Environmental Chemistry and Biogeochemistry Group

Canada Research Chair in Arctic Environmental Chemistry 

 

              Home          People          Research          Opportunities          Courses           Publications           News          UCTEL           SERF           CEOS    

 

 

 

 

Citation metrics:            Logo

Description automatically generated                            

 

 

Journal Papers:

 

158. Edwards B.A., Pfeffer M.A., Ilyinskaya E., Kleine-Marshall B.I., Mandon C.L., Cotterill A., Aiuppa A., Outridge P.M., Wang F., 2024. Exceptionally low mercury concentrations and fluxes from the 2021 and 2022 eruptions of Fagradalsfjall volcano, Iceland. Sci. Total Environ. 917, 170457, doi:  10.1016/j.scitotenv.2024.170457

 

157. Schindler, M., Loria A., Ramos-Arroyoc Y.R., Wang F. 2024. Nano-mineral assemblages in mercury- and silver-contaminated soils: records of sequestration, transformation, and release of mercury- and silver-bearing nanoparticles. Environ. Sci. Process. Impacts.  doi: 10.1039/D3EM00302G

 

156. Jørgensen C.J., Søndergaard J., Larsen M.M., Kjeldsen K.K., Rosa D., Sapper, S.E., Heimbürger-Boavida L.E., Kohler S.G., Wang F., Gao Z., Armstrong D., Albers C.N. 2024. Large mercury release from the Greenland Ice Sheet invalidated. Science Adv.  10, eadi7760, doi: 10.1126/sciadv.adi7760

 

155. Huang S.J., Wang F., Yuan T.F., Song Z.C., Wu P.P., Zhang Y. 2023. Modeling the mercury cycle in the sea ice environment: A buffer between the polar atmosphere and ocean. Environ. Sci. Technol. 2023, doi: 10.1021/acs.est.3c05080

 

154. Rodrigues C.Warret, Armstrong  D., Wang F., and Roth J.D. 2024. Tissue composition and storage duration affect the usefulness of generic wet-to-dry mass conversion factors in toxicology studies. Environ. Res., doi: 10.1016/j.envres.2023.116727

 

153. Segato D., Saiz-Lopez A., Mahajan A.S., Wang F., Corella J.P., Cuevas C.A., Erhardt T., Jensen C.M., Zeppenfeld C., Kjær H.A., Turetta C., Cairns W.R.L., Barbante C., and Spolaor A. 2023.  Arctic mercury flux increased through the Last Glacial Termination with a warming climate. Nature Geosci. 16, 439-445, doi: 10.1038/s41561-023-01172-9

 

152. Gao Z., Bailey N., and Wang F. 2023. Experimental determination of mercury photoreduction rates in cloudwater. J. Geophys. Res. ­Atmos. 128, e2022JD038183, doi: 10.1029/2022JD038183

 

151. Edwards B.A., Pfeffer M.A., Jóhannsson Þ., Outridge P.M., and Wang F. 2023. An inter-method comparison of mercury measurements in Icelandic volcanic gases. Appl. Geochem. 152, 105654, doi: 10.1016/j.apgeochem.2023.105654

 

150. Rabiei M., Chi G., Potter E.G., Petts D.C., Wang F., and Feng R. 2023. Spatial variations in fluid composition along structures hosting unconformity-related uranium deposits in the Athabasca Basin, Canada: implications for ore-controlling factors. Miner. Deposita, doi: 10.1007/s00126-023-01171-1

 

149. Galloway J., Grasby S.E., Wang F., Hadlari T., Dewing K., Bodin S., and Sanei H. 2023. A mercury and trace element geochemical record across Oceanic Anoxic Event 1b in Arctic Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 617, 111490, doi: 10.1016/j.palaeo.2023.111490

 

148. Huang J., Kang S.-C., Yin R.-S., Tang W.-J., Chen S.-Y., Guo J.-M., Zhang Q.-G., Sharma C.M., Li C.-L., Tripathee L., and Wang F. 2023. Northward extent of atmospheric mercury transboundary transport to the Himalayas and Tibetan Plateau Region. Geophys. Res. Lett. 50, e2022GL100948, doi: 10.1029/2022GL100948

 

147. Vickers M.L., Jelby M.E., Śliwińska K.K., Percival L.M.E., Wang F., Sanei H., Price G.D., Ullmann C.V., Grasby S.E., Reinhardt L., Mather T.A., Frieling, J., Korte C., Jerrett R.M., Jones, M.T., Midtkandal I., and Galloway J.M. 2023. Volcanism and carbon cycle perturbations in the High Arctic during the Late Jurassic – Early Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 613, 111412, doi: 10.1016/j.palaeo.2023.111412

 

146. Wu Q.R., Zhang Y.X., Li P., Fu, X.W., Zhang Q.G., Wang X., Chen L., Wang, S.X., Wang F., and Feng, X.B. 2022. Ecosystem mercury recovery and health benefit under the Minamata Convention in a changing climate. Rev. Environ. Contam. Toxicol. 260, 15, doi: 10.1007/s44169-022-00016-8

 

145. Pyke R., Fortin N., Wasserscheid J., Tremblay J., Schreiber L., Levesque M.-J., Messina-Pacheco S., Whyte L., Wang F., Lee K., Cooper D., and Greer C.W. 2022. Biodegradation potential of residue generated during the in-situ burning of oil in the marine environment. J. Hazard. Mater. 130439, doi: 10.1016/j.jhazmat.2022.130439

 

144. Wang X., Yuan W., Lin C.-J., Wang D.Y., Luo J., Xia J.C., Zhang W., Wang F., and Feng X. 2022. Root uptake dominates mercury accumulation in permafrost plants of Qinghai-Tibet Plateau. Commun. Earth Environ.  3, 287, doi: 10.1038/s43247-022-00619-y

 

143. Farahani M., Abdrabou M., Zhang H., Zhu J., Wang F., Lee K., and Zheng Y. 2022. In situ burning of crude oils using iron oxide nanoparticles as additives. Fuel, 330, 125568, doi: 10.1016/j.fuel.2022.125568

 

142. Sun G.-Y., Feng X.-B., Yin R.-S., Wang F., Lin C.-J., Li K., and Sommar J. 2022. Dissociation of mercuric oxides drives anomalous isotope fractionation during net photooxidation of mercury vapor in air. Environ. Sci. Technol.  56, 13428-13438, doi: 10.1021/acs.est.2c02722

