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Abstract: In this article, we study the problem of parameter estimation for measurement error models by
combining the Bayes method with the instrumental variable approach, deriving the posterior distribution
of parameters under different priors with known and unknown variance parameters, respectively, and
calculating the Bayes estimator (BE) of the parameters under quadratic loss. However, it is difficult to
obtain an explicit expression for BE because of the complex multiple integrals involved. Therefore, we
adopt the linear Bayes method, which does not specify the form of the prior and avoids these complicated
integral calculations, to obtain an expression for the linear Bayes estimator (LBE) for different priors. We
prove that this LBE is superior to the two-stage least squares estimator under the mean squared error matrix
criterion. Numerical simulations show that our LBE is very close to the real parameter whether the variance
parameters are known or unknown, and it gradually approaches BE as the sample size increases. Our results
indicate that this instrumental variable approach is valid for measurement error models.
Résumé: Les auteurs de ce travail abordent le problème d’estimation de paramètres de modèles d’erreur de
mesure en combinant la méthode de Bayes avec une approche de variables instrumentales. Plus précisément,
ils examinent les distributions a posteriori des paramètres en fonction de différentes hypothèses a priori,
tout en prenant en compte les paramètres de variance connus et inconnus, et proposent une méthode pour
calculer l’estimateur de Bayes (EB) des paramètres lorsque la fonction de perte est quadratique. Par ailleurs,
étant donné qu’il est difficile d’exprimer explicitement l’estimateur de Bayes, et ce en raison des intégrales
multiples complexes impliquées, les auteurs proposent de contourner ce problème en utilisant la méthode
de Bayes linéaire. Cette dernière permet, en effet, d’obtenir une expression explicite de l’estimateur
sous différentes lois a priori. Ils montrent ensuite que l’estimateur ainsi obtenu est plus performant que
l’estimateur des moindres carrés à deux degrés basé sur le critère de la matrice des erreurs quadratiques.
Des simulations numériques permettent de conclure que l’estimateur de Bayes linéaire est très proche du
paramètre cible, peu importe que les paramètres de variance soient connus ou inconnus, et que plus la taille
de l’échantillon augmente, plus l’estimateur de Bayes linéaire se rapproche de l’estimateur de Bayes. Enfin,
les résultats du présent travail indiquent que cette approche de variables instrumentales est valide pour les
modèles d’erreur de mesure.

1. INTRODUCTION

In statistics, the regression model is an important tool to study the correlation between variables.
In order to simplify a study, researchers usually assume that there is no measurement error in
the prediction variables. However, in the regression analysis of real data, it is common that
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some predictor variables are not directly observable or are measured with substantial error.
Measurement error exists in many fields such as medicine, econometrics, and biostatistics. In
general, measurement error is unknown and therefore ignored in research. It is well known
that some naive estimation methods that ignore such measurement error will lead to biased and
inconsistent estimators of unknown parameters. However, estimation procedures that account
for measurement error adjust for this deficiency in traditional and naive regression analysis
and hence are preferable. The study of the problem of prediction variables with measurement
error has a long history, dating back to Adock (1877) and Cochran (1968). A comprehensive
introduction to the problem may be found in Fuller (1987).

One of the commonly used methods of dealing with measurement error is the instrumental
variable (IV) approach (e.g., Abarin et al., 2014; Abarin & Wang, 2012; Buzas & Stefanski, 1996;
Carroll & Stefanski, 1994; Fuller, 1987; Guan et al., 2019; Guan & Wang, 2017; Wang, 2021;
Wang & Hsiao, 2007, 2011; Xu, Ma & Wang, 2015). In practice, any variable that is correlated
with the error-prone covariates but is independent of the measurement error and model error
can serve as a valid IV, e.g., a second independent measurement, or repeated measurements at
different time points in longitudinal studies. The IV approach was first studied by Wright (1928)
and Reiersol (1945). Subsequently, Basmann (1957) and Zellner & Theil (1962) used this
approach to construct the two-stage and three-stage least squares estimators, respectively, which
popularized the IV approach in econometrics and statistics. Further, Hansen (1982) used the IV
approach to develop the estimator of generalized moments.

As an alternative, some authors considered using model averaging for the two-stage least
squares (TSLS) estimator; such methods have a Bayes flavour since they allow multiple models
with different weights to be considered (e.g., Liu, 2019; Martins & Gabriel, 2014; Seng &
Li, 2021). The Bayes method has also been used to study measurement error problems in linear
models. For example, see Wang & Wei (2010), Vidal & Bolfarini (2011) and Li, Qiu & Ke (2020).
To our knowledge, the Bayes method has also been combined with the IV approach (e.g., Conley
et al., 2008; Hahn, He & Lopes, 2018; Kleibergen & Zivot, 2003; Kozumi, 2001; Lopes &
Polson, 2014). However, the resulting estimator is usually a nonlinear function of the sample,
which often involves complex multiple integrals and does not lead to useful explicit expressions.
As an approximation of Bayes estimators (BEs), linear Bayes estimators (LBEs) not only avoid
some complicated integral calculations and furnish explicit solutions but also do not depend
on the specific prior form, while ensuring the accuracy of the resulting estimators. The linear
Bayes method was proposed by Hartigan (1969). Rao (1973), Lamotte (1978), Heiligers (1993),
Samaniego & Vestrup (1999), Pensky & Ni (2000), Wang & Singh (2014) and Jiang, Wang &
Wang (2021) used this approach for different models and scenarios.

However, to the best of our knowledge, a combination of the linear Bayes method with the
IV approach has not been studied in the literature. In this article we attempt to fill this gap.
Specifically, we employ the Bayes and linear Bayes methods based on the traditional estimation
method involving an IV to obtain more efficient estimators for the regression coefficients
and variance parameters in a linear model. We also study the finite-sample properties of our
proposed estimators through Monte Carlo simulations and compare their performance with that
of the corresponding traditional and naive least squares estimators.

The rest of the article is organized as follows. In Section 2 we introduce the measurement error
models and the TSLS estimator. In Section 3, using Bayes’ theorem, we find the posterior distribu-
tion of the parameters in the measurement error models with known and unknown variance param-
eter, respectively; we also derive the BE for the parameters under quadratic loss. In Section 4, we
define the LBE for the parameters and establish its superiority with respect to the TSLS estimator.
Numerical comparisons between LBE, BE, and TSLS under different prior distributions may
be found in Section 5. Section 6 is devoted to two data case studies. Section 7 outlines our
conclusions. Various proofs and additional tables have been relegated to the Appendix.
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2. THE MODEL

We consider the following linear regression model:

𝑌
𝑖
= 𝛽0 + 𝛽

⊤

𝐼
�̃�

𝑖
+ 𝜖

𝑖
, 𝑖 ∈ {1,… , 𝑛}, (1)

where 𝑌
𝑖

is the response variable, �̃�
𝑖
∈ ℝ𝑝−1 (𝑝 > 1) is the vector of predictor variables,

𝛽
𝐼
∈ ℝ𝑝−1 is the vector of regression parameters, and 𝜖

𝑖
is the model random error. Further, let

𝑌 = (𝑌1,… , 𝑌
𝑛
)⊤, �̃� = (�̃�1,… , �̃�

𝑛
)⊤ and 𝜖 = (𝜖1,… , 𝜖

𝑛
)⊤. Then, Equation (1) can be written as

𝑌 = 𝛽01
𝑛
+ �̃�𝛽

𝐼
+ 𝜖 = 𝑋𝛽 + 𝜖, (2)

where 1
𝑛
= (1,… , 1)⊤, 𝑋 = (1

𝑛
, �̃�), and 𝛽 = (𝛽0, 𝛽

⊤

𝐼
)⊤. In addition, we assume that the rank of

𝑋 is 𝑝 and 𝜖 ∼ (0, 𝜎2
𝜖
𝐼
𝑛
), where 𝐼

𝑛
is the 𝑛-dimensional identity matrix.

Suppose that �̃� is unobservable and that, instead, we observe

𝑊 = �̃� + 𝑢, (3)

where 𝑊 = (𝑊1,… ,𝑊
𝑝−1) and 𝑢 is an 𝑛 × (𝑝 − 1)matrix of random measurement errors, which

is assumed to follow a matrix normal distribution, denoted by 𝑢 ∼
(
0, 𝐼

𝑛
, 𝜎

2
𝑢
𝐼
𝑝−1
)
.

Remark 1. If a random matrix𝑋0 ∈ ℝ𝑚×𝑛 follows a matrix normal distribution (𝑀,𝑁, 𝑉 ),
then its density is

𝑓 (𝑋0|𝑀,𝑁, 𝑉 ) = (2𝜋)−𝑚𝑛∕2|𝑉 |−𝑚∕2|𝑁|−𝑛∕2

× exp
{
−1

2
tr
[
𝑉
−1(𝑋0 −𝑀)⊤𝑁−1(𝑋0 −𝑀)

]}
,

where 𝑀 ∈ ℝ𝑚×𝑛, 𝑁 ∈ ℝ𝑚×𝑚, and 𝑉 ∈ ℝ𝑛×𝑛 are positive definite matrices. A matrix normal
distribution can be vectorized to obtain a multivariate normal distribution, i.e.,

𝑋0 ∼ (𝑀,𝑁, 𝑉 )⇔ Vec(𝑋0) ∼ (Vec(𝑀), 𝑉 ⊗ 𝑁) ,

where Vec(⋅) denotes the vectorization of the matrix argument, and ⊗ is the Kronecker product
operation.

The IV is simply a variable that is correlated with �̃� but uncorrelated with 𝜖 and 𝑢. We
assume that �̃� is the IV and is related to �̃� through

�̃� = 1
𝑛
𝛼
⊤

0 + �̃�𝛼
𝐼
+ 𝑒 = 𝑍𝛼 + 𝑒, (4)

where 𝑍 = (1
𝑛
, �̃�) is an 𝑛 × 𝑞 matrix of rank 𝑞, 𝑞 ≥ 𝑝 − 1, 𝛼0 ∈ ℝ𝑝−1 denotes the intercept, and

𝛼 = (𝛼0, 𝛼
⊤

𝐼
)⊤ is a 𝑞 × (𝑝 − 1) parameter matrix with rank 𝑝 − 1. 𝑒 = (𝑒1,… , 𝑒

𝑝−1) is random
error, with 𝑒

𝑗
(𝑗 ∈ {1,… , 𝑝 − 1}) being 𝑛-dimensional error vectors. We assume that 𝑒 has a

matrix normal distribution, i.e., 𝑒 ∼ (0, 𝐼
𝑛
, 𝜎

2
𝑒
𝐼
𝑝−1).

Thus, incorporating Equation (4) into Equation (3) yields

𝑊 = 1
𝑛
𝛼
⊤

0 + �̃�𝛼
𝐼
+ 𝜐1 = 𝑍𝛼 + 𝜐1, (5)

where 𝜐1 = 𝑒 + 𝑢 ∼
(
0, 𝐼

𝑛
, 𝜏

2
1𝐼𝑝−1

)
with 𝜏2

1 = 𝜎
2
𝑒
+ 𝜎

2
𝑢
.
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Substituting Equation (4) in Equation (2) yields

𝑌 = 𝛾01
𝑛
+ �̃�𝛾

𝐼
+ 𝜐2 = 𝑍𝛾 + 𝜐2, (6)

where 𝜐2 = 𝑒𝛽
𝐼
+ 𝜖 ∼ (0, 𝜏2

2𝐼𝑛) with 𝜏
2
2 = 𝜎

2
𝜖
+ 𝛽

⊤

𝐼
𝛽
𝐼
𝜎

2
𝑒
, and 𝛾 = (𝛾0, 𝛾𝐼 )⊤ with 𝛾0 = 𝛽0 +

𝛼
⊤

0 𝛽𝐼 , and 𝛾
𝐼
= 𝛼

𝐼
𝛽
𝐼
, i.e., 𝛾 = 𝐴𝛽 with

𝐴 =

(
1 𝛼

⊤

0

0 𝛼
𝐼

)

.

To estimate the model parameters using the IV, the usual approach is to use the TSLS method.
First, using least squares, obtain estimates of the parameters in Equation (5). Next, substitute
these estimates into Equation (6). Finally, derive the required estimates using least squares a
second time.

The TSLS estimator for 𝛼, say �̂�
𝑇𝑆𝐿𝑆

, is �̂�
𝑇𝑆𝐿𝑆

= (𝑍⊤
𝑍)−1

𝑍
⊤
𝑊 . To simplify this

expression, let �̃� = (1
𝑛
,𝑊 ) and �̃�1 = (0𝑛×1, 𝜐1); then Equation (5) can be written as �̃� =

𝑍𝐴 + �̃�1 and, therefore, the TSLS for 𝐴 is

Â
𝑇𝑆𝐿𝑆

= (𝑍⊤
𝑍)−1

𝑍
⊤
�̃� =

(
1 �̂�

⊤

0𝑇𝑆𝐿𝑆

0 �̂�
𝐼𝑇𝑆𝐿𝑆

)

.

