below z/H � 1/2 is correctly predicted by the model.
At x/L = 16.33 (row 3.5) and 35.33 (row 6.5) in the equilibrium re-
gion where the mean flow has adjusted to the urban canopy and
reached streamwise equilibrium (viz., the mean streamwise veloc-
ity field is fully developed), the vertical profiles of �u are almost
identical to each other. This feature appears in both the measure-
ments and model predictions. Finally, at x/L = 73.3 (row 12.5) in
the exit region of the array directly downstream of the last row
of obstacles, the predicted mean streamwise velocity is in good
conformance with the measurements. The reduction in the mean
shear at or near z = H is predicted correctly at this x-location as �u
begins the recovery towards the far upwind undisturbed reference
state.

Fig. 5 exhibits the vertical profiles of the turbulent kinetic en-
ergy, k, at the same x-locations as the mean streamwise velocity
shown in Fig. 4. At x/L = �2.67 (row �0.5) in the impact region,
the predicted levels of turbulence energy are good. More specifi-
cally, the increase in k above the height H as an obstacle in the first
row of the array is approached is predicted quite well, although
prediction of the location of maximum k appears to be too far away
from the ground at this x-location. At x = 3.67 (row 1.5), the posi-
tion of the prominent ‘‘nose” in the k profile lying at or just above
the top of the first row of obstacles is correctly reproduced by the
model prediction. Comparing k at x/L = 16.33 (row 3.5) and 35.33
(row 6.5), it is seen that the peak value of k, lying at the center
of the shear or mixing layer near the top of the canopy, attenuates
downstream. This feature in the TKE is captured correctly by the
model predictions, although the peak values of k at these two x-
locations are slightly under-predicted. Although the prediction of
the TKE profile at x/L = 73.3 (row 12.5 in the exit region) is very
similar in shape to the measured profile and the position of the
maximum TKE is fairly well predicted, the level of turbulence en-
ergy is under-predicted by the model at this location.
4.2. Concentration statistics

The model predictions of the location of the cloud centroid,
ð�xc; �yc;�zcÞ, and the cloud spread, (rx,ry,rz), in the three coordinate
directions (normalized by L) for the instantaneous release (whose
location is indicated in Fig. 2) as a function of the normalized travel
time, t/ts, are shown in Fig. 6. The most striking feature in Fig. 6 is
that the streamwise cloud spread, rx, occurs significantly faster (by
orders of magnitude) than the cloud spreads in the two directions
normal to the x-direction. This implies that shape of the mean
cloud is highly anisotropic (hence, highly distorted) as it disperses
within and above the obstacle array. As shown in Fig. 4, the mag-
nitude of the very strong wind shear that develops at or near can-
opy height H and the enhanced vertical turbulent diffusion in the z-
direction owing to the increased production of TKE in this shear
layer (see Fig. 5), results in a shear-enhanced streamwise disper-
sion in the cloud.

Predictions of the time history of the ensemble-averaged nor-
malized concentration profiles, �c=Cs, along the centerline of the
mean cloud at y/L = 0 at six downstream distances at two different
heights within and above the canopy (z/H = 0.75 and 1.5) are
exhibited, respectively, in Figs. 7 and 8. Here, Cs is the source con-
centration (viz., concentration of tracer released from the source).
Experimental measurements of �c=Cs have been superimposed in
the figures for comparison with the URANS model predictions. It
is noted that the shapes of the mean concentration time profiles
are generally predicted well by the model. The model predictions
and the measurements both show that these profiles are skewed
to the right with the leading edge of the profile rising more rapidly
than the trailing edge, the latter of which is seen to exhibit a long
tail region of decay. In general, the arrival time of the cloud (i.e., the
delay before the cloud reaches the receptor location) is predicted
quite well by the model, although the time at which the cloud
reaches its maximum value is under-predicted slightly by the
model. Furthermore, the value of the peak mean concentration at
each receptor location is over-predicted by the model, whereas
the ‘‘duration” (i.e., delay between the arrival and departure time)
of the cloud is slightly under-predicted. The predictions for �c exhi-
bit a relatively small sensitivity to the use of the small and large
domains with the fine- and coarse-grid resolutions — certainly,
the differences in the predicted �c arising from the sizes of the
two flow domains and their concomitant discretizations are less
than about 10%.

Figs. 9 and 10 compare predictions of the time history of the
normalized concentration standard deviation, ðc02Þ1=2=Cs, with



a

c

e f

d

b

Fig. 12. Crosswind (horizontal) profiles of the total dosage D=Cs obtained at six x-locations within the canopy at z/H = 0.75. The numerical predictions were obtained using
the small domain with the finer-grid resolution.
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the corresponding experimental measurements. These concentra-
tion standard deviation profiles are taken along the mean cloud
centerline (y/L = 0) at six downwind locations and at two heights,
one within (z/H = 0.75) and one above (z/H = 1.5) the canopy. The
numerical predictions were obtained using two different models
(i.e., Model-1 and Model-2) for the dissipation length-scale, and
for each of these models on both the small and large flow
domains.
First, let us focus on the model predictions obtained using the
closure coefficients of Yoshizawa (1985). The closure coefficients
recommended by Yoshizawa (1985) are given as follows:

ðCs1; Cs2Þ ¼ ð0:134;�0:032Þ
ðCoef:-A : original coefficients of Yoshizawa ð1985ÞÞ: ð22Þ