 

141. Jonsson S., Nerentorp Mastromonaco M., Wang F., Bravo A.G., Cairns W.R.L., Chételat J., Douglas T.A., Lescord G., Ukonmaanaho L., and Heimbürger-Boavida L.-E., 2022. Arctic methylmercury cycling. Sci. Total Environ., 157445, doi: 10.1016/j.scitotenv.2022.157445

 

140. Gao Z., Zheng W., Li Y.-B., Liu Y.-R., Wu M.-J., Li S.-Y., Li P., Liu G.-L., Fu X.-W., Wang S.-X., Wang F., Cai Y., Feng X.-B., Gu B., Zhong H., and Yin Y.-G. 2022. Mercury transformation processes in nature: Critical knowledge gaps and perspectives for moving forward. J. Environ. Sci., doi: 10.1016/j.jes.2022.07.013

 

139. Loria A., Ramos-Arroyo Y.R., Rocha D., Cruz-Jiménez G., Razo Soto I., Alfaro de la Torre M.C., Armstrong D., Guerrero S., and Wang F. 2022. Widespread elevated concentrations of gaseous elemental mercury in Guanajuato, Mexico, centuries after historical silver refining by mercury amalgamation. Sci. Total Environ. 843, 157093, doi: 10.1016/j.scitotenv.2022.157093

 

138. Huang J., Kang, S., Wang L., Liu K., Ram K., Sillanpää M., Tang W., Guo J., Zhang Q., Ma M., Tripathee L., and Wang F. 2022. Anthropogenic and natural drivers of seesaw-like spatial patterns in precipitation mercury over western China. Environ. Pollut. 307, 119525, doi: 10.1016/j.envpol.2022.119525

 

137. Dietz R., Letcher R.J., Aars J., Andersen, M., Boltunov A., Born E.W., Ciesielski T.M., Das K., Dastnai S., Derocher A.E., Desforges J.-P., Eulaers I., Ferguson S., Hallanger I., Heide-Jørgensen M.P., Heimbürger-Boavida L.-E., Hoekstra P.F., Jenssen B.M., Kohler S.G., Larsen M.M., Lindstrøm U., Lippold A., Morris A., Nabe-Nielsen J., Nielsen N.H., Peacock E.,; Pinzone M., Rigét F.F., Rosing-Asvid A., Routti H., Siebert U., Stenson G., Stern G., Strand J., Søndergaard J., Treu G., Víkingsson G.A., Wang F., Welker J.M., Wiig Ø., Wilson S.J., Sonne C. 2022. A risk assessment review of mercury exposure in Arctic marine and terrestrial mammals. Sci. Total Environ., 829, 154445, doi: 10.1016/j.scitotenv.2022.154445

 

136. Chételat J., McKinney M.A., Amyot M., Dastoor A., Douglas T.A., Lars-Eric Heimbürger-Boavida, Kirk J., Kahilainen K.K., Outridge P., Pelletier N., Skov H., St. Pierre K., Vuorenmaa J., Wang F. 2022. Climate change and mercury in the Arctic: Abiotic interactions. Sci. Total Environ. 824, 153715, doi: 10.1016/j.scitotenv.2022.153715

 

135. Gao Z., Geilfus N.-X., Saiz-Lopez A., and Wang F. 2022. Reproducing Arctic springtime tropospheric ozone and mercury depletion events in an outdoor mesocosm sea ice facility. Atmos. Chem. Phys. 22, 1811-1824, doi: 10.5194/acp-22-1811-2022.

 

134. Geilfus N.X., Munson K.M., Lemes M., Wang F., Tison J.L., and Rysgaard S. 2021. Meteoric water contribution to sea ice formation and its control of the surface water carbonate cycle on the Wandel Sea shelf, northeastern Greenland. Elementa 9, 00004, doi: 10.1525/elementa.2021.00004.

 

133. Geilfus N.-X., Munson K.M., Eronen-Rasimus E., Kaartokallio H., Lemes M., Wang F., Rysgaard S., and Delille B. 2021. Landfast sea ice in the Bothnian Bay (Baltic Sea) as a temporary storage compartment for greenhouse gases. Elementa 9, 00028, doi: 10.1525/elementa.2021.00028.

 

132. Sun G.-Y., Wu Y.-J., Feng X.-B., Wu X., Li X.-Y., Deng Q.-W., Wang F., and Fu X.-W. 2021. Precise analysis of antimony isotopic composition in geochemical materials by MC-ICP-MS. Chem. Geol. 582, 12045, doi: 10.1016/j.chemgeo.2021.120459.

 

131. Sanei H., Outridge P.M., Oguri K., Stern G.A., Thamdrup B., Wenzhöfer F., Wang F., and Glud, R.N. 2021. High mercury accumulation in deep-ocean hadal sediments. Sci. Rep. 11, 10970, doi: 10.1038/s41598-021-90459-1.

 

130. Zhang Y., Song Z., Huang S., Zhang P., Peng Y., Wu P., Gu J., Dutkiewicz S., Zhang H., Wu S., Wang F., Chen L., Wang S., and Li P. 2021. Global health effects of future atmospheric mercury emissions. Nature Comm. 12, 3035, doi: 10.1038/s41467-021-23391-7.

 

129. Huang J., Hills J., Teasdale P.R., Panther J.G., Wang F., Welsh D.T. 2021. Evaluation of the Chelex-DGT technique for the measurement of rare earth elements in the porewater of estuarine and marine sediments. Talanta. 230, 122315, doi: 10.1016/j.talanta.2021.122315.

 

128. Edwards B.A., Kushner D.S., Outridge P.M., and Wang F. 2021. Fifty years of volcanic mercury emission research: knowledge gaps and future directions. Sci. Total Environ. 757, 143800. 

 

127. Saiz-Lopez A., Travnikov O., Sonke K.E., Thackray C.P., Jacob D.J., Carmona-García J., Francés-Monerris A., Roca-Sanjuán D., Ulises Acuña A., Dávalos J.Z., Cuevas C.A., Jiskra M., Wang F., Bieser J., Plane J.M.C., and Francisco J.S. 2020. Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere.  Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1922486117

  

126. Wang X., Yuan W., Lin C.-J., Luo J., Wang F., Feng X.B., Fu X.W., and Liu C. 2020. Underestimated sink of atmospheric mercury in a deglaciated forest chronosequence. Environ. Sci. Technol. 54, 8083-8093

 

125. Hu Y.-B. and Wang F. 2020. Effect of ikaite precipitation on phosphate removal in sea ice. Polar Res. 39, 3413

 

124. Huang J., Kang S.C., Yin R.S., Lin M., Guo J.M., Ram K., Li C.L., Sharma C., Tripathee L., Sun S.W., and Wang F. 2020. Decoupling natural and anthropogenic mercury and lead transport from South Asia to the Himalayas. Environ. Sci. Technol. 54, 5429-5436. 