It follows that the TSLS for 𝛽 is

𝛽
𝑇𝑆𝐿𝑆

=
(

Â
⊤

𝑇𝑆𝐿𝑆
𝑍

⊤
𝑍Â

𝑇𝑆𝐿𝑆

)−1
Â
⊤

𝑇𝑆𝐿𝑆
𝑍

⊤
𝑌

=
(
�̃�

⊤
𝑍(𝑍⊤

𝑍)−1
𝑍

⊤
𝑍(𝑍⊤

𝑍)−1
𝑍

⊤
�̃�

)−1
�̃�

⊤
𝑍(𝑍⊤

𝑍)−1
𝑍

⊤
𝑌

=
(
�̃�

⊤
𝑃
𝑍
�̃�

)−1
�̃�

⊤
𝑃
𝑍
𝑌 ,

where 𝑃
𝑍
= 𝑍(𝑍⊤

𝑍)−1
𝑍

⊤.
Because of the limitation of the problem, we involve only the first-order moments of 𝑌 and

𝑊 in the calculation. Therefore, 𝜎2
𝜖
, 𝜎2

𝑢
, and 𝜎

2
𝑒

are clearly not identifiable, but 𝜏2
1 and 𝜏

2
2 can be

estimated. The TSLS estimators for 𝜏2
1 and 𝜏

2
2 , say 𝜏

2
1𝑇𝑆𝐿𝑆

and 𝜏
2
2𝑇𝑆𝐿𝑆

, are given by

𝜏
2
1𝑇𝑆𝐿𝑆

=
||Vec(𝑊 ) − (𝐼

𝑝−1 ⊗𝑍)Vec(�̂�
𝑇𝑆𝐿𝑆

)||2

(𝑛 − 𝑞)(𝑝 − 1)

and

𝜏
2
2𝑇𝑆𝐿𝑆

=
||𝑌 −𝑍Â

𝑇𝑆𝐿𝑆
𝛽
𝑇𝑆𝐿𝑆

||2

𝑛 − 𝑞
,

where || ⋅ || denotes the Euclidean norm.
However, many studies show that the least squares estimator is not always optimal in

situations that commonly occur in practice. In the remainder of this article, we combine the linear
Bayes method with the IV approach to estimate the parameters of the measurement error model,
and investigate the statistical properties of this method of estimation.
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2023 BAYESIAN INSTRUMENTAL VARIABLE ESTIMATION 5

3. THE BAYES ESTIMATOR

The Bayes method combines population information, sample information, and prior infor-
mation to estimate parameters. From the Bayes viewpoint, the unknown parameters are
random variables. In most cases, past experience about the parameters

(
𝛼, 𝜏

2
1

)
and

(
𝛽, 𝜏

2
2

)

is available. Let 𝜋
(
𝛽, 𝜏

2
2

)
be the joint prior of 𝛽 and 𝜏

2
2 , and let the loss function be

given by

𝐿0(�̂�, 𝜙) = (�̂� − 𝜙)⊤𝐷0(�̂� − 𝜙), (7)

where 𝐷0 is a positive definite matrix and �̂� denotes any estimator for 𝜙 = (𝛽⊤, 𝜏2
2 )

⊤. Then by
Bayes’ theorem, the BEs of 𝛽 and 𝜏

2
2 are

𝛽
𝐵
=
∫∫
𝛽𝑓
(
𝛽, 𝜏

2
2 | 𝑌

)
𝑑𝛽𝑑𝜏

2
2

and

𝜏
2
2𝐵
=
∫∫
𝜏

2
2𝑓
(
𝛽, 𝜏

2
2 | 𝑌

)
𝑑𝛽𝑑𝜏

2
2 ,

where 𝑓 (𝛽, 𝜏2
2 | 𝑌 ) is the joint posterior density of 𝛽 and 𝜏

2
2 given 𝑌 . The BEs of 𝛼 and 𝜏

2
1 can

be obtained in a similar way. Because of the issue concerning the identifiability of the variance
parameters, we investigate the BEs of various parameters under different priors with known and
unknown variance parameters.

3.1. Known Variance Parameters
In this case, only the regression parameters 𝛼 and 𝛽 need to be estimated. Let the prior distribution
of 𝛼 be a matrix normal distribution  (𝑀,𝑁, 𝑉 ) and the prior of 𝛽 be a 𝑝-dimensional
normal distribution (𝜇,Σ), i.e.,

𝜋(𝛼) = (2𝜋)−(𝑝𝑞−𝑞)∕2|𝑉 |−𝑞∕2|𝑁|−(𝑝−1)∕2

× exp
[
−1

2
tr
{
𝑉
−1(𝛼 −𝑀)⊤𝑁−1(𝛼 −𝑀)

}]
,

𝜋(𝛽) = (2𝜋)−𝑝∕2|Σ|−1∕2 exp
{
−1

2
(𝛽 − 𝜇)⊤Σ−1(𝛽 − 𝜇)

}
.

Note that 𝜐1 ∼
(
0, 𝐼

𝑛
, 𝜏

2
1𝐼𝑝−1

)
and 𝑊 ∼

(
𝑍𝛼, 𝐼

𝑛
, 𝜏

2
1𝐼𝑝−1

)
accordingly. Then the

likelihood function of 𝛼 is given, up to a proportionality constant, by

𝑓 (𝑊 | 𝛼) ∝ exp

[

−
tr
{
(𝑊 −𝑍�̂�

𝑇𝑆𝐿𝑆
)⊤(𝑊 −𝑍�̂�

𝑇𝑆𝐿𝑆
)
}

2𝜏2
1

]

× exp

[

−
tr
{
(�̂�

𝑇𝑆𝐿𝑆
− 𝛼)⊤𝑍⊤

𝑍(�̂�
𝑇𝑆𝐿𝑆

− 𝛼)
}

2𝜏2
1

]

.

According to Bayes’ theorem, the posterior density of 𝛼, say 𝑓 (𝛼|𝑊 ), is proportional to
𝜋(𝛼)𝑓 (𝑊 |𝛼). Hence, the BE �̂�

𝐵
can be obtained by evaluating some multiple integrals, and
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6 Q. WANG, L. WANG, AND L. WANG Vol. 00, No. 00

Â
𝐵

can be obtained accordingly. Substituting Â
𝐵

into Equation (6) yields the following new
model:

𝑌 = 𝑍Â
𝐵
𝛽 + 𝜐2,

where 𝜐2 ∼ (0, 𝜏2
2𝐼𝑛). Thus, 𝑌 ∼ (𝑍Â

𝐵
𝛽, 𝜏

2
2𝐼𝑛). Again, using Bayes’ theorem, we derive

the posterior density for 𝛽 via similar calculations.

3.2. Unknown Variance Parameters
In the case of unknown variance parameters, we outline a method for obtaining the BEs of the
parameters when the priors are normal-gamma and normal-uniform, respectively.

Case 1: Normal-gamma priors
Suppose that the prior distributions of 𝛼 and 𝛽 are normal, and the priors for 𝜎2

𝜖
, 𝜎2

𝑢
, and 𝜎

2
𝑒

are gamma distributions, i.e.,

𝛼 ∼ (𝑀,𝑁, 𝑉 ), 𝛽 ∼ (𝜇,Σ),

𝜎
2
𝜖
∼ (𝜆

𝜖
, 𝑡
𝜖
), 𝜎

2
𝑢
∼ (𝜆

𝑢
, 𝑡
𝑢
), 𝜎

2
𝑒
∼ (𝜆

𝑒
, 𝑡
𝑒
).

By the identifiability of 𝜎2
𝜖
, 𝜎2

𝑢
, and 𝜎

2
𝑒
, we need to compute the prior distribution of 𝜏2

1 and
𝜏

2
2 via the distribution of the sum of independent gamma variables (see Moschopoulos, 1985).

At the same time, since 𝜏
2
2 and 𝛽 are correlated, the conditional density should be considered

when calculating the joint prior distribution. We have

𝜋1(𝜏2
1 ) = 𝐶1

∞∑

𝑘=0

𝛿1𝑘

(𝜏2
1 )

𝜆𝑢+𝜆𝑒+𝑘−1 exp(−𝜏2
1∕𝜑1)

Γ(𝜆
𝑢
+ 𝜆

𝑒
+ 𝑘)𝜑𝜆𝑢+𝜆𝑒+𝑘

1

,

𝜋1(𝜏2
2 | 𝛽) = 𝐶2

∞∑

𝑘=0

𝛿2𝑘

(𝜏2
2 )

𝜆𝜖+𝜆𝑒+𝑘−1 exp(−𝜏2
2∕𝜑2)

Γ(𝜆
𝜖
+ 𝜆

𝑒
+ 𝑘)𝜑𝜆𝜖+𝜆𝑒+𝑘

2

,

where 𝜑1 = min{𝑡
𝑢
, 𝑡
𝑒
}, 𝜑2 = min{𝑡

𝜖
, 𝛽

⊤

𝐼
𝛽
𝐼
𝑡
𝑒
}, and

𝐶1 =
(
𝜑1

𝑡
𝑢

)𝜆𝑢
(
𝜑1

𝑡
𝑒

)𝜆𝑒

, 𝐶2 =
(
𝜑2

𝑡
𝜖

)𝜆𝜖

(
𝜑2

𝛽
⊤

𝐼
𝛽
𝐼
𝑡
𝑒

)𝜆𝑒

with

𝛿1𝑘+1
= 1
𝑘 + 1

𝑘+1∑

𝑖=1

{

𝜆
𝑢

(
1 −

𝜑1

𝑡
𝑢

)𝑖

+ 𝜆
𝑒

(
1 −

𝜑1

𝑡
𝑒

)𝑖
}

𝛿1𝑘+1−𝑖

and

𝛿2𝑘+1
= 1
𝑘 + 1

𝑘+1∑

𝑖=1

⎧
⎪
⎨
⎪
⎩

𝜆
𝜖

(
1 −

𝜑2

𝑡
𝜖

)𝑖

+ 𝜆
𝑒

(

1 −
𝜑2

𝛽
⊤

𝐼
𝛽
𝐼
𝑡
𝑒

)𝑖⎫
⎪
⎬
⎪
⎭

𝛿2𝑘+1−𝑖
,

where 𝑘 ∈ {0, 1, 2,…} and 𝛿10
= 𝛿20

= 0.
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2023 BAYESIAN INSTRUMENTAL VARIABLE ESTIMATION 7

Then the joint prior of 𝛼 and 𝜏
2
1 is 𝜋1

(
𝛼, 𝜏

2
1

)
= 𝜋(𝛼)𝜋1

(
𝜏

2
1

)
. Note that 𝑊 ∼


(
𝑍𝛼, 𝐼

𝑛
, 𝜏

2
1𝐼𝑝−1

)
; hence we can obtain the joint posterior of 𝛼 and 𝜏

2
1 . Inserting

Â
𝐵1 into Equation (6), where Â

𝐵1 can be calculated by �̂�
𝐵1, we have

𝑌 = 𝑍Â
𝐵1𝛽 + 𝜐2,

which yields 𝑌 ∼
(
𝑍Â

𝐵1𝛽, 𝜏
2
2𝐼𝑛
)
. Given that the joint prior of 𝛽 and 𝜏

2
2 can be derived via

𝜋1
(
𝛽, 𝜏

2
2

)
= 𝜋(𝛽)𝜋1

(
𝜏

2
2 |𝛽
)
, by Bayes’ theorem, the joint posterior of 𝛽 and 𝜏

2
2 can be obtained

subsequently.

Case 2: Normal-uniform priors
Let the prior distributions of 𝛼 and 𝛽 be normal distributions, and the prior distributions of

𝜎
2
𝜖
, 𝜎2

𝑢
, and 𝜎

2
𝑒

be uniform distributions, i.e.,

𝛼 ∼ (𝑀,𝑁, 𝑉 ), 𝛽 ∼ (𝜇,Σ),

𝜎
2
𝜖
∼  (𝑎

𝜖
, 𝑏

𝜖
), 𝜎

2
𝑢
∼  (𝑎

𝑢
, 𝑏

𝑢
), 𝜎

2
𝑒
∼  (𝑎

𝑒
, 𝑏

𝑒
).

We need to obtain the prior distribution of the sum of 𝜏
2
1 and 𝜏

2
2 based on two

non-identically-distributed uniform random variables (see Bradley & Gupta, 2002), which are

𝜋2(𝜏2
1 ) =

1
23
𝑙
𝑢
𝑙
𝑒

∑

𝜀1,𝜀2∈{−1,1}
𝜀1𝜀2(𝑐1)sign(𝑐1),

𝜋2(𝜏2
2 | 𝛽) =

1
23
𝛽
⊤

𝐼
𝛽
𝐼
𝑙
𝜖
𝑙
𝑒

∑

𝜀1,𝜀2∈{−1,1}
𝜀1𝜀2(𝑐2)sign(𝑐2),

where 𝑐1 = 𝜏
2
1 + 𝜀1𝑙𝑢 + 𝜀2𝑙𝑒 − ℎ

𝑢
− ℎ

𝑒
, 𝑐2 = 𝜏

2
2 + 𝜀1𝑙𝜖 + 𝜀2𝛽

⊤

𝐼
𝛽
𝐼
𝑙
𝑒
− ℎ

𝜖
− 𝛽

⊤

𝐼
𝛽
𝐼
ℎ
𝑒
, and

𝑎
𝜖

= ℎ
𝜖
− 𝑙

𝜖
, 𝑏

𝜖
= ℎ

𝜖
+ 𝑙

𝜖
;

𝑎
𝑢

= ℎ
𝑢
− 𝑙

𝑢
, 𝑏

𝑢
= ℎ

𝑢
+ 𝑙

𝑢
;

𝑎
𝑒

= ℎ
𝑒
− 𝑙

𝑒
, 𝑏

𝑒
= ℎ

𝑒
+ 𝑙

𝑒
;

sign(𝑦) =
⎧
⎪
⎨
⎪
⎩

1 if 𝑦 > 0;
0 if 𝑦 = 0;
−1 if 𝑦 < 0.

