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Abstract. Variance estimation in high-dimensional linear regression is a fun-

damental problem in statistical learning, and it plays a wide range of roles in
signal processing, pattern recognition, and other fields. Because it is difficult

to choose the true model precisely in high-dimensional regression, variance
estimation remains a challenging problem, especially in scenarios where the

true regression parameter has a large number of non-zero elements. In this

paper, we develop a novel approach for variance estimation by solving a re-
parameterized log-likelihood optimization problem with adaptive elastic-net

regularization. It is called the natural adaptive elastic-net (NAEN). The re-

lationship between NAEN and the naive adaptive elastic-net is established.
The NAEN inherits the advantages of the naive adaptive elastic-net, that is, it

can select and estimate the regression and variance parameters simultaneously.

Moreover, we also give the asymptotic properties of NAEN for error variance.
The simulation results show that the proposed NAEN is suitable for scenarios

where the true regression parameter has many non-zero elements.

1. Introduction. Consider linear regression model

y = xTβ + ε, (1)

where y ∈ R is the response variable, x ∈ Rp is the predictor variable, β ∈ Rp

is the unknown sparse regression parameter, ε ∈ R is the random error satisfying
the normal distribution N(0, (σ∗)2). Given an i.i.d. random sample {xi, yi}, i =
1, · · · , n, the regression model can be written in the following matrix form:

y = Xβ + ε,

where y = (y1, · · · , yn)T , X = (x1, · · · ,xn)
T , ε = (ε1, · · · , εn)T . Here, suppose

that ∥Xj∥22 = n. The purpose of variance estimation is to estimate the variance of
the random error ε.
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In conventional linear models, the residual-based estimator plays an important
role in statistical inferences and model checking. However, the residual-based esti-
mator performs poorly in high-dimensional linear models, where p > n. The reason
for this phenomenon is that model selection is a tedious and complex problem. In
practice, the true model is difficult to select accurately, and often many irrelevant
variables are selected for insurance. Consequently, residuals are actually predicted
with many spurious variables so that the resulting estimator will seriously underes-
timate the error variance.

The following examples demonstrate that variance estimation is involved and
plays an important role in statistical learning.

• (Model selection). Regularization estimation is one of the mainstream meth-
ods for model selection and parameter estimation in high-dimensional models.
The efficiency of this method depends on tuning parameter that can be cho-
sen by some criteria, such as Akaike’s information criterion or the Bayesian
information criterion. These criteria are closely related to the error variance.

• (Confidence intervals). Let β̂ := (β̂1, · · · , β̂p)
T be the regularization estimator

with corresponding design matrix XA, where A ⊂ {1, · · · , p} is the index

set corresponding to non-zero elements of β̂, XA is the sub-matrix of X

consisting of its columns associated with index set A. If β̂ has the oracle
property ([9, 11, 18]), then the (1−α) confidence interval of non-zero element

β̂i, i ∈ {1, · · · , p}, is given by

[β̂i − z1−α/2ciσ, β̂i + z1−α/2ciσ],

where z1−α/2 is the (1−α/2)-th quantile of the conditional normal distribution

and ci is the i-th diagonal element of (XT
AXA)

−1.

1.1. Literature review. In the past ten years, variance estimation in high dimen-
sional linear regression has attracted wide attention.

Here, we review some basic estimation methods and list some representative
research. Let β∗ denote the true regression parameter in (1). Then the ideal oracle
estimator (OE) is defined as σ2

Oracle =
∑n

i=1(yi − xT
i β

∗)2/n. Correspondingly, the

naive estimator (NE) is computed by σ2
Naive =

∑n
i=1(yi−xT

i β̂)
2/n, where β̂ denotes

some estimator for regression parameter. As is well-known that NE is biased and

a modified unbiased estimator (MUE) is given by σ2
M =

∑n
i=1(yi − xT

i β̂)
2/(n− ŝ),

where ŝ is the number of non-zero elements of β̂. However, when p is much larger
than n and s∗ is not very small, a small change in ŝ will lead to large change in the
MUE.

For variance estimation in high-dimensional linear regression, Reference [13] con-
structed a re-parameterized likelihood with L1 penalty to estimate the regression
and variance parameters. Their model can be formulated as

(ϕ̂, ρ̂) = argmin
ϕ,ρ

{
log(ρ) +

∥ρy −Xϕ∥22
2n

+ λn∥ϕ∥1
}
,

where ϕ = β/σ, ρ = 1/σ. A refitted cross-validation method was designed in [8]
to attenuate the influence of irrelevant variables with high spurious correlations via
a data-splitting technique. Reference [14] proposed the scaled lasso (SL), which
can also estimate regression and variance parameters simultaneously like the L1
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penalized re-parameterized likelihood [13] and as follows:

(β̂, σ̂) = argmin
β,σ

{
∥y −Xβ∥22

2nσ
+

(1− a)σ

2
+ λn∥β∥1

}
.

Reference [6] designed a moment estimation for error variance. A re-parameterized
likelihood (See Section 2) different from [13] was developed in [17], who proposed
two estimations: natural lasso (NL) and organic lasso (OL). Referring to [17], a
natural adaptive lasso (NAL) for error variance was proposed in [16]. Essentially,
NL, OL, and NAL for error variance are the respectively the optimal values of
the optimization problems of the lasso [15], the exclusive lasso with a single group
[20, 4], and the adaptive lasso [21] for regression parameters.