 

123. Hudelson K.E., Drevnick P.E., Wang F., Armstrong D., and Fisk A.T. 2020. Mercury methylation and demethylation potentials in Arctic lake sediments. Chemosphere 248, 126001

 

122. Munson K.M., Latonas J., Xu W., Elliot A., Armstrong D.A., Stern, G.A, and Wang F. 2020. Elemental mercury in the marine boundary layer of North America: temporal and spatial patterns. Mar. Chem. 220, 103755

 

121. Wang K., Munson K.M., Armstrong D., Macdonald R.W., and Wang F. 2020. Determining seawater mercury methylation and demethylation rates by the seawater incubation approach: a critique. Mar. Chem. 219, 103753

 

120. Wang X., Luo J., Yuan W., Lin C.-J., Wang F., Liu C., Wang G., and Feng X. 2020. Global warming accelerates uptake of atmospheric mercury in regions experiencing glacier retreat.  Proc. Natl. Acad. Sci. U.S.A. 117, 2049-2055

 

119. Jorgensen K.S., Kreutzer A., Lehtonen K.K., Kankaanpaa H., Rytkonen J., Wegeberg S., Gustavson K., Fritt-Rasmussen J., Truu J., Kouts T., Lilover, M.J., Seiler T.-B., Hollert H., Johann S., Marigomez I., Soto M., Lekube X., Jenssen B.M., Ciesielski T., Wilms L.B., Hogstrom R., Pirneskoski M., Virtanen S., Forsman B., Petrich C., Phuong -Dang N., and Wang F. 2019. The EU Horizon 2020 project GRACE - Integrated oil spill response actions and environmental effects. Environ. Sci. Eur. 31, 44, doi: 10.1186/s12302-019-0227-8.

 

118. Geilfus N.-X., Munson K.M., Sousa J., Germanov Y., Bhugaloo S., Babb D., and Wang F. 2019. Distribution and impacts of microplastic incorporation within sea ice. Mar. Pollut. Bull. 145, 463-473, doi: 10.1016/j.marpolbul.2019.06.029.

 

117. Huang J., Kang S., Ma M., Guo J., Cong Z., Dong Z., Yin R., Xu J., Tripathee L., Ram K., and Wang F. 2019. Accumulation of atmospheric mercury in glacier cryoconite over Western China. Environ. Sci. Technol. 53, 6632-6639, doi: 10.1021/acs.est.8b06575.

 

116. Wang F., Outridge P.M., Feng, X.-B., Meng B., Heimburger-Boavida L.-E., and Mason R.P. 2019. How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere? - Implications for evaluating the effectiveness of the Minamata Convention. Sci. Total Environ. 674, 58-70. 

 

115. Asaduzzaman A., Riccardi D.; Afaneh A., Cooper S., Smith J., Wang F., Parks J., and Schreckenbach G. 2019.  Environmental mercury chemistry - In silico. Acc. Chem. Res. 52, 379-388, doi: 10.1021/acs.accounts.8b00454.

 

114. Saiz-Lopez A., Sitkiewicz S., Roca-Sanjuan D., Oliva-Enrich J., Davalos J., Notario R., Jiskra M., Xu Y., Wang F., Thackray C., Sunderland E., Jacob D., Travnikov O., Cuevas C., Acuna A., Rivero D., Plane J., Kinnison D., and Sonke J. 2018. Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition. Nature Comm. 9, 4796, doi: 10.1038/s41467-018-07075-3.

 

113.  Bailey N., Papakyriakou T., Bartels C., Wang F. 2018. Henry's Law constant for CO2 in aqueous sodium chloride solutions at 1 atm and sub-zero (Celsius) temperatures. Mar. Chem. 207, 26-32. doi: 10.1016/j.marchem.2018.10.003.

 

112. Outridge P., Mason R., Wang F., Guerrero S., and Heimburger L.-E. 2018.  Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environ. Sci. Technol. 52, 11466-11477. doi: 10.1021/acs.est.8b01246.

 

111. Wang K., Munson, K.M., Beaupre-Laperriere A., Mucci A., Macdonald R.W., and Wang F. 2018. Subsurface seawater methylmercury maximum explains biotic mercury concentrations in the Canadian Arctic. Sci. Rep. 8:14465, doi: 10.1038/s41598-018-32760-0.

 

110. Geilfus N.-X., Pind M., Else B., Galley R.J., Miller L.A., Thomas H., Gosselin M., Rysgaard S., Wang F., and Papakyriakou T.N. 2018.  Spatial and temporal variability of seawater pCO2 within the Canadian Arctic Archipelago and Baffin Bay during the summer and autumn 2011. Cont. Shelf Res. 156, 1-10.  doi.org/10.1016/j.csr.2018.01.006

 

109. Hu Y.-B., Wang F., Boone W., Barber D., and Rysgaard S. 2017. Assessment and improvement of the sea ice processing for dissolved inorganic carbon analysis. Limnol. Oceanogr. Methods 16, 83-91, doi: 10.1002/lom3.10229 (open access).