According to Bayes’ theorem, the joint posterior density of 𝛼 and 𝜏2
1 can be calculated. Note

that Â
𝐵2 can be obtained from �̂�

𝐵2 by substituting �̂�
𝐵2 into Equation (6) and eventually deriving

the joint posterior of 𝛽 and 𝜏
2
2 .

So far, we have obtained the joint posteriors of parameters under different priors, and
we need to obtain the BEs via some multiple integral calculations. However, they are
challenging to evaluate. Simulation-based methods such as the Gibbs sampling procedure
and the Metropolis–Hastings method represent one approach to solving such problems. The
Metropolis–Hastings algorithm (see Hastings, 1970; Metropolis et al., 1953) constructs an
aperiodic and irreducible Markov chain so that its stationary distribution is equal to the target
distribution, which is just the posterior distribution in Bayes inference. The idea is to find
a simple distribution that approximates the posterior distribution 𝑓 (𝜃|𝑦), called the proposal
density and denoted as 𝑔(𝜃), and then selects an initial value 𝜃0 for the parameter 𝜃. The specific
steps involved are the following:

Step 1: Simulate a candidate sample 𝜃∗ from the proposal density 𝑔(𝜃∗|𝜃
𝑖−1).
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8 Q. WANG, L. WANG, AND L. WANG Vol. 00, No. 00

Step 2: Calculate the acceptance probability

𝑝 = min
{

𝑓 (𝜃 = 𝜃
∗|𝑦)𝑔(𝜃

𝑖−1|𝜃∗)
𝑓 (𝜃 = 𝜃

𝑖−1|𝑦)𝑔(𝜃∗|𝜃𝑖−1)
, 1
}
,

where 𝜃
𝑖−1 represents the (𝑖 − 1)th value of the parameter sequence.

Step 3: Accept 𝜃
𝑖
= 𝜃

∗ with probability 𝑝, and accept 𝜃
𝑖
= 𝜃

𝑖−1 with probability 1 − 𝑝.
Step 4: The posterior samples 𝜃1, 𝜃2,… , 𝜃

𝑛
can be obtained by repeating Steps 1–3 𝑛 times.

In Section 5 we obtain the BEs of the various parameters under different priors using suitable
versions of this algorithm.

4. THE LINEAR BAYES ESTIMATOR

The BEs that we identified in Section 3 can produce numerical solutions via simulations, and,
to a certain extent, the accuracy of the results can be guaranteed. However, we cannot derive
explicit expressions for those BEs. Hence, in this case BEs are somewhat intricate and not easy to
use. In addition, parameter estimation via the Bayes method needs to specify some priors, which
can lead to practical difficulties. Therefore, this section introduces the linear Bayes method,
which does not rely on the specific form of the prior but depends solely on its moments, and can
result in a linear approximation of Bayes estimation. In what follows, we combine this linear
approximation with the use of an IV to estimate the parameters of the measurement error models.

4.1. The Proposed LBE

Denote 𝑇 =
(
Vec(�̂�)⊤, �̂�⊤, (𝜏2)⊤

)⊤, Vec(�̂�) =
(
𝐼
𝑝−1 ⊗ (𝑍⊤

𝑍)−1
𝑍

⊤
)
Vec(𝑊 ),

�̂� = (𝑍⊤
𝑍)−1

𝑍
⊤
𝑌 , 𝜏2 =

(
𝜏

2
1, 𝜏

2
2

)⊤, and

𝜏
2
1 =
||Vec(𝑊 ) − (𝐼

𝑝−1 ⊗𝑍)Vec(�̂�)||2

(𝑛 − 𝑞)(𝑝 − 1)
, 𝜏

2
2 =
||𝑌 −𝑍�̂�||2

𝑛 − 𝑞
.

Set 𝜃 =
(
Vec(𝛼)⊤, 𝛾⊤, (𝜏2)⊤

)⊤. We assume that the prior 𝐺(𝜃) belongs to the distribution
family:

𝐺 =
{
𝐺(𝜃) ∶ E

[
||Vec(𝛼)||2 + ||𝛾||2 + ||𝜏2||2

]
< ∞

}
,

which includes many common distributions such as the normal, uniform, and gamma.
Define the LBE of 𝜃, say �̂�

𝐿𝐵
, to be of the form 𝐵𝑇 + 𝑏 satisfying

E(𝑇 ,𝜃)(�̂�𝐿𝐵 − 𝜃) = 0, 𝑅(�̂�
𝐿𝐵
, 𝜃) = min

𝐵,𝑏

E(𝑇 ,𝜃)𝐿(𝐵𝑇 + 𝑏, 𝜃),

where E(𝑇 ,𝜃) denotes the expectation of the joint distribution of 𝑇 and 𝜃, and the loss function is
given by

𝐿(�̂�, 𝜃) = (�̂� − 𝜃)⊤𝐷(�̂� − 𝜃),

where 𝐷 is a positive definite matrix. As in the case of the loss identified in Equation (7), the
matrix 𝐷 has no effect on the LBE.

Theorem 1. If 𝑛 ≥ 𝑝, then

�̂�
𝐿𝐵
= 𝑇 −𝐾𝐻(𝑇 − E𝜃), (8)
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2023 BAYESIAN INSTRUMENTAL VARIABLE ESTIMATION 9

with 𝐵 = 𝐼 −𝐾𝐻 and 𝑏 = 𝐾𝐻E(𝜃), where 𝐻 = [𝐾 + Cov(𝜃)]−1 and

𝐾 = E[Cov(𝑇 |𝜃)]

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(𝐼
𝑝−1 ⊗ (𝑍⊤

𝑍)−1)𝐸(𝜏2
1 ) 𝐸(𝛽

𝐼
⊗ (𝑍⊤

𝑍)−1
𝜎

2
𝑒
) 0(𝑝−1)𝑞×2

𝐸(𝛽⊤
𝐼
⊗ (𝑍⊤

𝑍)−1
𝜎

2
𝑒
) (𝑍⊤

𝑍)−1
𝐸(𝜏2

2 ) 0
𝑞×2

02×(𝑝−1)𝑞 02×𝑞

2𝐸(𝜏4
1 )

(𝑛 − 𝑞)(𝑝 − 1)
2𝐸(𝛽⊤

𝐼
𝛽
𝐼
𝜎

4
𝑒
)

(𝑛 − 𝑞)(𝑝 − 1)
2𝐸(𝛽⊤

𝐼
𝛽
𝐼
𝜎

4
𝑒
)

(𝑛 − 𝑞)(𝑝 − 1)
2𝐸(𝜏4

2 )
𝑛 − 𝑞

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Since 𝛾 = 𝐴𝛽, the LBE of 𝛽, say 𝛽
𝐿𝐵

, is

𝛽
𝐿𝐵
= (Â⊤

𝐿𝐵
Â
𝐿𝐵
)−1Â

⊤

𝐿𝐵
�̂�
𝐿𝐵
, (9)

where Â
𝐿𝐵

and �̂�
𝐿𝐵

can be obtained from �̂�
𝐿𝐵

.

4.2. The Superiority of the LBE
After obtaining the preceding expression for the LBEs of the model parameters, we proceed to
investigate the superiority of the LBE as a method of estimating those same parameters. There
are many criteria for evaluating estimators. In this article, we will use the mean squared error
matrix (MSEM) criterion to compare the LBE and TSLS estimators of the model parameters,
where

MSEM(�̂�
𝐿𝐵
) = E(𝑇 ,𝜃)

[(
�̂�
𝐿𝐵
− 𝜃
) (

�̂�
𝐿𝐵
− 𝜃
)⊤]

= E
[
Cov

((
�̂�
𝐿𝐵
− 𝜃
)
|𝜃
)]
+ Cov

(
E
[(
�̂�
𝐿𝐵
− 𝜃
)
|𝜃
])
.

Denote the TSLS of 𝜃 by �̂�
𝑇𝑆𝐿𝑆

, and set 𝑇 =
(
Vec(�̂�)⊤, �̂�⊤, (𝜏2)⊤

)⊤; then

�̂�
𝑇𝑆𝐿𝑆

=
⎛
⎜
⎜
⎜
⎝

𝐼
𝑛(𝑝−1) 0 0

0 𝐼
𝑛

0
0 0 𝐼2

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

Vec(�̂�)
�̂�

𝜏
2

⎞
⎟
⎟
⎟
⎠

= 𝐼
𝑛𝑝+2𝑇 = 𝑇 . (10)

Theorem 2. Let �̂�
𝐿𝐵

and �̂�
𝑇𝑆𝐿𝑆

be identified in Equations (8) and (10), respectively. If
𝑛 ≥ 𝑞, then �̂�

𝐿𝐵
is superior to �̂�

𝑇𝑆𝐿𝑆
with respect to the MSEM criterion, i.e., MSEM(�̂�

𝐿𝐵
) ≤

MSEM(�̂�
𝑇𝑆𝐿𝑆

).

5. SIMULATION STUDIES

When 𝑝 = 2, the model specified in Equation (1) becomes a simple linear regression model with
𝛽 = (𝛽0, 𝛽1)⊤. Set 𝛽 = (−4, 0.6)⊤ and 𝛼 = (𝛼0, 𝛼1)⊤ = (5,−1)⊤. Suppose the true values of 𝜎2

𝜖
,

𝜎
2
𝑢
, and 𝜎

2
𝑒

are given by the following distributions:

𝜖
𝑖
∼ (0, 16), 𝑢

𝑖
∼ (0, 16), 𝑒

𝑖
∼ (0, 25).

At the same time, we assume that the IV 𝑧 has a normal distribution, i.e., 𝑧
𝑖
∼ (0, 25).

Then we can use the dataset (𝑦,w, 𝑧) to estimate the model parameters.
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10 Q. WANG, L. WANG, AND L. WANG Vol. 00, No. 00

5.1. Known Variance Parameters
In this case, we also assume that the prior distributions of the regression parameters are normal
distributions, i.e.,

𝛼0 ∼
(
𝜇01, 𝜂

2
01

)
, 𝛼1 ∼

(
𝜇11, 𝜂

2
11

)
, 𝛽0 ∼

(
𝜇02, 𝜂

2
02

)
, 𝛽1 ∼

(
𝜇12, 𝜂

2
12

)
.

The joint posterior densities of the parameters 𝛼0, 𝛼1 and 𝛽0, 𝛽1 can be evaluated as was
outlined previously in Section 3. Finally, we obtain the BEs of these four parameters via
Metropolis–Hastings sampling.

Denote 𝜉
∗ = (𝛼0, 𝛼1, 𝛾0, 𝛾1)⊤; according to Theorem 1, we know that an expression for the

LBE of the parameter vector 𝜉∗ equals

𝜉
∗
𝐿𝐵
= 𝑇

∗ −𝐾
∗
𝐻
∗(𝑇 ∗ − E𝜉∗),

where 𝐻∗ = [𝐾∗ + Cov(𝜉∗)]−1, and 𝑇 ∗ = (�̂�0, �̂�1, �̂�0, �̂�1)⊤. From Equation (9), we have the LBE
of 𝜉 = (𝛼0, 𝛼1, 𝛽0, 𝛽1)⊤, say 𝜉

𝐿𝐵
. Thus, the simulation value of 𝜉

𝐿𝐵
can be obtained via

E(𝜉∗) = (𝜇01, 𝜇11, 𝜇02 + 𝜇12𝜇01, 𝜇12𝜇11)⊤,

where

𝐾
∗ =
⎡
⎢
⎢
⎣

(𝑍⊤
𝑍)−1

𝜏
2
1 (𝑍⊤

𝑍)−1
𝜎

2
𝑒
E(𝛽1)

(𝑍⊤
𝑍)−1

𝜎
2
𝑒
E(𝛽1) (𝑍⊤

𝑍)−1
(
E(𝛽2

1 )𝜎
2
𝑒
+ 𝜎

2
𝜖

)
⎤
⎥
⎥
⎦

=

[
(𝑍⊤

𝑍)−1
𝜏

2
1 (𝑍⊤

𝑍)−1
𝜎

2
𝑒
𝜇12

(𝑍⊤
𝑍)−1

𝜎
2
𝑒
𝜇12 (𝑍⊤

𝑍)−1
((
𝜇

2
12 + 𝜂

2
12

)
𝜎

2
𝑒
+ 𝜎

2
𝜖

)

]

.

Also

Cov(𝜉∗) =

⎡
⎢
⎢
⎢
⎢
⎣

Cov(𝛼0, 𝛼0) Cov(𝛼0, 𝛼1) Cov(𝛼0, 𝛾0) Cov(𝛼0, 𝛾1)
Cov(𝛼1, 𝛼0) Cov(𝛼1, 𝛼1) Cov(𝛼1, 𝛾0) Cov(𝛼1, 𝛾1)
Cov(𝛾0, 𝛼0) Cov(𝛾0, 𝛼1) Cov(𝛾0, 𝛾0) Cov(𝛾0, 𝛾1)
Cov(𝛾1, 𝛼0) Cov(𝛾1, 𝛼1) Cov(𝛾1, 𝛾0) Cov(𝛾1, 𝛾1)

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜂
2
01 0 𝜇12𝜂

2
01 0

0 𝜂
2
11 0 𝜇12𝜂

2
11

𝜇12𝜂
2
01 0 𝜂

2
02 + 𝜂

2
12𝜂

2
01 + 𝜇

2
01𝜂

2
12 + 𝜇

2
12𝜂

2
01 𝜇01𝜇11𝜂

2
12

0 𝜇12𝜂
2
11 𝜇01𝜇11𝜂

2
12 𝜂

2
12𝜂

2
11 + 𝜇

2
11𝜂

2
12 + 𝜇

2
12𝜂

2
11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We also calculate the distances between BE, LBE, TSLS, and the true values of the various
parameters to evaluate the advantages and disadvantages of the estimators. The formula for the
distance between the estimated value and the true value is

||𝜉 − 𝜉|| =
√
(�̂�0 − 𝛼0)2 + (�̂�1 − 𝛼1)2 + (𝛽0 − 𝛽0)2 + (𝛽1 − 𝛽1)2. (11)
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2023 BAYESIAN INSTRUMENTAL VARIABLE ESTIMATION 11

TABLE 1: Distance between the estimated value of regression parameters and the true value under
different prior hyperparameters.