Coef.-A has been successfully used to compute the concentration
field (first-order passive scalar moment) shown in Figs. 7 and 8
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Fig. 13. Crosswind (horizontal) profiles of the total dosage D=Cs obtained at six x-locations above the canopy at z/H = 1.5. The numerical predictions were obtained using the
small domain with the finer-grid resolution.
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(by solving Eq. (5)). Now, it is necessary to evaluate whether this set
of coefficients is also suitable for computing the concentration var-
iance (second-order passive scalar moment) (by solving Eq. (6)). As
shown in Figs. 9a and 10a, near the source (row 2.5), the prediction
of the time profile of ðc02Þ1=2 obtained using Coef.-A for the turbu-
lence scalar flux and Model-2 for the dissipation length-scale is in
good conformance with the experimental data. However, further
downstream from the source, the predictive accuracy for ðc02Þ1=2
deteriorates in the sense that the decay in concentration standard
deviation as the cloud departs a receptor location is too slow in
comparison with the experimental measurements.

This unphysical behavior in ðc02Þ1=2 can be traced back to the
turbulent scalar flux model of Yoshizawa (1985). This is not too
surprising owing to the fact that the current tensor diffusivity
models for the turbulent scalar flux (including that of Yoshizawa)
were originally designed for closure of the transport equation for
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the mean concentration, rather than for the concentration vari-
ance. In view of this, we re-calibrated the closure coefficients of
Yoshizawa’s scalar flux model for its application to the transport
equation for the concentration variance. This exercise suggests that
the following set of closure coefficients should be used for Yoshiz-
awa’s model when applied for the closure of the Reynolds-aver-
aged equation for the concentration variance:

ðCs1;Cs2Þ ¼ ð0:142;�0:012Þ ðCoef :-B : modified coefficientsÞ:
ð23Þ

We will refer to this set of modified closure coefficients for Yoshiz-
awa’s model as Coef.-B. With reference to Figs. 9 and 10, good re-
sults are now obtained for predictions of ðc02Þ1=2 using the
proposed Coef.-B, with the model profiles closely matching the
experimental measurements.

Next, let us compare the performance of Model-1 and Model-2
when used in conjunction with Coef.-B. As is evident from Figs.
9c–f, Model-1 results in a significant under-prediction of ðc02Þ1=2

in the trailing portion of the cloud at locations below the canopy.
Furthermore, from Figs. 10c–f, the same model combination also
results in the largest over-prediction in the maximum value of
ðc02Þ1=2 at locations above the canopy. Given the predictive perfor-
mance of the various model combinations for the turbulent scalar
flux and dissipation length-scale, it is seen that Coef.-B (for the sca-
lar flux model) used in combination with Model-2 (for modelling
the concentration variance dissipation rate) provides the best over-
all predictions for the concentration variance.

The total dosage is defined as the time integral of the mean con-
centration of the cloud:

D ¼
Z T

0

�cdt; ð24Þ

where T is a time interval chosen to be sufficiently long so as to in-
clude the entire passage of the cloud at a receptor location. Fig. 11
displays the isopleths for the total dosage in the mean cloud (nor-
malized by Cs), in a horizontal plane through the cloud at a height
of z/H = 0.61. Note that the passive scalar released from the
ground-level point source is rapidly entrained and mixed across
the width W of the obstacle in the lee recirculation zone. Owing
to this rapid mixing of passive scalar in the wake region of an obsta-
cle, there is little sensitivity of the dispersion to the scalar source
location provided this location was within the recirculating wake
behind the obstacle. Figs. 12 and 13 show the crosswind (horizon-
tal) profiles of the predicted total dosage at six downwind locations
at two different heights, namely at z/H = 0.75 and 1.5, respectively.
Generally speaking, with the exception of the predictions of D for
rows 9.5 and 12.5 at z/H = 1.5 (cf. Figs. 13e and f), the model predic-
tions for D are in good conformance with the experimental mea-
surements. More specifically, the crosswind dosage profiles in the
array cloud are Gaussian and self-similar.

5. Conclusion

The instantaneous release of a passive tracer from a ground-
level point source in the MUST array has been studied using an
advanced turbulence modelling approach (viz., nonlinear model
for the stress–strain relationship, tensor diffusivity (anisotropic)
model for the turbulent scalar flux, and a new formulation for a
scalar dissipation length-scale model). In comparison with the
experimental measurements conducted in the water-channel, the
RANS-based numerical simulation predicted successfully the
highly disturbed mean velocity, the turbulent kinetic energy, the
mean concentration and concentration variance within and above
the urban canopy. In conclusion, it has been demonstrated that the
modelling schemes proposed here can be used to model flow and
dispersion of a passive scalar in an idealized obstacle array under
the laboratory conditions considered here. Although the test re-
sults are encouraging, the modelling proposed here still needs to
be further validated using other available urban flow and pollutant
dispersion data from both laboratory and full-scale experiments.

In this study, Yoshizawa’s (1985) tensor diffusivity model for
the turbulent scalar flux was investigated for closure of the trans-
port equations for mean concentration and concentration variance.
It was demonstrated that although this model works very well for
the prediction of the mean concentration field, the closure coeffi-
cients for this model needed to be re-calibrated in order for it to
provide better predictions for the behavior of the concentration
variance in instantaneous clouds dispersing in a built-up
environment.
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