 

108. Liu J., Jiang T., Wang F., Zhang J.-Z., Wang D.-Y., Huang R., Yin D.-L., Liu Z.-Y., and Wang J.Z. 2017. Inorganic sulfur and mercury speciation in the water level fluctuation zone of the Three Gorges Reservoir, China: The role of inorganic reduced sulfur on mercury methylation. Environ. Pollut. 237, 1112-1123,  doi.org/10.1016/j.envpol.2017.11.045

 

107. Wang J.C., Xie Z.Q., Wang F., and Kang H. 2017. Gaseous elemental mercury in the marine boundary layer and its air-sea flux in the Southern Ocean in austral summer. Sci. Total Environ. 603-604, 510-518. doi:10.1016/j.scitotenv.2017.06.120

 

106. Kauko H.A., Taskjelle T., Assmy P., Pavlov A.K., Mundy C.J., Duarte P., Mendez M.F., Olsen L.M., Hudson S.R., Johnsen G., Elliott A., Wang F., and Granskog M.A. 2017. Windows in Arctic sea ice: light transmission and ice algae in a refrozen lead.  J. Geophys. Res. Biogeosci. 122, 1486-1505. http://dx.doi.org/ 10.1002/2016JG003626

 

105. Corella J.P., Valero-Garces B.L., Wang F., Martinez-Cortizas A., Cuevas C.A., and Saiz-Lopez A. 2017. 700 years reconstruction of mercury and lead atmospheric deposition in the Pyrenees (NE Spain). Atmos. Environ. 155, 97-107. http://dx.doi.org/10.1016/j.atmosenv.2017.02.018

 

104. Hong Q.-Q., Xie Z.-Q., Liu C., Wang F., Xie P.-H., Kang H., Xu J., Wang J.-C., Wu F.-C., He P.-Z., Mou F.-S., Fan S.-D., Dong Y.-S., Zhan H.-C., Yu X.-W., Chi X.-Y., Liu J.-G., 2016. Speciated atmospheric mercury on haze and non-haze days in an Inland city in China. Atmos. Chem. Phys. 16, 13807-13821, doi:10.5194/acp-16-13807-2016 (access).

 

103. Xu W., Tenuta M., and Wang F. 2016. Bromide and chloride distribution across the snow-sea ice-ocean interface: A comparative study between an Arctic coastal marine site and an experimental sea ice mesocosm. J. Geophys. Res. Oceans. doi:10.1002/2015JC011409 (access).

 

102. Kang S., Huang J., Wang F., Zhang Q., Zhang Y., Li C., Wang L., Chen P., Sharma C., Li Q., Sillanpaa M., Hou J., Xu B., and Guo J., 2016. Atmospheric mercury depositional chronology reconstructed from lake sediment and ice cores in the Himalayas and Tibetan Plateau. Environ. Sci. Technol., 50, 2859-2869 (access).

 

101. Elliott A., Mundy C.J., Gosselin M., Poulin M., Campbell K., and Wang F. 2015. Spring production of mycosporine-like amino acids and other UV-absorbing compounds in sea ice associated algae communities in the Canadian Arctic. Mar. Ecol. Prog. Ser. 541, 91-104, doi: 10.3354/meps11540 (open access).

 

100. Else B.G.T., Rysgaard S., Attard K., Campbell K., Crabeck O., Galley R.J., Geilfus N.-X., Lemes M., Lueck R., Papakyriakou T., and Wang F. 2015. Under-ice eddy covariance flux measurements of heat, salt, momentum, and dissolved oxygen in an artificial sea ice pool. Cold Regions Sci. Technol. 119, 158-169, doi:10.1016/j.coldregions.2015.06.018. (access)

 

99. Kang S.C., Wang F., Morgenstern U., Zhang Y.L., Grigholm B., Kaspari S., Schwikowski M., Ren J.W., Yao T.D., Qin D.H., and Mayewski P.A. 2015. Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records. Cryosphere, 9, 1213-1222 (pdf).

 

98. Slemr F., Angot H., Dommergue A., Magand O., Barret M., Weigelt A., Ebinghaus R., Brunke E.-G., Pfaffhuber K., Edwards G., Howard D., Powell J., Keywood M., and Wang F. 2015. Comparison of mercury concentrations measured at several sites in the Southern Hemisphere. Atmos. Chem. Phys. 15, 3125-3133 (pdf)

 

97. Davoren G.K., Woloschiniwsky C., Halden N.M., and Wang F. 2015. Does otolith chemistry indicate the natal habitat of Newfoundland capelin Mallotus villosus? J. Exp. Mar. Biol. Ecol. 464, 88-95. (access)  

 

96. Afaneh A., Schreckenbach G., and Wang F. 2014. Theoretical study of the formation of mercury (Hg2+) complexes in solution using an explicit solvation shell in implicit solvent calculations. J. Phys. Chem. 118, 11271-11283, DOI: 10.1021/jp5045089

 

95. Rysgaard S., Wang F., Galley R.J., Grimm R., Notz D., Lemes M., Geilfus N.X., Chaulk A., Hare A.A., Crabeck O., Else B.G.T., Campbell K., Sorensen L.L., Sievers J., and Papakyriakou T. 2014. Temporal dynamics of ikaite in experimental sea ice. Cryosphere 8, 1469-1478. (pdf)

 

94. Pućko M., Burt A., Walkusz W., Wang F., Macdonald R.W., Rysgaard S., Barber D.G., Tremblay J.-E., and Stern G.A., 2014. Transformation of mercury at the bottom of the Arctic food web: an overlooked puzzle in the mercury exposure narrative. Environ. Sci. Technol. 48, 7280-7288, doi:10.1021/es404851b.

 

93. Beattie S., Armstrong D., Chaulk A., Comte J., Gosselin M., and Wang F. 2014. Total and methylated mercury in Arctic multiyear sea ice. Environ. Sci. Technol. 48, 5575-5582, doi:10.1021/es5008033. (C&EN news)

 

92. Hare A.A., Kuzyk Z.Z., Macdonald R.W., Sanei H., Barber D., Stern G.A., and Wang F. 2014. Characterization of sedimentary organic matter in recent marine sediments from Hudson Bay, Canada, by Rock Eval pyrolysis. Org. Geochem. 68, 52-60.

 

91. Wang F., Saiz-Lopez A., Mahajan A.S., Gomez Martin, J.C., Armstrong D., Lemes M., Hay T., Prados-Roman C. 2014. Enhanced production of oxidised mercury over the tropical Pacific Ocean: A key missing oxidation pathway. Atmos. Chem. Phys. 14, 1323-1335. [pdf]

 

90. Geilfus N.-X., Galley R.J., Cooper M., Halden N., Hare A., Wang F., Sogaard D.H., and Rysgaard S. 2013. Gypsum crystals observed in experimental and natural sea ice. Geophys. Res. Lett. 40, 1-6, doi:10.1002/2013GL058479.

 

89. Burt A., Wang F., Pućko M., Mundy, C.-J., Gosselin M., Philippe B., Poulin M., Tremblay, J.E., and Stern G.A. 2013. Mercury uptake within an ice algal community during the spring bloom in first-year Arctic sea ice. J. Geophys. Res. Oceans 118, doi:10.1002/jgrc.20380.