𝑛 𝜇 𝜂 ||𝜉
𝐵
− 𝜉|| ||𝜉

𝐿𝐵
− 𝜉|| ||𝜉

𝑇𝑆𝐿𝑆
− 𝜉||

50 pr1 (5,−1,−4, 0.6)⊤ (1, 1, 1, 1)⊤ 0.8377 1.0997 1.5593
pr2 (5,−1,−4, 0.6)⊤ (9, 9, 9, 9)⊤ 1.4133 1.4706
pr3 (5,−1,−4, 0.6)⊤ (25, 25, 25, 25)⊤ 1.490 1.5254

100 pr1 (5,−1,−4, 0.6)⊤ (1, 1, 1, 1)⊤ 0.7185 0.9763 1.0381
pr2 (5,−1,−4, 0.6)⊤ (9, 9, 9, 9)⊤ 0.8298 0.9851
pr3 (5,−1,−4, 0.6)⊤ (25, 25, 25, 25)⊤ 1.0350 1.0218

500 pr1 (5,−1,−4, 0.6)⊤ (1, 1, 1, 1)⊤ 0.3173 0.3308 0.3462
pr2 (5,−1,−4, 0.6)⊤ (9, 9, 9, 9)⊤ 0.3436 0.3444
pr3 (5,−1,−4, 0.6)⊤ (25, 25, 25, 25)⊤ 0.3440 0.3456

Note: 𝜇 = (𝜇01, 𝜇11, 𝜇02, 𝜇12)⊤, 𝜂 = (𝜂2
01, 𝜂

2
11, 𝜂

2
02, 𝜂

2
12)

⊤, and 𝑝𝑟 stands for the prior.

For the sample size 𝑛 ∈ {50, 100, 500}, the distances between the estimated value of the
regression parameters and the true value under different priors are reported in Table 1. It can be
seen that when the prior hyperparameters are the same, as the sample size 𝑛 increases, the distances
between BE, LBE, TSLS and the true values all decrease, and also ||𝜉

𝐵
− 𝜉|| < ||𝜉

𝐿𝐵
− 𝜉|| <

||𝜉
𝑇𝑆𝐿𝑆

− 𝜉||, i.e., LBE is close to BE and superior to TSLS. When the sample size 𝑛 is the same,
as the prior hyperparameter increases, both ||𝜉

𝐵
− 𝜉|| and ||𝜉

𝐿𝐵
− 𝜉|| increase but are still less

than ||𝜉
𝑇𝑆𝐿𝑆

− 𝜉||. With respect to the concentration of prior information, the distance between
||𝜉

𝐿𝐵
− 𝜉|| and ||𝜉

𝐵
− 𝜉|| gradually decreases, indicating that LBE appears to provide a good

approximation to BE and seems to be relatively robust. This conclusion is further verified by the
curve of the distances between the estimated value and the true value of each model parameter.

To reinforce the apparent superiority of LBE, we also calculate the root mean squared error
(RMSE) and bias of the estimator for each parameter. For example, the RMSE of 𝛽1 is given by

RMSE(𝛽1) =

√√√√1
𝑛

𝑛∑

𝑖=1

(𝛽1𝑖 − 𝛽1)2.

The RMSEs of the various estimators for the remaining model parameters are calculated
similarly; the observed results may be found in Tables A1 and A2 in the Appendix. We conclude
that both the RMSE and the bias of each estimator are small and that the RMSE values for the BE
and LBE parameter estimators increase as the prior hyperparameters increase. More importantly,
their RMSE values are smaller than the corresponding values for the TSLS estimators. We
also observe that the RMSE values are decreasing functions with respect to increasing sample
size. Thus, we conclude that both BE and LBE of the model parameters are superior to their
corresponding TSLS competitors, as the results reported in Table 1 already suggest (Figure 1).

5.2. Unknown Variance Parameters
Case 1: Normal-gamma priors

Let the prior distributions of the various model parameters be

𝛼0 ∼
(
𝜇01, 𝜂

2
01

)
, 𝛼1 ∼

(
𝜇11, 𝜂

2
11

)
, 𝛽0 ∼

(
𝜇02, 𝜂

2
02

)
, 𝛽1 ∼

(
𝜇12, 𝜂

2
12

)
,

𝜎
2
𝜖
∼ (𝜆

𝜖
, 𝑡
𝜖
), 𝜎

2
𝑢
∼ (𝜆

𝑢
, 𝑡
𝑢
), 𝜎

2
𝑒
∼ (𝜆

𝑒
, 𝑡
𝑒
).
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12 Q. WANG, L. WANG, AND L. WANG Vol. 00, No. 00

(a) pr 1 (b) pr 2

FIGURE 1: Distance between the estimated value of the regression parameters and the true value as a
function of sample size.

The joint posterior density of the parameters can be found using the methods outlined
in Section 3.2. Let 𝜃∗ =

(
𝛼
⊤
, 𝛾

⊤
, 𝜏

2
1 , 𝜏

2
2

)⊤. It follows from Theorem 1 that the expression for
�̂�
∗
𝐿𝐵

is

𝜃
∗
𝐿𝐵
= 𝑇 −𝐾𝐻(𝑇 − E𝜃∗),

where 𝐻 = [𝐾 + Cov(𝜃∗)]−1 and 𝑇 =
(
�̂�
⊤
, �̂�

⊤
, 𝜏

2
1 , 𝜏

2
2

)⊤. Using Equation (8), we have �̂�
𝐿𝐵

, and
therefore

E(𝜃) =
(
𝜇01, 𝜇11, 𝜇02 + 𝜇12𝜇01, 𝜇12𝜇11, 𝜆𝑢𝑡𝑢 + 𝜆

𝑒
𝑡
𝑒
, 𝜆

𝜖
𝑡
𝜖

(
𝜇

2
12 + 𝜂

2
12

)
𝜆
𝑒
𝑡
𝑒

)⊤
,

𝐾 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(𝑍⊤
𝑍)−1(𝜆

𝑢
𝑡
𝑢
+ 𝜆

𝑒
𝑡
𝑒
) (𝑍⊤

𝑍)−1
𝜇12𝜆𝑒𝑡𝑒 02×2

(𝑍⊤
𝑍)−1

𝜇12𝜆𝑒𝑡𝑒 (𝑍⊤
𝑍)−1

𝜆
𝜖
𝑡
𝜖

(
𝜇

2
12 + 𝜂

2
12

)
𝜆
𝑒
𝑡
𝑒

02×2

02×2 02×2

2E
(
𝜏

4
1

)

𝑛 − 2

2E
(
𝛽

2
1𝜎

4
𝑒

)

𝑛 − 2

2E
(
𝛽

2
1𝜎

4
𝑒

)

𝑛 − 2

2E
(
𝜏

4
2

)

𝑛 − 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where

E
(
𝜏

4
1

)
= 𝜆

𝑢
𝑡
2
𝑢
+ 𝜆

2
𝑢
𝑡
2
𝑢
+ 𝜆

𝑒
𝑡
2
𝑒
+ 𝜆

2
𝑒
𝑡
2
𝑒
+ 2𝜆

𝑢
𝑡
𝑢
𝜆
𝑒
𝑡
𝑒
,

E
(
𝜏

4
2

)
= 𝜆

𝜖
𝑡
2
𝜖
+ 𝜆

2
𝜖
𝑡
2
𝜖
+
(
3𝜂4

12 + 6𝜇2
12𝜂

2
12 + 𝜇

4
12

) (
𝜆
𝑒
𝑡
2
𝑒
+ 𝜆

2
𝑒
𝑡
2
𝑒

)

+ 2𝜆
𝜖
𝑡
𝜖
𝜆
𝑒
𝑡
𝑒

(
𝜇

2
12𝜂12

)
,

E
(
𝛽

2
1𝜎

4
𝑒

)
=
(
𝜇

2
12 + 𝜂

2
12

)(
𝜆
𝑒
𝑡
2
𝑒
+ 𝜆

2
𝑒
𝑡
2
𝑒

)
.
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2023 BAYESIAN INSTRUMENTAL VARIABLE ESTIMATION 13

TABLE 2: Distance between the estimated value and the true value under different hyperparameters.

𝑛 (𝜆
𝜖
, 𝑡
𝜖
) (𝜆

𝑢
, 𝑡
𝑢
) (𝜆

𝑒
, 𝑡
𝑒
) 𝜇 𝜂 ||�̂�

𝐵
− 𝜃|| ||�̂�

𝐿𝐵
− 𝜃|| ||�̂�

𝑇𝑆𝐿𝑆
− 𝜃||

50 pr4 (2, 4) (4, 2) (5, 3) (5,−1,−4, 0.6)⊤ (1, 1, 1, 1)⊤ 5.3359 6.6931 8.6157
pr5 (2, 6) (4, 4) (5, 5) (5,−1,−4, 0.6)⊤ (4, 4, 4, 4)⊤ 5.6937 7.4484
pr6 (2, 8) (4, 6) (5, 7) (5,−1,−4, 0.6)⊤ (9, 9, 9, 9)⊤ 6.1944 8.4200

100 pr4 (2, 4) (4, 2) (5, 3) (5,−1,−4, 0.6)⊤ (1, 1, 1, 1)⊤ 4.9267 5.3671 6.1123
pr5 (2, 6) (4, 4) (5, 5) (5,−1,−4, 0.6)⊤ (4, 4, 4, 4)⊤ 5.2384 5.9531
pr6 (2, 8) (4, 6) (5, 7) (5,−1,−4, 0.6)⊤ (9, 9, 9, 9)⊤ 5.9461 6.1229

500 pr4 (2, 4) (4, 2) (5, 3) (5,−1,−4, 0.6)⊤ (1, 1, 1, 1)⊤ 1.9980 2.0961 2.1529
pr5 (2, 6) (4, 4) (5, 5) (5,−1,−4, 0.6)⊤ (4, 4, 4, 4)⊤ 2.0835 2.1556
pr6 (2, 8) (4, 6) (5, 7) (5,−1,−4, 0.6)⊤ (9, 9, 9, 9)⊤ 2.1541 2.2879

Note: 𝜇 = (𝜇01, 𝜇11, 𝜇02, 𝜇12)⊤, 𝜂 = (𝜂2
01, 𝜂

2
11, 𝜂

2
02, 𝜂

2
12)

⊤, and 𝑝𝑟 means a prior.

Also

Cov(𝜃) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜂
2
01 0 𝜇12𝜂

2
01 0 0 0

0 𝜂
2
11 0 𝜇12𝜂

2
11 0 0

𝜇12𝜂
2
01 0 𝜈1 𝜇01𝜇11𝜂

2
12 0 2𝜆

𝑒
𝑡
𝑒
𝜇12𝜇01𝜂

2
12

0 𝜇12𝜂
2
11 𝜇01𝜇11𝜂

2
12 𝜈2 0 2𝜆

𝑒
𝑡
𝑒
𝜇12𝜇11𝜂

2
12

0 0 0 0 𝜈3 𝜈5

0 0 2𝜆
𝑒
𝑡
𝑒
𝜇12𝜇01𝜂

2
12 2𝜆

𝑒
𝑡
𝑒
𝜇12𝜇11𝜂

2
12 𝜈5 𝜈4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where 𝜈1 = 𝜂
2
02 + 𝜂

2
12𝜂

2
01 + 𝜇

2
01𝜂

2
12 + 𝜇

2
12𝜂

2
01,

𝜈2 = 𝜂
2
12𝜂

2
11 + 𝜇

2
11𝜂

2
12 + 𝜇

2
12𝜂

2
11,

𝜈3 = 𝜆
𝑢
𝑡
2
𝑢
+ 𝜆

𝑒
𝑡
2
𝑒
,

𝜈4 = 𝜆
𝜖
𝑡
2
𝜖
+
(
2𝜂4

12 + 4𝜇2
12𝜂

2
12

)
𝜆

2
𝑒
𝑡
2
𝑒
+
(
3𝜂4

12 + 6𝜇2
12𝜂

2
12 + 𝜇

4
12

)
𝜆
𝑒
𝑡
2
𝑒
,

𝜈5 =
(
𝜇

2
12 + 𝜂

2
12

)
𝜆
𝑒
𝑡
2
𝑒
.

Let the sample size 𝑛 be 50, 100, and 500, respectively. The distance between the estimated
value and the true value for various choices of the hyperparameters may be found in Table 2.

Based on the observed values reported in Table 2, it seems that regardless of the value 𝑛

takes, we have ||�̂�
𝐵
− 𝜃|| < ||�̂�

𝐿𝐵
− 𝜃|| < ||�̂�

𝑇𝑆𝐿𝑆
− 𝜃||. Furthermore, the values of LBE and BE

are similar, and both of them are superior to their TSLS competitor. For constant 𝑛, with the
increase of the prior hyperparameters, both ||�̂�

𝐵
− 𝜃|| and ||�̂�

𝐿𝐵
− 𝜃|| are increasing functions of

the prior hyperparameters, but ||�̂�
𝑇𝑆𝐿𝑆

− 𝜃|| is always greater. As the prior distributions of the
model parameters become more concentrated, the distances ||�̂�

𝐵
− 𝜃|| and ||�̂�

𝐿𝐵
− 𝜃|| decrease,

indicating that the LBE approximation to the BE improves. Since LBE does not depend on the
specific form of the prior distribution but depends only on its moments, the values of the prior
hyperparameters have little influence on the LBE. Figure 2 is a plot of the observed results
reported in Table 2.

In contrast to the situation where the variance parameters are known, we observe that
unknown variances yield larger observed distances between the parameter estimates and the
corresponding true values. This observation is reinforced by the RMSEs of the estimators for each
parameter when the prior distributions are normal-gamma; see the observed values summarized
in Tables A3 and A4 in the Appendix.
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14 Q. WANG, L. WANG, AND L. WANG Vol. 00, No. 00

pr 1(a) pr 2(a)

FIGURE 2: Distance between the estimated value and the true value as a function of sample size.

In summary, when the prior distributions are normal-gamma, the estimated values of the
regression parameters are very similar and approximately equal to the corresponding estimates
obtained when the values of the variance parameters are known. Occasionally, the bias exhibited
by either BE or LBE is greater than that of the TSLS alternative. However, because the
corresponding RMSE values for the variances are always smaller, we obtain the observed results
reported in Table 2.

Case 2: Normal-uniform priors
Let the prior distributions of the unknown model parameters be

𝛼0 ∼ (𝜇01, 𝜂
2
01), 𝛼1 ∼ (𝜇11, 𝜂

2
11), 𝛽0 ∼ (𝜇02, 𝜂

2
02), 𝛽1 ∼ (𝜇12, 𝜂

2
12),

𝜎
2
𝜖
∼  (𝑎

𝜖
, 𝑏

𝜖
), 𝜎

2
𝑢
∼  (𝑎

𝑢
, 𝑏

𝑢
), 𝜎

2
𝑒
∼  (𝑎

𝑒
, 𝑏

𝑒
).

The joint posterior densities can be obtained as outlined in Section 3.2. According to
Theorem 1, we have

E(𝜃) =

(

𝜇01, 𝜇11, 𝜇02 + 𝜇12𝜇01, 𝜇12𝜇11,
𝑎
𝑢
+ 𝑏

𝑢
+ 𝑎

𝑒
+ 𝑏

𝑒

2
,

𝑎
𝜖
+ 𝑏

𝜖
+ (𝑎

𝑒
+ 𝑏

𝑒
)(𝜇2

12 + 𝜂
2
12)

2

)⊤

,

𝐾 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(𝑍⊤
𝑍)−1 𝑎𝑢 + 𝑏

𝑢
+ 𝑎

𝑒
+ 𝑏

𝑒

2
(𝑍⊤

𝑍)−1 𝜇12(𝑎𝑒 + 𝑏
𝑒
)

2
02×2

(𝑍⊤
𝑍)−1 𝜇12(𝑎𝑒 + 𝑏

𝑒
)

2
(𝑍⊤

𝑍)−1(𝜇2
12 + 𝜂

2
12)

𝑎
𝜖
+ 𝑏

𝜖
+ 𝑎

𝑒
+ 𝑏

𝑒

2
02×2

02×2 02×2

2E(𝜏4
1 )

𝑛 − 2

2E(𝛽2
1𝜎

4
𝑒
)

𝑛 − 2
2E(𝛽2

1𝜎
4
𝑒
)

𝑛 − 2

2E(𝜏4
2 )

𝑛 − 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where E(𝜏4
1 ) =

(
𝑎
𝑢
+ 𝑏

𝑢
+ 𝑎

𝑒
+ 𝑏

𝑒

2

)2

+
(𝑏

𝑢
− 𝑎

𝑢
)2

12
+
(𝑏

𝑒
− 𝑎

𝑒
)2

12
,

E(𝜏4
2 ) =

7𝑎2
𝜖
+ 7𝑏2

𝜖
− 10𝑎

𝜖
𝑏
𝜖

12
+

3𝜂4
12 + 6𝜇2

12𝜂
2
12

12
,

×
(𝜇4

12)(7𝑏
2
𝑒
+ 7𝑏2

𝑒
− 10𝑎

𝑒
𝑏
𝑒
)

12
+
(𝜇2

12 + 𝜂
2
12)(𝑎𝜖 + 𝑏

𝜖
)(𝑏

𝑒
− 𝑎

𝑒
)

2
,

E(𝛽2
1𝜎

4
𝑒
) = (𝜇2

12 + 𝜂
2
12)

[
(𝑏

𝑒
− 𝑎

𝑒
)2

12
+
(
𝑎
𝑒
+ 𝑏

𝑒

2

)2
]

.
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2023 BAYESIAN INSTRUMENTAL VARIABLE ESTIMATION 15

Thus

Cov(𝜃)

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜂
2
01 0 𝜇12𝜂

2
01 0 0 0

0 𝜂
2
11 0 𝜇12𝜂

2
11 0 0

𝜇12𝜂
2
01 0 𝜈1 𝜇01𝜇11𝜂

2
12 0 (𝑎

𝑒
+ 𝑏

𝑒
)𝜇12𝜇01𝜂

2
12

0 𝜇12𝜂
2
11 𝜇01𝜇11𝜂

2
12 𝜈2 0 (𝑎

𝑒
+ 𝑏

𝑒
)𝜇12𝜇11𝜂

2
12

0 0 0 0 𝜈3 𝜈5

0 0 (𝑎
𝑒
+ 𝑏

𝑒
)𝜇12𝜇01𝜂

2
12 (𝑎

𝑒
+ 𝑏

𝑒
)𝜇12𝜇11𝜂

2
12 𝜈5 𝜈4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where

𝜈1 = 𝜂
2
02 + 𝜂

2
12𝜂

2
01 + 𝜇

2
01𝜂

2
12 + 𝜇

2
12𝜂

2
01,

𝜈2 = 𝜂
2
12𝜂

2
11 + 𝜇

2
11𝜂

2
12 + 𝜇

2
12𝜂

2
11,

𝜈3 =
(𝑏

𝑢
− 𝑎

𝑢
)2

12
+
(𝑏

𝑒
− 𝑎

𝑒
)2

12
,

𝜈4 =
(𝑏

𝜖
− 𝑎

𝜖
)2

12
+
(1

2
𝜂

4
12 + 𝜇

2
12𝜂

2
12

)
(𝑎

𝑒
+ 𝑏

𝑒
)2

+
(
3𝜂4

12 + 6𝜇2
12𝜂

2
12 + 𝜇

4
12

) (𝑏
𝑒
− 𝑎

𝑒
)2

12
,

𝜈5 =
(
𝜇

2
12 + 𝜂

2
12

) (𝑏
𝑒
− 𝑎

𝑒
)2

12
.

The values of the normal-uniform prior distribution hyperparameters are indicated in Table 3,
where the sample size 𝑛 is 50, 100, or 500. In the case of the normal-uniform priors, we reach
conclusions that are similar to those noted in Case 1, i.e., LBE and BE are close, and the methods
of estimation are superior to the TSLS alternative. When we compare the observed results in
Table 2 with those reported in Table 3, we notice that the bias of both BE and LBE may depend
on the choice of prior distributions. See also the plots in Figure 3, which display the observed
results reported in Table 3.

We also calculate RMSE values for each estimator of each model parameter; the observed
values may be found in the Appendix in Tables A5 and A6. As in Case 1, the observed RMSE
values for both the BE and LBE are smaller than the corresponding values for their TSLS
competing method of parameter estimation. The RMSEs of 𝜏2 are also much larger than those of
𝜉, which affects the observed values summarized in Table 3.

5.3. Numerical Comparisons Between LBE and BE
The LBE method is an approximation to BE but avoids the complex evaluation of multiple
integrals and provides an explicit expression to evaluate. We use the distance between LBE and
BE, say ||�̂�

𝐿𝐵
− �̂�

𝐵
||, to characterize the effectiveness of this approximation. Figure 4 displays

plots of this measure for the two cases that we considered in the simulation studies reported in
Section 5.2. The plots of the distance as a function of sample size and the two different priors
are shown in Figure 4.
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16 Q. WANG, L. WANG, AND L. WANG Vol. 00, No. 00

TABLE 3: Distance between the estimated value and the true value for different hyperparameters.

𝑛 (𝑎
𝜖
, 𝑏

𝜀
) (𝑎

𝑢
, 𝑏

𝑢
) (𝑎

𝑒
, 𝑏

𝑒
) 𝜇 𝜂 ||�̂�

𝐵
− 𝜃|| ||�̂�

𝐿𝐵
− 𝜃|| ||�̂�

𝑇𝑆𝐿𝑆
− 𝜃||

50 pr7 (15.5, 16.5) (15.5, 16.5) (24.5, 25.5) (5,−1,−4, 0.6)⊤ (1, 1, 1, 1)⊤ 2.4048 4.6617 8.2202

pr8 (15, 17) (15, 17) (24, 26) (5,−1,−4, 0.6)⊤ (4, 4, 4, 4)⊤ 2.5191 5.6126

pr9 (14.5, 17.5) (14.5, 17.5) (23.5, 26.5) (5,−1,−4, 0.6)⊤ (9, 9, 9, 9)⊤ 2.6685 7.2204

100 pr7 (15.5, 16.5) (15.5, 16.5) (24.5, 25.5) (5,−1,−4, 0.6)⊤ (1, 1, 1, 1)⊤ 1.8816 3.7247 6.1539

pr8 (15, 17) (15, 17) (24, 26) (5,−1,−4, 0.6)⊤ (4, 4, 4, 4)⊤ 2.0183 5.0312

pr9 (14.5, 17.5) (14.5, 17.5) (23.5, 26.5) (5,−1,−4, 0.6)⊤ (9, 9, 9, 9)⊤ 2.0338 5.8641

500 pr7 (15.5, 16.5) (15.5, 16.5) (24.5, 25.5) (5,−1,−4, 0.6)⊤ (1, 1, 1, 1)⊤ 0.9349 1.4809 2.6581

pr8 (15, 17) (15, 17) (24, 26) (5,−1,−4, 0.6)⊤ (4, 4, 4, 4)⊤ 0.9427 1.8130

pr9 (14.5, 17.5) (14.5, 17.5) (23.5, 26.5) (5,−1,−4, 0.6)⊤ (9, 9, 9, 9)⊤ 1.0557 2.2786

Note: 𝜇 = (𝜇01, 𝜇11, 𝜇02, 𝜇12)⊤, 𝜂 =
(
𝜂

2
01, 𝜂

2
11, 𝜂

2
02, 𝜂

2
12

)⊤, and pr stands for the prior.

(a) pr7 (a) pr8

FIGURE 3: Distance between the estimated value and the true value as a function of sample size.

(a) normal-gamma (b) normal-uniform

FIGURE 4: Distance between BE and LBE as a function of sample size.
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2023 BAYESIAN INSTRUMENTAL VARIABLE ESTIMATION 17

TABLE 4: Effect of IV on the distance between the estimated value and the true value.

𝑛 𝛽0 𝛽1 ||𝛽
∗
𝐵
− 𝛽

∗|| ||𝛽
∗
𝐿𝐵
− 𝛽

∗|| ||𝛽
∗
𝑇𝑆𝐿𝑆

− 𝛽
∗|| ||𝛽

+
𝐵
− 𝛽

+|| ||𝛽
+
𝐿𝐵
− 𝛽

+|| ||𝛽
+
𝑇𝑆𝐿𝑆

− 𝛽
+||

50  (−4, 1)  (0.6, 1) 0.4027 0.8254 0.8779 0.5756 0.8458 0.9127

 (−4, 9)  (0.6, 9) 0.7671 0.8553 0.8229 0.8731

 (−4, 25)  (0.6, 25) 0.8277 0.8762 0.8551 0.8911

100  (−4, 1)  (0.6, 1) 0.3459 0.5290 0.5511 0.5954 0.6025 0.7755

 (−4, 9)  (0.6, 9) 0.5156 0.5490 0.7229 0.7551

 (−4, 25)  (0.6, 25) 0.5387 0.5503 0.7355 0.7665

500  (−4, 1)  (0.6, 1) 0.2469 0.2736 0.2756 0.4062 0.4254 0.4683

 (−4, 9)  (0.6, 9) 0.2725 0.2762 0.4382 0.4632

 (−4, 25)  (0.6, 25) 0.2754 0.2764 0.4411 0.4664

When the prior distribution is the same, this measure of effectiveness decreases with
increasing sample size, i.e., LBE gets closer to BE. Likewise, when the sample size is constant, the
effectiveness of the LBE approximation to the BE improves as the prior distribution becomes more
informative, i.e., more concentrated. In addition, because LBE does not depend on the specific
prior form, when the sample size is large enough, the value of the prior hyperparameter has almost
no influence on the effectiveness of the LBE approximation, which means LBE is more robust
than BE when the complex multiple integrals are evaluated via the Metropolis–Hastings method.

5.4. Influences of Instrumental Variable on Measurement Error Model
If using an IV is not adopted, then we simply substitute 𝑊 into the model identified in
Equation (1) to obtain (for 𝑝 = 2)

𝑦 = 𝛽0 + 𝛽1𝑊 + 𝜖 − 𝛽1𝑢. (12)

Obviously, the variable 𝑊 is correlated with the model error. If we were to use least squares
to estimate 𝛽 = (𝛽0, 𝛽1)⊤, the estimation would be biased and also inconsistent. Therefore, the
influence of measurement error on the linear model exists and gives rise to increasing bias that
is proportional to the variance of the underlying measurement error.