 

88. Hare A.A., Wang F., Barber D., Geilfus N.-X., Galley R., and Rysgaard S. 2013. pH evolution in sea ice grown at an outdoor experimental facility. Mar. Chem. 154, 46-54.

 

87. Rysgaard S., Sogaard D.H., Cooper M., Pućko M., Lennert K., Papakyriakou T.N., Wang F., Geilfus N.X., Glud R.N., Ehn J., McGinnnis D.F., Attard K., Sievers J., Deming J.W., and Barber D. 2013. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics. Cryosphere 7, 707-718. [pdf]

 

86. Ostertag S.K., Stern G.A., Wang F., Lemes M., and Chan H.M., 2013. Mercury distribution and speciation in different brain regions of beluga whales (Delphinapterus leucas). Sci. Total Environ. 456-457, 278-286.

 

85. Chapman P.M., Wang F., and Caeiro S.S. 2013. Assessing and managing sediment contamination in transitional waters. Environ. Int. 55, 71-91.

 

84. Wang F. and Zhang J. 2013. Mercury contamination in aquatic ecosystems under a changing environment: Implications for the Three Gorges Reservoir. Chin. Sci. Bull. 58, 141-149. [pdf]

 

83. Foster K., Stern G., Pazerniuk M., Hickie B., Walkusz W., Wang F., and Macdonald R. 2012. Mercury biomagnification in marine zooplankton food webs in Hudson Bay. Environ. Sci. Technol. 46, 12952-12959. DOI: 10.1021/es303434p.

 

82. Wang F., Macdonald R., Armstrong D., and Stern G. 2012. Total and methylated mercury in the Beaufort Sea: The role of local and recent organic remineralization. Environ. Sci. Technol. 46, 11821-11828. DOI: 10.1021/es302882d.

 

81. Douglas T.A., Loseto L., Macdonald R.W., Outridge P., Dommergue A., Poulain A., Amyot M., Barkay T., Berg T., Chetelat J. Constant P., Evans M., Ferrari C., Gantner N, Johnson M.S., Kirk J., Kroer N., Larose C., Lean D., Muir D., Nielsen T.G., Poissant L., Rognerud S., Skov H., Sorensen S., Wang F., and Zdanowicz C.M. 2012. The fate of mercury in Arctic terrestrial and aquatic ecosystems. A review. Environ. Chem. 9, 321-355. [pdf]

 

80. Hutchins C.M., Panther J.G., Teasdale P.R., Wang F., Stewart R.R., Bennett W.W., and Zhao H. 2012. Evaluation of a titanium dioxide-based DGT technique for measuring inorganic uranium species in fresh and marine waters. Talanta 97, 550-556. DOI: 10.1016/j.talanta.2012.05.012.

 

79. Barber D., Asplin M., Papakyriakou T., Miller L., Else B., Iacozza J., Mundy C., Gosslin M., Asselin N., Ferguson S., Lukovich J., Stern G., Gaden A., Pućko M., Geilfus N.X. and Wang F. 2012. Consequences of change and variability in sea ice on marine ecosystem and biogeochemical processes during the 2007-2008 Canadian International Polar Year program. Climatic Change 115, 135-159, DOI: 10.1007/s10584-012-0482-9.

 

78. Zhang Q., Huang J., Wang F., Loewen M., Xu J., Armstrong D., Li C., Zhang Y., and Kang S. 2012. Mercury distribution and deposition in glacier snow over Western China. Environ. Sci. Technol. 46, 5404−5413.

 

77. Carrie J., Stern G., Sanei H., Macdonald R.W., and Wang F. 2012. Determination of mercury biogeochemical fluxes in the remote Mackenzie River Basin, northwest Canada, using speciation of sulfur and organic carbon. Appl. Geochem. 27, 815-824.

 

76. Asaduzzaman A., Wang F. and Schreckenbach G. 2012. Quantum-chemical Study of the diffusion of Hg(0, I, II) into the Ice(Ih). J. Phys. Chem. 116, 5151-5154.

 

75. Nghiem S.V., Rigor I.G., Richter A., Burrows J.P., Shepson P.B., Bottenheim J., Barber D.G., Steffen A., Latonas J., Wang F., Stern G., Clemente-Colon P., Martin S., Hall D.K., Kaleschke L., Tackett P., Neumann G., and Asplin M.G. 2012. Field and satellite observations of the formation and distribution of Arctic atmospheric bromine above a rejuvenated sea ice cover. J. Geophys. Res. doi: 10.1029/2011JD016268.

 

74. Afaneh A.T., Schreckenbach G. and Wang F. 2012. Density functional study of substituted (-SH, -S, -OH, Cl) hydrated ions of Hg2+. Theor. Chem. Acc. 131:1174, doi: 10.1007/s00214-012-1174-2.

 

73. Odoh S.O., Pan Q.-J., Shamov G.A., Wang F., Fayek M., and Schreckenbach G. 2012, Theoretical study of the reduction of uranium (VI) aquo complexes on titania particles and by alcohols. Chem. Eur. J. doi: 10.1002/chem.201101197.

 

72. Stern G.A., Macdonald R.W., Outridge P.M., Wilson S., Chetelat J., Cole A., Hintelmann H., Loseto L.L., Steffen A., Wang F., and Zdanowicz C. 2012. How does climate change Influence Arctic mercury? Sci. Total Environ. 414, 22-42.

 

71. Lemes M., Wang F., Stern G.A., Ostertag S., and Chan H.M. 2011. Methylmercury and selenium speciation in different tissues of beluga whales (Delphinapterus leucas) from the Western Canadian Arctic. Environ. Toxicol. Chem. 30, 2732-2738.

 

70. Chaulk A., Stern G.A., Armstrong D., Barber D., and Wang F. 2011. Mercury distribution and transport across the ocean-sea ice-atmosphere interface in the Arctic Ocean. Environ. Sci. Technol. 45, 1866-1872.

 

69. Vinceti M., Bonvicini F., Rothman K.J., Vescovi L., and Wang F. 2010. The relation between amyotrophic lateral sclerosis and inorganic selenium in drinking water: a population-based case-control study. Environ. Health 9:77, doi:10.1186/1476-069X-9-77.