To assess the effect of using an IV in the presence of measurement error, we undertake
various comparisons between estimators of our model parameters with and without an IV. We
calculate the observed values of the bias in estimating 𝛽0 and 𝛽1 when an IV is, and also is not,
used in the method of estimation. The resulting values are reported in Table 4; the symbols 𝛽∗

and 𝛽
† indicate that an IV is, or is not, used, respectively.

These values clearly demonstrate that using an IV when measurement error is present affects
the estimation results. Intuitively, by using an appropriate IV, the distance between the LBE and
the true value is reduced because the IV counteracts the deviation.

In the various simulation studies that we reported above, we only considered the case when
𝑝 = 2, i.e., the model identified in Equation (1) becomes a simple linear regression model. In
order to further verify the superiority of our LBE method, we also investigated another linear
model. Let 𝑝 = 𝑞 = 3, and

𝛼 = (𝛼0, 𝛼
⊤

𝐼
)⊤ =

⎛
⎜
⎜
⎜
⎝

5 −1
2 −5
4 1

⎞
⎟
⎟
⎟
⎠

, 𝛽 =
⎛
⎜
⎜
⎜
⎝

− 4
0.6
1

⎞
⎟
⎟
⎟
⎠

.
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18 Q. WANG, L. WANG, AND L. WANG Vol. 00, No. 00

Suppose the true values of 𝜎2
𝜖
, 𝜎2

𝑢
, and 𝜎

2
𝑒

are given by the following distributions:

𝜖 ∼ (0, 4𝐼
𝑛
), 𝑢 ∼ (0, 𝐼

𝑛
, 4𝐼

𝑝−1), 𝑒 ∼ (0, 𝐼
𝑛
, 9𝐼

𝑝−1).

We also calculate the distances between the estimated value and the true value for different
priors with known and unknown variances (Table A7). The various prior distributions that we
adopted are summarized in the Appendix in Table A6; the corresponding numerical results may
be found in Tables A8–A10.

The results show that when the variances are known, the distance between the estimated value
and the true value is very small, and ||𝜉

𝐿𝐵
− 𝜉||𝑠 are smaller than ||𝜉

𝑇𝑆𝐿𝑆
− 𝜉||𝑠, which shows

that LBE works well. In the case of unknown variances, we also notice that LBE is superior to
the TSLS alternative. These results demonstrate that LBE also works in a more general linear
model setting.

6. TWO CASE STUDIES

The LBE does not rely on the specific form of the prior but depends only on its moments, which
reduces the difficulty of determining prior forms in Bayesian estimation. In addition, an explicit
expression for the estimator can be derived, which adds to its convenience in practical situations.
In this section, we employ two examples to demonstrate the use of our proposed LBE.

6.1. The Problem of Defects of Parts
This first case study concerns defective plastic automotive parts: should they be repaired or
discarded? Also, why do they occur? Some engineers think they arise because of the standard
deviation of the temperature in the production process, which needs to be minimized. Others
argue that it is clearly a matter of production density and that the problem will disappear as the
density increases. If so, then the problem can be solved by reducing the production speed, but it
will increase the cost. While minimizing the production costs, workers may focus more attention
on both the temperature and the density in order to reduce the occurrence of defects.

Siegel (1997) studied the relationship between temperature, density, and the average number
of defects per 1000 parts produced for 30 independent production runs. However, there is serious
multicollinearity among the three predictive variables. The correlation coefficient between
temperature and density is −0.9591. Many investigators have focused their efforts on the
relationship between the average number of defects (y) and the temperature (x). However,
the temperature recorded typically involves measurement error. We propose to use a suitable
measurement error model to analyze these same data while treating the density as an IV. In this
article, we use the measurement error models to analyze the above data and denote the density
as the IV.

Note that the relationship between the average number of defects and the temperature in the
production process is not strictly linear, so we first employ a Box–Cox transformation of the
original measurements. Our model for the resulting transformed data is

w = 𝛼0 + 𝛼1𝑧 + 𝜐1, 𝜐1 ∼
(
0, 𝜏2

1

)
, (13)

√
𝑦 = 𝛽0 + 𝛽1𝛼0 + 𝛽1𝛼1𝑧 + 𝜐2, 𝜐2 ∼

(
0, 𝜏2

2

)
, (14)

where 𝑦 denotes the average number of defects produced per 1000 parts, w is the temperature
measured during production, and 𝑧 denotes the corresponding value of the density.

We calculate the BEs of the parameters, assuming first normal-uniform and then
normal-gamma prior distributions, and also derive the corresponding LBEs. We then compare
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2023 BAYESIAN INSTRUMENTAL VARIABLE ESTIMATION 19

our observed results using these two estimators with the corresponding estimates arising from
use of the TSLS estimators. Sample moments derived from the data are used to inform the prior
distributions that we use. Thus

�̂�1 =
𝑆w𝑧

𝑆
𝑧

=
∑𝑛

𝑖=1(w𝑖
− w)(𝑧

𝑖
− 𝑧)

∑𝑛

𝑖=1(𝑧𝑖 − 𝑧)2
, �̂�0 = w − �̂�1𝑧 =

1
𝑛

𝑛∑

𝑖=1

w
𝑖
− 1
𝑛
�̂�1

𝑛∑

𝑖=1

𝑧
𝑖
,

𝛽1 =
𝑆
𝑦𝑧

𝑆w𝑧
=

∑𝑛

𝑖=1

(√
𝑦
𝑖
−
√
𝑦

)
(𝑧

𝑖
− 𝑧)

∑𝑛

𝑖=1(w𝑖
− w)(𝑧

𝑖
− 𝑧)

,

𝛽0 =
√
𝑦 − 𝛽1(�̂�0 + �̂�1𝑧) =

1
𝑛

𝑛∑

𝑖=1

√
𝑦
𝑖
− 𝛽1

(

�̂�0 +
�̂�1

𝑛

𝑛∑

𝑖=1

𝑧
𝑖

)

,

�̂�
2
𝑒
=
𝑆w − 𝛽1�̂�

2
1𝑆𝑧

𝛽1

, �̂�
2
𝑢
= 𝑆w − �̂�

2
1𝑆𝑧

− �̂�
2
𝑒
, �̂�

2
𝜖
= 𝑆

𝑦
− 𝛽1𝑆w𝑦,

where 𝑆w, 𝑆
𝑦
, and 𝑆w𝑦 are analogous to the definitions of 𝑆

𝑧
and 𝑆w𝑧. Table A11 in the

Appendix summarizes the various choices of prior distributions that we use in these comparisons.
Tables A12 and A13 report our observed results in terms of estimated model parameters and
the corresponding RMSEs when the chosen priors are normal-uniform and normal-gamma,
respectively. To summarize, we find that the model parameter estimates are quite similar.
However, the BE method of estimation yields the smallest RMSEs, whereas TSLS estimation
gives rise to the largest estimated standard deviations. To assess the model’s goodness of fit, we
calculate the value of 𝑅2; in each case, the value exceeds 0.9, which suggests that our estimated
model provides a satisfactory fit to the data. As for convenience, using the LBE method of
estimation is clearly preferable.

6.2. The Problem of Alaskan Earthquakes
More than 30 years ago, Fuller (1987) used the IV approach to investigate the reported magnitude
of Alaskan earthquakes that occurred between 1969 and 1978. Three measures of magnitude of
an earthquake are the logarithm of the seismogram amplitude of 20-s surface waves, which we
denote by 𝑦; the logarithm of the seismogram amplitude of longitudinal body waves, which we
denote by w; and the logarithm of the maximum seismogram trace amplitude at short distance,
which we denote by 𝑧, and treat them as the IVs. These observed values are designed to be
measures of earthquake magnitude. Strength is a function of such factors as rupture length and
stress drop at the fault, both of which increase with strength. A model could be formulated to
specify average rupture length and stress drop for a given strength. In addition to variations
in fault length and stress drop from averages derived from the strength model, there is a
measurement error associated with the observations. The measurement error includes errors
made in determining the amplitude of ground motion arising from factors such as the orientation
of a limited number of observation stations to the fault plane of the earthquake (Table A14).

Using model equations that are analogous to those found in Equations (13) and (14) in the
previous case study, we explored the relationship among 𝑥, 𝑦, and 𝑧. Parameter estimates and the
corresponding RMSEs for these Alaskan earthquake data when the prior distributions chosen are
normal-uniform and normal-gamma, respectively, may be found in the Appendix in Tables A15
and A16, respectively. Obviously, the RMSEs of BE and LBE are smaller than those generated
using the TSLS method of estimation. The RMSEs under the normal-uniform priors are smaller
than those under the normal-gamma priors. Overall, we find that our proposed LBE method is
both feasible and convenient in analyzing Fuller’s Alaskan earthquake data.
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20 Q. WANG, L. WANG, AND L. WANG Vol. 00, No. 00

7. CONCLUSIONS

We have explored the problem of estimating the parameters in measurement error models and
proposed an estimation procedure that combines the Bayes method with use of an IV. In this
setting, although TSLS estimation is feasible, we demonstrated how prior information about the
model parameters can be incorporated into the measurement error models so that BEs of the
model parameters under the assumption of quadratic loss can be derived. However, the resulting
calculations involve evaluating complex multiple integrals using the Metropolis–Hastings
algorithm. As a result, explicit expressions for the BEs cannot be obtained. To avoid these
complex calculations, we adopted the linear Bayes method to derive a linear approximation to
the BEs. We proved that the LBE is superior to the TSLS estimator under the mean squared error
matrix criterion. Via simulation studies, we showed that LBE is close to its full Bayes counterpart,
and both of them are better than the TSLS estimator. Whether the variance parameters in the
assumed model are known or unknown, our proposed linear Bayes approximation appears to
yield parameter estimates that are very close to the true values. With increasing sample size, as
well as more concentrated prior information, our LBE approaches the BE that it approximates.
Two case studies provided concrete evidence that our proposed LBE is both feasible and practical
in situations involving the presence of measurement error in linear models, and provided a robust
alternative to full Bayes estimation of the model parameters, with its associated complexities.

Our proposed linear BE is based on the assumption that the second moment of the prior
distribution exists and is solved under the same quadratic loss. In fact, many common distribution
families, such as the normal, uniform, and gamma, satisfy this assumption. Note that parameter
estimation via the Bayes method needs to specify some priors, which can be problematic in
practice. As a linear approximation to BE, LBE does not depend on the specific prior form
but relies solely on moments of the prior distribution to generate an explicit expression for the
estimated parameter. Therefore, it should be more robust than a full BE, which involves evaluating
complex multiple integrals via the Metropolis–Hastings algorithm. However, although linear
Bayes estimation is occasionally equal to its full Bayes counterpart, situations can arise when it
constitutes simply a local optimum rather than a global optimal solution.
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APPENDIX

Proof of Theorem 1 . From the constraint E(𝑇 ,𝜃)(�̂�𝐿𝐵 − 𝜃) = 0, we know E(𝑇 ,𝜃)(𝐵𝑇 + 𝑏 − 𝜃) = 0.
Hence

𝑏 = E(𝑇 ,𝜃)(𝜃) − 𝐵E(𝑇 ,𝜃)(𝑇 ) = E𝜃 − 𝐵E𝜃.

According to 𝐿(�̂�
𝐿𝐵
, 𝜃) = (�̂�

𝐿𝐵
− 𝜃)⊤𝐷(�̂�

𝐿𝐵
− 𝜃), the Bayes risk can be calculated as

𝑅(�̂�
𝐿𝐵
, 𝜃) = E(𝑇 ,𝜃)𝐿(�̂�𝐿𝐵, 𝜃)

= E(𝑇 ,𝜃)
[(
𝐵(𝑇 − E𝜃) − (𝜃 − E𝜃)

)⊤
𝐷
(
𝐵(𝑇 − E𝜃) − (𝜃 − E𝜃)

)]

= E(𝑇 ,𝜃)
[
tr
(
𝐷
(
𝐵(𝑇 − E𝜃) − (𝜃 − E𝜃)

)(
𝐵(𝑇 − E𝜃) − (𝜃 − E𝜃)

)⊤)]

= tr
(
𝐷𝐵E(𝑇 ,𝜃)

(
(𝑇 − E𝜃)(𝑇 − E𝜃)⊤

)
𝐵
⊤
)
− tr
(
𝐷Cov(𝜃)𝐵⊤

)

− tr
(
𝐷𝐵Cov(𝜃)) − tr(𝐷Cov(𝜃)

)
.

Note that we have

E(𝑇 ,𝜃)[(𝑇 − E𝜃)(𝑇 − E𝜃)⊤] = E[Cov(𝑇 |𝜃)] + Cov(E(𝑇 |𝜃)) = 𝐾 + Cov(𝜃).

Hence

𝑅(�̂�
𝐿𝐵
, 𝜃) = tr

(
𝐷𝐵(𝐾 + Cov(𝜃))𝐵⊤

)
− tr
(
𝐷Cov(𝜃)𝐵⊤

)
− tr(𝐷𝐵Cov(𝜃)) − tr(𝐷Cov(𝜃)).

Let 𝜕𝑅(�̂�
𝐿𝐵
, 𝜃)∕𝜕𝐵 = 0; then

𝐷𝐵(𝐾 + Cov(𝜃)) −𝐷Cov(𝜃) = 0,

and
𝐵 = Cov(𝜃)[𝐾 + Cov(𝜃)]−1 = 𝐼 −𝐾𝐻,

where 𝐻 = [𝐾 + Cov(𝜃)]−1, which yields 𝑏 = E𝜃 − 𝐵E𝜃 = 𝐾𝐻E𝜃.
Hence, we can obtain the LBE of 𝜃 as

�̂�
𝐿𝐵
= 𝐵𝑇 + 𝑏 = 𝑇 −𝐾𝐻(𝑇 − E𝜃).
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2023 BAYESIAN INSTRUMENTAL VARIABLE ESTIMATION 23

The specific expression for 𝐾 is obtained as follows:

𝐾 = E[Cov(𝑇 |𝜃)] = E

⎛
⎜
⎜
⎜
⎝

Cov(Vec(�̂�)|𝜃) Cov(Vec(�̂�), �̂�|𝜃) 0
Cov(Vec(�̂�), �̂�|𝜃) Cov(�̂�|𝜃)

0 0 Cov(𝜏2|𝜃)

⎞
⎟
⎟
⎟
⎠

.

Note that
(

Vec(𝑊 )
𝑌

)

∼
𝑛𝑝

((
(𝐼

𝑝−1 ⊗𝑍)Vec(𝛼)
𝑍𝛾

)

,

(
𝜏

2
1𝐼𝑛(𝑝−1)

(
𝛽
𝐼
⊗ 𝐼

𝑛

)
𝜎

2
𝑒(

𝛽
⊤

𝐼
⊗ 𝐼

𝑛

)
𝜎

2
𝑒

𝜏
2
2𝐼𝑛

))

,

where

Cov(Vec(�̂�) | 𝜃) = Cov
((
𝐼
𝑝−1 ⊗ (𝑍⊤

𝑍)−1
𝑍

⊤
)
Vec(𝑊 ) | 𝜃

)

=
(
𝐼
𝑝−1 ⊗ (𝑍⊤

𝑍)−1)
𝜏

2
1 ,

Cov(�̂� | 𝜃) = Cov
(
(𝑍⊤

𝑍)−1
𝑍

⊤
𝑌 |𝜃
)

= (𝑍⊤
𝑍)−1

𝜏
2
2 ,

and Cov(Vec(�̂�), �̂� | 𝜃) = Cov
((
𝐼
𝑝−1 ⊗ (𝑍⊤

𝑍)−1
𝑍

⊤
)
Vec(𝑊 ), (𝑍⊤

𝑍)−1
𝑍

⊤
𝑌 |𝜃
)

=
(
𝛽
𝐼
⊗ (𝑍⊤

𝑍)−1)
𝜎

2
𝑒
.

Also, since

Cov(𝜏2 | 𝜃) =

(
Cov(𝜏2

1 | 𝜃) Cov(𝜏2
1, 𝜏

2
2 | 𝜃)

Cov(𝜏2
1, 𝜏

2
2 | 𝜃) Cov(𝜏2

2 | 𝜃)

)

,

(𝑛 − 𝑞)(𝑝 − 1)𝜏2
1

𝜏
2
1

∼ 𝜒
2
(𝑛−𝑞)(𝑝−1) and

(𝑛 − 𝑞)𝜏2
2

𝜏
2
2

∼ 𝜒
2
𝑛−𝑞,

we know Var
(
(𝑛 − 𝑞)𝜏2

2∕𝜏
2
2

)
= 2(𝑛 − 𝑞). Therefore, Cov

(
𝜏

2
2 | 𝜃

)
= 2𝜏4

2∕(𝑛 − 𝑞) and
Cov
(
𝜏

2
1 | 𝜃

)
= 2𝜏4

1∕[(𝑛 − 𝑞)(𝑝 − 1)].
Further, if (

𝑦1

𝑦2

)

∼2𝑛

((
𝜇1

𝜇2

)

,

(
Σ1 Σ12

Σ21 Σ2

))

,

then

Cov
(
𝑦
⊤

1 𝑄1𝑦1, 𝑦
⊤

2 𝑄2𝑦2
)
= 4𝜇⊤1 𝑄1Σ12𝑄2𝜇2 + 2tr(𝑄1Σ12𝑄2Σ21),

where 𝑄1 and 𝑄2 are 𝑛 × 𝑛 symmetric matrices. Hence

Cov
(
𝜏

2
1, 𝜏

2
2|𝜃
)
= Cov

(
||Vec(𝑊 ) − (𝐼

𝑝−1 ⊗𝑍)Vec(�̂�)||2

(𝑛 − 𝑞)(𝑝 − 1)
,
||𝑌 −𝑍�̂�||2

𝑛 − 𝑞

|||𝜃

)

=
Cov
(
Vec(𝑊 )⊤(𝐼

𝑛(𝑝−1) − (𝐼𝑝−1 ⊗ 𝑃
𝑍
)
)
Vec(𝑊 ), 𝑌 ⊤(𝐼

𝑛
− 𝑃

𝑍
)𝑌 |𝜃

)

(𝑛 − 𝑞)2(𝑝 − 1)
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=
4Vec(𝛼)⊤𝑍⊤

(
𝐼
𝑛(𝑝−1) − (𝐼𝑝−1 ⊗ 𝑃

𝑍
)
)
(𝛽

𝐼
⊗ 𝐼

𝑛
)𝜎2

𝑒
(𝐼

𝑛
− 𝑃

𝑍
)𝑍𝛾

(𝑛 − 𝑞)2(𝑝 − 1)

+
2tr
((
𝐼
𝑛(𝑝−1) − (𝐼𝑝−1 ⊗ 𝑃

𝑍
)
)
(𝛽

𝐼
⊗ 𝐼

𝑛
)𝜎2

𝑒
(𝐼

𝑛
− 𝑃

𝑍
)(𝛽⊤

𝐼
⊗ 𝐼

𝑛
)𝜎2

𝑒

)

(𝑛 − 𝑞)2(𝑝 − 1)

=
2𝛽⊤

𝐼
𝛽
𝐼
𝜎

4
𝑒

(𝑛 − 𝑞)(𝑝 − 1)
,

where 𝑃
𝑍

is a symmetric and idempotent matrix, and accordingly tr(𝐼 − 𝑃
𝑍
) = rk(𝐼 − 𝑃

𝑍
) =

𝑛 − 𝑞.
To sum up, we obtain the matrix 𝐾 .
This completes the proof of Theorem 1. ◼

Proof of Theorem 2 . Given that E(𝑇 ,𝜃)(�̂�𝐿𝐵 − 𝜃) = 0, we have

MSEM(�̂�
𝐿𝐵
) = E(𝑇 ,𝜃)

[
(�̂�

𝐿𝐵
− 𝜃)(�̂�

𝐿𝐵
− 𝜃)⊤

]

= E
(
(𝐼 −𝐾𝐻)Cov(𝑇 |𝜃)(𝐼 −𝐾𝐻)⊤

)
+ Cov(𝐾𝐻(E𝜃 − 𝜃))

= 𝐾 − 2𝐾𝐻𝐾 +𝐾𝐻[𝐾 + Cov(𝜃)]𝐻𝐾

= 𝐾 −𝐾𝐻𝐾.

Furthermore

MSEM(�̂�
𝑇𝑆𝐿𝑆

) = E
[
(�̂�

𝑇𝑆𝐿𝑆
− 𝜃)(�̂�

𝑇𝑆𝐿𝑆
− 𝜃)⊤

]

= E
[(

E(𝑇 − 𝜃)(𝑇 − 𝜃)⊤|𝜃
)]

= 𝐾.

Hence, MSEM(�̂�
𝐿𝐵
) ≤ MSEM(�̂�

𝑇𝑆𝐿𝑆
).

This completes the proof of Theorem 2, establishing that the LBE is superior to the TSLS.◼

SOME ADDITIONAL TABLES

TABLE A1: Bias and RMSE of estimator for the parameter with 𝑛 = 50.

pr 𝛼0 𝛼1 𝛽0 𝛽1

B pr1 0.0291 (0.0395) −0.0168 (0.0147) −0.0402 (0.0389) 0.0067 (0.0072)

pr2 0.0462 (0.0599) −0.0174 (0.0152) −0.0805 (0.0628) 0.0120 (0.0088)

pr3 0.0496 (0.0662) −0.0172 (0.0153) −0.0101 (0.0715) 0.0152 (0.0098)

LB pr1 0.0296 (0.0394) −0.0171 (0.0147) −0.1145 (0.0774) 0.0171 (0.0100)

pr2 0.0448 (0.0599) −0.0173 (0.0152) −0.1233 (0.0804) 0.0183 (0.0103)

pr3 0.0494 (0.0663) −0.0173 (0.0153) −0.1246 (0.0809) 0.0185 (0.0103)

TSLS 0.0538 (0.0724) −0.0173 (0.0153) −0.1255 (0.0812) 0.0186 (0.0103)

Note: RMSE is inside parentheses and the bias between the estimated value and the true value is outside parentheses.
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2023 BAYESIAN INSTRUMENTAL VARIABLE ESTIMATION 25

TABLE A2: Bias and RMSE of estimator for the parameter with 𝑛 = 100.

pr 𝛼0 𝛼1 𝛽0 𝛽1

B pr1 0.0313 (0.0332) 0.0075 (0.0101) 0.0241 (0.0357) −0.0098 (0.0065)

pr2 0.0383 (0.0426) 0.0082 (0.0102) 0.0205 (0.0500) −0.0092 (0.0074)

pr3 0.0390 (0.0449) 0.0081 (0.0102) 0.0141 (0.0537) −0.0084 (0.0077)

LB pr1 0.0296 (0.0332) 0.0077 (0.0100) 0.0192 (0.0555) −0.0087 (0.0079)

pr2 0.0379 (0.0426) 0.0081 (0.0102) 0.0151 (0.0572) −0.0085 (0.0080)

pr3 0.0401 (0.0449) 0.0082 (0.0102) 0.0163 (0.0574) −0.0087 (0.0080)

TSLS 0.0419 (0.0470) 0.0082 (0.0103) 0.0133 (0.0576) −0.0084 (0.0080)

Note: RMSE is inside parentheses and the bias between the estimated value and the true value is outside parentheses.

TABLE A3: Bias and RMSE of the estimator under the normal-gamma priors with 𝑛 = 50.

pr 𝛼0 𝛼1 𝛽0 𝛽1 𝜏
2
1 𝜏

2
2

B pr4 0.0381 0.0307 −0.3264 0.0351 −0.2806 −0.3241

(0.0667) (0.0304) (0.0519) (0.0097) (0.5299) (0.3785)

pr5 0.0401 0.0325 −0.4100 0.0646 −1.0127 −0.3297

(0.0817) (0.0309) (0.0580) (0.0118) (0.5466) (0.4243)

pr6 0.0502 0.0313 −0.4402 0.0872 −1.4267 0.4135

(0.0831) (0.0310) (0.0623) (0.0144) (0.7839) (0.4372)

LB pr4 0.0429 0.0302 −0.7196 0.0860 0.7359 0.2580

(0.0791) (0.0308) (0.1112) (0.0187) (0.7109) (0.4260)

pr5 0.0439 0.0306 −0.7336 0.0878 0.9932 0.4779

(0.0821) (0.0309) (0.1129) (0.0189) (0.7861) (0.4393)

pr6 0.0441 0.0307 −0.7365 0.0883 −1.3941 0.5653

(0.0895) (0.0309) (0.1133) (0.0190) (0.9283) (0.4431)

TSLS 0.0614 0.0320 −0.7747 0.0954 1.3456 −0.5434

(0.1167) (0.0315) (0.1234) (0.0201) (1.0111) (0.4379)

Note: RMSE is inside parentheses and the bias between the estimated value and the true value is outside parentheses.
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26 Q. WANG, L. WANG, AND L. WANG Vol. 00, No. 00

TABLE A4: Bias and RMSE of the estimator under the normal-gamma priors with 𝑛 = 100.

pr 𝛼0 𝛼1 𝛽0 𝛽1 𝜏
2
1 𝜏

2
2

B pr4 0.0091 0.0678 −0.0662 0.0044 −0.1554 −0.2005

(0.0318) (0.0127) (0.0460) (0.0053) (0.2551) (0.2138)

pr5 0.0094 −0.0678 −0.1221 −0.0081 −0.4377 −0.2283

(0.0357) (0.0129) (0.0496) (0.0054) (0.3280) (0.2363)

pr6 0.0102 −0.0680 −0.1586 −0.0218 0.5541 −0.3392

(0.0381) (0.0129) (0.0498) (0.0056) (0.4096) (0.2553)

LB pr4 0.0971 −0.0676 −0.1140 −0.0170 0.2987 0.2238

(0.0349) (0.0128) (0.0591) (0.0060) (0.2385) (0.2553)

pr5 0.0982 −0.0677 −0.1149 −0.0172 −0.3353 −0.2779

(0.0356) (0.0129) (0.0593) (0.0060) (0.3593) (0.2598)

pr6 0.0984 −0.0677 −0.1154 −0.0172 −0.5989 0.4661

(0.0389) (0.0129) (0.0593) (0.0060) (0.4238) (0.2673)

TSLS −0.0116 −0.0684 −0.1017 0.0175 0.4226 0.3121

(0.0430) (0.0130) (0.0597) (0.0060) (0.4277) (0.2686)

Note: RMSE is inside parentheses and the bias between the estimated value and the true value is outside parentheses.