 

68. Hare A.A., Stern G.A., Kuzyk Z.Z., Macdonald R.W., Johannessen S.C., and Wang F. 2010. Natural and anthropogenic mercury distribution in marine sediments from Hudson Bay, Canada. Environ. Sci. Technol. 44, 5805-5811.

 

67. Li L., Wang F., Meng B., Lemes M., Feng X.B., Jiang G.B. 2010. Speciation of methylmercury in rice grown from a mercury mining area. Environ. Pollut. 158, 3103-3107.

 

66. Wang F., Macdonald R.W., Stern G.A., and Outridge P.M. 2010. When noise becomes the signal: Chemical contamination of aquatic ecosystems under a changing climate. Mar. Pollut. Bull. 60. 1633-1635.

 

65. Khan M.A.K. and Wang F. 2010. Chemical demethylation of methylmercury by selenoamino acids. Chem. Res. Toxicol. 23, 1202-1206.

 

64. Sanei H., Outridge P.M., Goodarzi F., Wang F., Armstrong D., Warren K., and Fishback L. 2010. Wet deposition mercury fluxes in the Canadian sub-Arctic and southern Alberta, measured using an automated precipitation collector adapted to cold regions. Atmos. Environ. 44, 1672-1681.

 

63. Asaduzzaman A., Khan M.A.K., Schreckenbach G., and Wang F. 2010. Computational studies of structural, electronic, spectroscopic and thermodynamic properties of methylmercury-amino acid complexes and their Se analogues. Inorg. Chem. 49, 870-878.

 

62. Carrie J., Wang F., Sanei H., Macdonald R., Outridge P., and Stern G. 2010. Increasing contaminant burdens in an Arctic fish, burbot (Lota lota), in a warming climate. Environ. Sci. Technol. 44, 316-322.

 

61. Li M., Kang S., Zhu L., Wang F., Wang J., Yi C., Fang X., Xie M. 2009. On the unusual Holocene carbonate sediment in Lake Nam Co, Central Tibet. J. Mt. Sci. 6, 346-353.

 

60. Khan M.A.K. and Wang F. 2009. Reversible dissolution of glutathione-mediated HgSexS1-x nanoparticles and possible significance in Hg-Se antagonism. Chem. Res. Toxicol. 22, 1827-1832.

 

59. Hu X., Wang F., and Hanson M. 2009. Selenium concentration, speciation and behavior in surface waters of the Canadian prairies. Sci. Total Environ. 407, 5869-5876.

 

58. Kang S., Li C., Wang F., Zhang Q., and Cong Z. 2009. Total suspended particulate matter and toxic elements indoors during cooking with yak dung. Atmos. Environ. 43, 4243-4246.

 

57. Li C., Kang S., Zhang Q., and Wang F. 2009. Rare earth elements in the surface sediments of the Yarlung Tsangbo (Upper Brahmaputra River) sediments, southern Tibetan Plateau. Quatern. Int. 208, 151-157.

 

56. Li W., Wang F., Zhang W., and Evans D. 2009. Measurement of stable and radioactive cesium in natural waters by the diffusive gradients in thin films technique with new selective binding phases. Anal. Chem. 81, 5889-5895.

 

55. Khan M.A.K., Asaduzzaman A. Md., Schreckenbach G., and Wang F. 2009. Synthesis, characterization and structures of methylmercury complexes with selenoamino acids. Dalton Trans. 5766-5772.

 

54. Khan M.A.K. and Wang F. 2009. Mercury-selenium compounds and their toxicological significance: toward a molecular understanding of the mercury-selenium antagonism. Environ. Toxicol. Chem. 28, 1567-1577.

 

53. Wang F. and Tessier A. 2009. Zero-valent sulfur and metal speciation in sediment porewaters of freshwater lakes. Environ. Sci. Technol. 43, 7252-7257.

 

52. Lemes M. and Wang F. 2009. Methylmercury speciation in fish muscle by HPLC-ICP-MS following enzymatic hydrolysis. J. Anal. At. Spectrom. 24, 663-668.

 

51. Carrie J., Sanei H., Goodarzi F., Stern G., and Wang F. 2009. Characterization of organic matter in surface sediments of the Mackenzie River Basin, Canada. Int. J. Coal Geol. 77, 416-423. DOI: 10.1016/j.coal.2008.03.007.

 

50. Macdonald R.W., Wang F., Stern G., and Outridge P. 2008. The overlooked role of the ocean in mercury cycling in the Arctic. Mar. Pollut. Bull. 56, 1963-1965.

 

49. Hare A., Stern G., Macdonald R.W., Kuzyk Z.Z., and Wang F. 2008. Contemporary and preindustrial mass budgets of mercury in the Hudson Bay marine system: The role of sediment recycling. Sci. Total Environ. 406, 190-204.

 

48. Zhang Q., Kang S., Wang F., Li C., and Xu Y. 2008. Major ion geochemistry of Nam Co Lake and its sources, Tibetan Plateau. Aquat. Geochem. DOI 10.1007/s10498-008-9039-y.

 

47. Outridge P.M., Macdonald R.W., Wang F., Stern G.A., and Dastoor A.P. 2008. A mass balance inventory of mercury in the Arctic Ocean. Environ. Chem. 5, 89-111. [pdf]

 

46. Loewen M., Wania F., Wang F., and Tomy G. 2008. Altitudinal transect of atmospheric and aqueous fluorinated organic compounds in western Canada. Environ. Sci. Technol. 42, 2374-2379.

 

45. Loewen M., Kang S., Armstrong D., Zhang Q., Tomy G., and Wang F. 2007. Atmospheric transport of mercury to the Tibetan Plateau. Environ. Sci. Technol. 41, 7632-7638.

 

44. Goulet R.R, Holmes J., Page B., Poissant L., Siciliano S.D., Lean D.R.S., Wang F., Amyot M., and Tessier A. 2007. Mercury transformations and fluxes in sediments of a riverine wetland. Geochim. Cosmochim. Acta 71, 3393-3406.

 

43. Miller L.L., Wang F., Palace V.P., and Hontela A. 2007. Effects of acute and subchronic exposures to waterborne selenite on the physiological stress response and oxidative stress indicators in juvenile rainbow trout. Aquat. Toxicol. 83, 263-271.

42. Fu P., Wu F., Liu C., Wang F., Li W., Yue L., and Guo Q. 2007. Fluorescence characterization of dissolved organic matter in an urban river and its complexation with Hg(II). Appl. Geochem. 22, 1668-1679.