TABLE A5: RMSE of estimator under the normal-uniform priors with 𝑛 = 50.

pr 𝛼0 𝛼1 𝛽0 𝛽1 𝜏
2
1 𝜏

2
2

B pr7 0.0340 0.0004 0.0326 −0.0216 −0.0054 −0.0449

(0.0583) (0.0170) (0.0545) (0.0088) (0.0026) (0.2562)

pr8 0.0458 0.0007 0.0314 −0.0219 −0.0173 0.0880

(0.0758) (0.0174) (0.0700) (0.0096) (0.0090) (0.2794)

pr9 0.0493 0.0011 0.0267 −0.0218 −0.0359 0.1175

(0.0841) (0.0176) (0.0779) (0.0101) (0.0205) (0.2935)

LB pr7 0.0428 0.0005 −0.0752 −0.0096 −0.0050 0.4296

(0.0584) (0.0170) (0.0972) (0.0145) (0.0021) (0.2943)

pr8 0.0508 0.0008 −0.0715 −0.0081 −0.0181 0.6360

(0.0756) (0.0174) (0.1030) (0.0149) (0.0149) (0.3696)

pr9 0.0543 0.0012 −0.0681 −0.0076 −0.0139 0.8774

(0.0839) (0.0176) (0.1048) (0.0150) (0.0188) (0.4751)

TSLS 0.0642 0.0021 −0.0190 −0.0062 −0.0063 0.6353

(0.1075) (0.0180) (0.1101) (0.0152) (0.8966) (0.5398)

Note: RMSE is inside parentheses and the bias between estimated value and true value is outside parentheses.
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2023 BAYESIAN INSTRUMENTAL VARIABLE ESTIMATION 27

TABLE A6: RMSE of estimator under the normal-uniform priors with 𝑛 = 100.

pr 𝛼0 𝛼1 𝛽0 𝛽1 𝜏
2
1 𝜏

2
2

B pr7 0.0116 −0.0098 −0.0122 0.0056 −0.0003 0.4376

(0.0332) (0.0102) (0.0312) (0.0059) (0.0022) (0.1808)

pr8 0.0138 −0.0102 −0.161 0.0051 −0.0001 0.4463

(0.0390) (0.0103) (0.0371) (0.0061) (0.0084) (0.1876)

pr9 0.0152 −0.0097 −0.0204 0.0054 0.0025 0.4685

(0.0413) (0.0103) (0.0395) (0.0062) (0.0188) (0.1926)

LB pr7 0.0184 −0.0099 −0.0398 −0.0010 0.0040 0.7622

(0.0333) (0.0102) (0.0494) (0.0075) (0.0022) (0.2442)

pr8 0.0182 −0.0101 −0.0342 −0.0007 −0.0160 0.7741

(0.0390) (0.0103) (0.0509) (0.0075) (0.0085) (0.2696)

pr9 0.0180 −0.0101 −0.0313 −0.0006 0.0352 0.8020

(0.0414) (0.0103) (0.0514) (0.0075) (0.0190) (0.2781)

TSLS 0.0176 −0.0103 0.0038 −0.0003 0.9335 0.8295

(0.0471) (0.0104) (0.0524) (0.0076) (0.4477) (0.2973)

Note: RMSE is inside parentheses and the bias between the estimated value and the true value is outside parentheses.

TABLE A7: The different priors.
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TABLE A7: Continued

pr 𝛼 𝛽 𝜎
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TABLE A8: Distance between the estimated value of the regression parameters and the true value under
different prior hyperparameters.

𝑛 pr ||𝜉
𝐵
− 𝜉|| ||𝜉

𝐿𝐵
− 𝜉|| ||𝜉

𝑇𝑆𝐿𝑆
− 𝜉||

50 pr1 0.6026 0.7008 0.8132

pr2 0.6918 0.7461

pr3 0.7342 0.7649

100 pr1 0.7185 0.5300 0.5771

pr2 0.5509 0.5744

pr3 0.5589 0.5935

500 pr1 0.2634 0.2263 0.2306

pr2 0.2715 0.2284

pr3 0.2741 0.2291
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2023 BAYESIAN INSTRUMENTAL VARIABLE ESTIMATION 29

TABLE A9: Distance between the estimated value and the true value under different prior hyperparameters
of the normal-gamma priors.

𝑛 pr ||�̂�
𝐵
− 𝜃|| ||�̂�

𝐿𝐵
− 𝜃|| ||�̂�

𝑇𝑆𝐿𝑆
− 𝜃||

50 pr4 5.3541 8.0347 11.9156

pr5 5.5452 8.8796

pr6 6.1941 9.7650

100 pr4 5.1271 7.4823 8.2348

pr5 5.2627 7.8595

pr6 5.8559 8.4823

500 pr4 4.5600 5.2223 5.5750

pr5 4.6954 5.5058

pr6 5.5300 5.5966

TABLE A10: Distance between the estimated value and the true value under different prior
hyperparameters of the normal-uniform priors.

𝑛 pr ||�̂�
𝐵
− 𝜃|| ||�̂�

𝐿𝐵
− 𝜃|| ||�̂�

𝑇𝑆𝐿𝑆
− 𝜃||

50 pr7 2.4542 5.3854 11.7515

pr8 3.0428 6.9306

pr9 4.0366 6.4823

100 pr7 2.5470 4.0358 8.3987

pr8 3.3846 4.4440

pr9 4.4821 5.2448

500 pr7 2.6693 3.2551 5.4527

pr8 4.3457 4.5635

pr9 4.8551 5.5189

TABLE A11: The different priors for defects of parts.

pr 𝛼0 𝛼1 𝛽0 𝛽1 𝜎
2
𝜀

𝜎
2
𝑢

𝜎
2
𝑒

pr1  (6.42, 1)  ((−0.17, 1)  (−3.80, 1)  (3.87, 1)  (0.2, 0.4) 

(0.01, 0.02)


(0.01, 0.02)

pr2  (6.42, 4)  (−0.17, 4)  (−3.80, 4)  (3.87, 4)  (0.1, 0.5) 

(0.005, 0.025)


(0.005, 0.025)

pr3  (6.42, 9)  (−0.17, 9)  (−3.80, 9)  (3.87, 9)  (0, 0.6)  (0, 0.03)  (0, 0.03)

pr4  (6.42, 1)  (−0.17, 1)  (−3.80, 1)  (3.87, 1) (1, 3) (0.1, 2) (0.1, 1)

pr5  (6.42, 4)  (−0.17, 4)  (−3.80, 4)  (3.87, 4) (1, 4) (0.1, 3) (0.1, 2)

pr6  (6.42, 9)  (−0.17, 9)  (−3.80, 9)  (3.87, 9) (1, 5) (0.1, 4) (0.1, 3)
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TABLE A12: Estimator and RMSE under the normal-uniform priors for defects of parts.

pr 𝛼0 𝛼1 𝛽0 𝛽1 𝜏
2
1 𝜏

2
2

B pr1 6.4168 −0.1667 −3.7593 3.8444 0.0298 0.4960

(0.2318) (0.0091) (0.4528) (0.2014) (0.0037) (0.0681)

pr2 6.4169 −0.1666 −3.7697 3.8517 0.0303 0.4732

(0.2429) (0.0096) (0.4678) (0.2068) (0.0059) (0.1039)

pr3 6.4219 −0.1668 −3.7796 3.8555 0.0307 0.4701

(0.2460) (0.0096) (0.4919) (0.2183) (0.0069) (0.1183)

LB pr1 6.4234 −0.1669 −3.7609 3.8473 0.0294 0.5062

(0.2364) (0.0093) (0.5173) (0.1077) (0.0036) (0.0742)

pr2 6.4219 −0.1668 −3.7724 3.8527 0.0288 0.4741

(0.2402) (0.0094) (0.5359) (0.1115) (0.0085) (0.1186)

pr3 6.4181 −0.1667 −3.7863 3.8592 0.0285 0.4541

(0.2415) (0.0095) (0.5649) (0.1175) (0.0070) (0.1488)

TSLS 6.4152 −0.1666 −3.8007 3.8659 0.0282 0.4067

(0.2442) (0.0096) (0.5150) (0.2116) (0.0081) (0.1489)

Note: RMSE is inside parentheses and the estimated value is outside parentheses.

TABLE A13: Estimator and RMSE under the normal-gamma priors for defects of parts.

pr 𝛼0 𝛼1 𝛽0 𝛽1 𝜏
2
1 𝜏

2
2

B pr4 6.4146 −0.1665 −3.8019 3.8484 0.0308 0.4257

(0.2386) (0.0093) (0.4657) (0.2068) (0.0091) (0.1137)

pr5 6.4146 −0.1665 −3.7908 3.8620 0.0309 0.4289

(0.2347) (0.0092) (0.4741) (0.2112) (0.0090) (0.1220)

pr6 6.4133 −0.1665 −3.7884 3.8615 0.0298 0.4211

(0.2444) (0.0096) (0.4735) (0.2096) (0.0079) (0.1108)

LB pr4 6.4226 −0.1668 −3.7600 3.8469 0.0317 0.4887

(0.5965) (0.0235) (0.3688) (0.2615) (0.0097) (0.1224)

pr5 6.4234 −0.1669 −3.7588 3.8463 0.0311 0.4894

(0.8001) (0.0315) (0.4200) (0.2704) (0.0094) (0.1669)

pr6 6.4231 −0.1669 −3.7607 3.8472 0.0315 0.4953

(0.9597) (0.0378) (0.4822) (0.2608) (0.0096) (0.1702)

TSLS 6.4152 −0.1666 −3.8007 3.8659 0.0282 0.4067

(0.2442) (0.0096) (0.5150) (0.2116) (0.0081) (0.1489)

Note: RMSE is inside parentheses and the estimated value is outside parentheses.
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TABLE A14: The different priors for Alaskan earthquakes.

pr 𝛼0 𝛼1 𝛽0 𝛽1 𝜎
2
𝜀

𝜎
2
𝑢

𝜎
2
𝑒

pr1  (2.31, 1)  (0.55, 1)  (−4.21, 1)  (1.78, 1) 

(0.07, 0.09)


(0.03, 0.05)


(0.03, 0.05)
pr2  (2.31, 4)  (0.55, 4)  (−4.21, 4)  (1.78, 4) 

(0.06, 0.10)


(0.02, 0.06)


(0.02, 0.06)
pr3  (2.31, 9)  (0.55, 9)  (−4.21, 9)  (1.78, 9) 

(0.05, 0.11)


(0.01, 0.07)


(0.01, 0.07)
pr4  (2.31, 1)  (0.55, 1)  (−4.21, 1)  (1.78, 1) (2, 1) (1, 2) (1, 1)
pr5  (2.31, 4)  (0.55, 4)  (−4.21, 4)  (1.78, 4) (2, 3) (1, 3) (1, 4)
pr6  (2.31, 9)  (0.55, 9)  (−4.21, 9)  (1.78, 9) (2, 5) (1, 4) (1, 6)

TABLE A15: Estimator and RMSE under the normal-uniform priors for Alaskan earthquakes.

pr 𝛼0 𝛼1 𝛽0 𝛽1 𝜏
2
1 𝜏

2
2

B pr1 2.3118 0.5529 −4.3129 1.8022 0.0818 0.2128

(0.2864) (0.0543) (0.5907) (0.1133) (0.0071) (0.0226)

pr2 2.3093 0.5535 −4.2515 1.7904 0.0858 0.2190

(0.3023) (0.0571) (0.6840) (0.1308) (0.0114) (0.0311)

pr3 2.3081 0.5537 −4.1953 1.7794 0.0879 0.2258

(0.3074) (0.0582) (0.7441) (0.1426) (0.0136) (0.0362)

LB pr1 2.3603 0.5442 −4.3847 1.8147 0.0869 0.2278

(0.6578) (0.1312) (0.5451) (0.0968) (0.2689) (0.0479)

pr2 2.3922 0.5381 −4.4933 1.8356 0.0897 0.2303

(0.9554) (0.1851) (0.5583) (0.1056) (0.2691) (0.0654)

pr3 2.3861 0.5392 −4.4699 1.8313 0.0941 0.2316

(1.1582) (0.2223) (0.5983) (0.1132) (0.2693) (0.0832)

TSLS 2.3114 0.5531 −4.2132 1.7826 0.0871 0.2219

(2.1171) (0.4004) (1.0352) (1.8547) (0.7395) (0.0693)

Note: RMSE is inside parentheses and the estimated value is outside parentheses.
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TABLE A16: Estimator and RMSE under the normal-gamma priors for Alaskan earthquakes.

pr 𝛼0 𝛼1 𝛽0 𝛽1 𝜏
2
1 𝜏

2
2

B pr4 2.3112 0.5533 −4.0741 1.7551 0.0961 0.2524

(0.3078) (0.0581) (0.8165) (0.1561) (0.0184) (0.0495)

pr5 2.3275 0.5503 −4.1406 1.7684 0.0959 0.2498

(0.3233) (0.0613) (0.8054) (0.1542) (0.0189) (0.0474)

pr6 2.3196 0.5515 −4.0873 1.7583 0.0950 0.2477

(0.3227) (0.0614) (0.7789) (0.1492) (0.0182) (0.0485)

LB pr4 2.3384 0.0.5483 −4.5787 1.8103 0.0971 0.2423

(0.8197) (0.1589) (0.6330) (0.2295) (0.1852) (0.0524)

pr5 2.3166 0.0.5522 −4.3903 1.8330 0.0974 0.2578

(1.2264) (0.2383) (0.7325) (0.2325) (0.1704) (0.0608)

pr6 2.3159 0.5523 −4.4100 1.8394 0.0982 0.2567

(1.2749) (0.2514) (0.7815) (0.2815) (0.2557) (0.0698)

TSLS 2.3114 0.5531 −4.2132 1.7826 0.0871 0.2219

(2.1171) (0.4004) (1.0352) (1.8547) (0.7395) (0.0693)

Note: RMSE is inside parentheses and the estimated value is outside parentheses.
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