 

41. Leitch D.R., Carrie J., Lean D., Macdonald R.W., Stern G.A., and Wang F. 2007. The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River. Sci. Total Environ. 373, 178-195.

 

40. Chen J., Wang F., and Xia X. 2006. Geochemistry of water quality of the Yangtze River basin. Earth Science Frontiers 13, 74-85.

 

39. Chen J., Wang F., and He D. 2006. Geochemistry of water quality of the Yellow River basin. Earth Science Frontiers 13.

 

38. Loewen M.D., Sharma S., Tomy G., Wang F., Bullock P., and Wania F. 2005. Persistent organic pollutants and mercury in the Himalaya. Aquatic Ecosystem Health Management 8, 223-233.

 

37. Chen J., Wang F., Meybeck M., He D., Xia X., and Zhang L. 2005. Spatial and temporal analysis of water chemistry records (1958-2000) in the Huanghe (Yellow River) basin. Global Biogeochem. Cycles 19, GB3016, doi:10.1029/2004GB002325.

 

36. Li W., Zhao H., Teasdale P.R., and Wang F. 2005. Trace metal speciation measurements in waters by the liquid binding phase DGT device. Talanta 67, 571-578.

 

35. Xue L., Fu J.C., Wang F., and Wang L. 2005. A mixture model approach to analyzing major element chemistry data of the Changjiang (Yangtze River). Environmetrics 16, 305-318.

 

 34. Loewen M.D., Halldorson T., Wang F., and Tomy G. 2005. Fluorotelomer carboxylic acids and PFOS in rainwater from an urban center in Canada. Environ. Sci. Technol. 39, 2944-2951.

 

 33. Li W., Zhao H., Teasdale P.R., John R., and Wang F. 2005. Metal speciation measurement by diffusive gradients in thin films technique with different binding phases. Anal. Chim. Acta 533, 193-202.

 

 32. Sukola K., Wang F., and Tessier A. 2005. Metal-sulfide species in oxic waters. Anal. Chim. Acta 528, 183-195.

 

 31. Wang F., Goulet R.R., and Chapman P.M. 2004. Testing sediment biological effects with the freshwater amphipod Hyalella azteca: The gap between laboratory and nature. Chemosphere 57, 1713-1724.

 

 30. Zhang J., Wang F., House J.D., and Page B. 2004. Thiols in wetland interstitial waters and their role in mercury and methylmercury speciation. Limnol. Oceanogr. 49, 2276-2286.

 

 29. Chapman P.M., Wang F., Janssen C.J., Goulet R.R., and Kamunde C.N. 2003. Conducting ecological risk assessments of inorganic metals and metalloids: Current status. Human Ecol. Risk Assess. 9, 641-697.

 

 28. DeVries C. and Wang F. 2003. In situ two-dimensional high-resolution profiling of sulfide in sediment interstitial waters. Environ. Sci. Technol. 37, 792-797.

 

 27. Chen J., Wang F., Xia X., and Zhang L. 2002. Major element chemistry of the Changjiang (Yangtze River). Chem. Geol. 187, 231-255.

 

 26. Chapman P.M., Wang F., Germano J.D., and Batley G. 2002. Pore water testing and analysis: The good, the bad, and the ugly. Mar. Pollut. Bull. 44, 359-366.

 

 25. Wang F., Tessier A., and Hare L. 2001. Oxygen measurements in the burrows of freshwater insects. Freshwater Biol. 46, 317-328.

 

 24. Chapman P.M. and Wang F. 2001. Assessing sediment contamination in estuaries. Environ. Toxicol. Chem. 20, 3-22.

 

 23. Chapman P.M. and Wang F. 2000. Issues in ecological risk assessment of inorganic metals and metalloids. Human Ecol. Risk Assess. 6, 1-24.

 

 22. Chen J., Wang F., Li X.D., and Song J.J. 2000. Geographical variations of trace elements in sediments of the major rivers in eastern China. Environ. Geol. 39, 1334-1340.

 

 21. Wang F. and Chen J. 2000. Relation of sediment characteristics to trace metal concentrations: A statistical study. Water Res. 34, 694-698.

 

 20. Wang F. and Tessier A. 1999. Cadmium complexation with bisulfide. Environ. Sci. Technol. 33, 4270-4277.

 

 19. Chapman P.M., Wang F., Adams W., and Green A. 1999. Appropriate applications of sediment quality values for metals and metalloids. Environ. Sci. Technol. 33, 3937-3941.

 

 18. Wang F. and Chapman P.M. I999. Biological implications of sulfide in sediment - A review focusing on sediment toxicity. Environ. Toxicol. Chem. 18, 2526-2532.

 

 17. Wang F., Chapman P.M., and Allen H.E. 1999. Misapplication of equilibrium partitioning coefficients to derive metals sediment quality values. Mar. Pollut. Bull. 38, 423-425.

 

 16. Wang F., Tessier A., and Buffle J. 1998. Voltammetric determination of elemental sulfur in pore waters. Limnol. Oceanogr. 43, 1353-1361.

 

 15. Chapman P.M., Wang F., Janssen C., Persoone G., and Allen H.E. 1998. Ecotoxicology of metals in aquatic sediments: Binding and release, bioavailability, hazard, risk and remediation. Can. J. Fish. Aquat. Sci. 55, 2221-2243.

 

 14. Wang F., Chen J., and Forsling W. 1997. Modeling sorption of trace metals on natural sediments by surface complexation model. Environ. Sci. Technol. 31, 448-453.

 

 13. Wang F., Chen J., Chen J., and Forsling W. 1997. Surface properties of natural aquatic sediments. Water Res. 31, 1796-1800.

 

 12. Chen J. and Wang F. 1996. Chemical composition of river particulates in eastern China. GeoJournal 40, 31-37.

 

 11. Chen J., Wang F., Cheng C., Chen J., and Song J. 1996. Elemental composition of river particulates in eastern China. Acta Sci. Natural. Univ. Pekin. 32, 206-214.

 

 10. Chen J., Tang F., and Wang F. 1995. Mobilization of mercury from estuarine suspended particulate matter: A case study in the Yalujiang Estuary, northeast China. Water Qual. Res. J. Can. 30:25-32.

 

 9. Wang F. and Y. Chen. 1994. Quantitative structure - activity relationships (QSARs) and their applications in environmental chemistry and toxicology. Adv. Environ. Sci. 2, 26-52.

 

 8. Chen J., Wang F., and J. Chen. 1994. Relation of aquatic particulate grain size to trace metal concentrations in the rivers in eastern China. Acta Scientiae Circumstantiae 14, 419-425.

 

 7. Chen J., Chen J., and Wang F. 1994. Specific surface area of natural sediments from major rivers in eastern China. Environ. Chem. 13, 479-485.

 

 6. Wang F. and Y. Chen. 1993. Environmental phases and fugacity model of persistent organic pollutants. Environ. Chem. 12, 71-77.

 

 5. Chen J., Tang F., Jia Z., Tao S., Deng B., Wang F., Liu Y., Liu Q., and Sun Q. 1993. Mobilization of mercury from the resuspended sediments from the Yalujiang Estuary, northeast China. Acta Scientiae Circumstantiae 13, 385-390.

 

 4. Chen J. and Wang F. 1992. On generating sediment quality criteria. Environ. Chem. 11, 59-70.

 

 3. Chen X. and Wang F. 1991. Speciation and mobility of chromium in sediments from an urban-contaminated river. Environ. Chem. 10, 19-23.

 

 2. Wang F. 1990. On the objectives and sub-disciplines of environmental science. China Environ. Sci. 3, 213-217.

 

 1. Liu H. and Wang F. 1989. Computer-aid municipal air quality assessment using fuzzy models. Environ. Sci. 11, 81-84.

 

 

 

 

 Book Chapters and Technical Reports:

 

20. Wang F. and Macdonald R.W. 2022. Socioeconomic, political, and legal ramifications of environmental and biochemical toxicology: the complicated story of mercury. In: Environmental and Biochemical Toxicology (Gailer J. and Turner R.J., Eds). De Gruyter, Berlin. pp. 287-312.  https://doi.org/10.1515/9783110626285-011

 

19. AMAP, 2021. AMAP Assessment 2021: Mercury in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. 324 p.

 

18. AMAP, 2021. 2021 AMAP Mercury Assessment. Summary for Policy-Makers. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. 16 p.

 

17. Gaden A., Chetelat J., Heath J., Kuzyk Z.Z., Stern G., and Wang F. 2019. Contaminant cycling, ecosystem pathways, and wildlife trends in a changing climate. In: From Science to Policy in the Greater Hudson Bay Marine Region: An Integrated Regional Impact Study (IRIS) of Climate Change and Modernization (Kuzyk Z.A. and Candlish L.M. Eds.). ArcticNet, Quebec City, pp. 311-339.

 

16. Wang F., Xie Z., and Zhang Q. 2019. Environmental chemistry of the cryosphere. In: Frontiers of Environmental Chemistry, Vol. 2 (G.B. Jiang, M.H. Zheng, H.W. Sun, and Y. Cai, Eds). Science Press, Beijing, China.

 

15. AMAP/UN Environment, 2019. Technical Background Report for the Global Mercury Assessment 2018. Arctic Monitoring and Assessment Programme, Oslo, Norway/UN Environment Programme, Chemicals and Health Branch, Geneva, Switzerland (access).

 

14. UN Environment, 2019. Global Mercury Assessment 2018. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland. ISBN: 978-92-807-3744-8 (access).

 

13. Wang F., Pućko M., and Stern G. 2017. Transport and transformation of contaminants in sea ice. In: Sea Ice. 3rd ed. (D.N. Thomas, Ed). Wiley-Blackwell, Oxford. pp. 472-491.

 

12. Outridge P.M. and Wang F. 2015. The stability of metal profiles in freshwater and marine sediments. In: Environmental Contaminants: Using Natural Archives to Track Sources and Long-term Trends of Pollution (J.M. Blais, M.R. Rosen, and J.P. Smol, Eds). Springer, Dordrecht. pp. 35-60.

 

11. Wang F., Xia X. and Chen J. 2014. Water chemistry of major rivers of China. In: Reference Module in Earth Systems and Environmental Sciences. Elsevier. http://dx.doi.org/10.1016/B978-0-12-409548-9.09140-5.

 

10. NCP, 2012. Mercury in Canada's North. Canadian Arctic Contaminants Assessment Report III. Northern Contaminants Program (NCP), Aboriginal Affairs and Northern Development Canada, Ottawa, Canada.

 

9. Wang F., Lemes M., and Khan M.A.K. 2012. Metallomics of mercury: Role of thiol- and selenol-containing biomolecules. In: Environmental Chemistry and Toxicology of Mercury (Y. Cai, G. Liu, and N.J. O'Driscoll, Eds.). Wiley.

 

8. Stern G.A. et al., 2012. Team 8 Contaminants. In: On the Edge: From Knowledge to Action during the Fourth International Polar Year Circumpolar Flaw Lead System Study (2007-2008) (D.G. Barber, T. Tjaden, D. Leitch, L. Barber and W. Chan, Eds.). University of Manitoba, Winnipeg, pp. 140-154.

 

7. AMAP. 2011. Arctic Pollution 2011. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. 38p.

 

6. AMAP, 2011. AMAP Assessment 2011: Mercury in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. 193p.

 

5. Wang F. and Chen J. 2010. Rivers of the World - Eastern Asia. In: River Ecosystem Ecology: A Global Perspective (G.F. Likens, Ed.). Academic Press. San Diego, USA. pp. 302-313.

 

4. Wang F. and Chen J. 2009. Rivers in China and Eastern Asia. In: Encyclopedia of Inland Waters (G.F. Likens, Ed.). Elsevier.

 

3. Chen J., Wang F., and Zhang Y. 2003. Geochemical and surface properties of river sediments in eastern China. In: Sediment Quality Assessment and Management: Insight and Progress (M. Munawar, Ed.). Aquatic Ecosystem Health and Management Society.

 

2. Wu J., Chen J., and Wang F. 1992. Environmental geochemistry of heavy metals in the Bohai Bay, China. In: Heavy Metals in the Aquatic Environment in China (J. Chen and J. Zhou, Eds.). China Environmental Science Publisher, Beijing. pp. 189-230.

 

1.   Chen J., Cheng C, and Wang F. 1991. Geographical variation on geochemical characteristics and heavy metal binding capacity of suspended matter from five major rivers in eastern China. In: Heavy Metals in the Environment (J.-P. Vernet, Ed.). Elsevier, Amsterdam. pp. 125-137.