1.2. Challenge and motivation. Although there have been many studieson es-
timation problem of error variance in the past decade, it remains a challenging
issue. We use an example to illustrate that the existing methods often overestimate
or underestimate the error variance when the true regression parameter has many
non-zero elements and the error variance is large. In this case, model selection is
difficult to achieve accurately.

Example 1.1. The predictor matrix X is generated randomly from the multivari-
ate normal distribution with mean 0 and covariance matrix Σ := (Σij)

p
i,j=1, where

Σij = ρ|i−j| and ρ = 0.3, and the error variance (σ∗)2 = 1. Set n = 100, p = 200
and sparsity s = 30. The true regression parameter vector β∗ = (1, · · · , 1, 0, · · · , 0).

We apply SL, NL, OL, and NAL to estimate error variance and repeat 100

simulations for each method. The average mean squared error (AMSE) Ê{(σ̂/σ∗ −
1)2} and the average relative ratio (ARR) Ê{σ̂/σ∗} are used to evaluate the quality
of these methods.

Table 1. The AMSE and ARR of SL, NL, OL and NAL

SL NL OL NAL

AMSE 0.734 14.187 0.114 0.103
ARR 0.147 4.765 1.333 0.731

Table 1 reports AMSE and ARR of four methods and Figure 1 shows all simu-
lation results of these methods. These methods severely underestimate or overesti-
mate the error variance. Specifically, SL and NAL underestimate the error variance,
and NAL outperforms other methods. Moreover, OL and NL overestimate the error
variance, and each estimate of NL is much larger than the true variance. Indeed,
most existing methods only perform well in extremely sparse scenarios (See Section
4.4) or in cases where the dimension p is relatively small and the noise in (1) is
small.

In order to obtain accurate estimator of variance parameter, this paper develops
a novel approach for linear models where β∗ has many non-zero elements, called
the natural adaptive elastic-net (NAEN). The rest of this paper is organized as
follows. The NAEN is introduced in Section 2 and its model is a re-parameterized
log-likelihood with adaptive elastic-net. We analyze the relationship between the
NAEN and the naive adaptive elastic-net in Section 3. The asymptotic properties of
the NAEN for β and σ2 are also analyzed in Section 3. In Section 4, we discuss the
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Figure 1. All results of SL, NL, OL and NAL

numerical optimization of the NAEN and its the finite-sample performance. The
simulation results show that the proposed NAEN is suitable for the linear models
where β∗ has many non-zero elements.

1.3. Notations. Throughout the paper, we use the following notation. Let A0 be
the index set of the non-zero elements of β∗ and Ac

0 is its complement. Without
loss of generality, the true regression parameter can be written as

β∗ = ([β∗
A0

]T , [β∗
Ac

0
]T )T ,

where β∗
A0

∈ Rs is the sub-vector of β∗ consisting of its non-zero elements and

β∗
Ac

0
= (0, · · · , 0)T ∈ Rp−s. The number of non-zero elements of β∗ is s. For

vectors v := (v1, · · · , vp)T ∈ Rp and z := (z1, · · · , zp)T ∈ Rp, ∥v∥1 :=
∑p

i=1 |vi| and
∥v∥2 :=

∑p
i=1 v

2
i denotes the 1-norm and 2-norm of v, respectively, and v ◦ z :=

(xiyi)
p
i=1 denotes the Hadamard product between v and z. vA0

denotes the sub-
vector of v consisting of its elements associated with index set A0. In addition,
sign(v) = (sign(v1), · · · , sign(vp))T , where

sign(t) =


1, if t > 0,

0, if t = 0,

−1, if t < 0.

Let ∂∥v∥1 := (∂|v1|, · · · , ∂|vp|)T denote the sub-differential set of ∥ · ∥1 at v, where

∂|t| =


{1}, if t > 0,

[−1, 1], if t = 0,

{−1}, if t < 0.

Each vector in ∂∥v∥1 is a sub-gradient of ∥ · ∥1 at v. For a p × p matrix A,
∥A∥2 := sup∥v∥2≤1 ∥Av∥2 denotes the spectral norm.
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2. Natural adaptive elastic-net. This section describes the NAEN for error
variance and regression parameter. First, the negative log-likelihood function is
given by

F (β, σ2|X,y) =
n

2
log σ2 +

∥y −Xβ∥22
2σ2

,

where X = (x1, · · · ,xn)
T , y = (y1, · · · , yn)T . Combing the re-parameterization

β = θ/ϕ, σ2 = 1/ϕ in [17] with the adaptive elastic-net in [22], the NAEN for θ
and ϕ are defined as the minimizer of the following problem:

(θ, ϕ) ∈ min
ϕ,θ

{
L(θ, ϕ) + λn,1∥w ◦ θ∥1 +

λn,2∥θ∥22
ϕ

}
, (2)

where L(θ, ϕ) := (1/n)F (ϕ−1θ, ϕ−1) is the re-parameterized negative log-likelihood
function, λn,1 and λn,2 are tuning parameters, w := (w1, · · · , wp)

T is the adaptive

weight vector. If (θ̂, ϕ̂) is a minimizer of problem (2), then the NAEN estimators
for β and σ2 are defined as

β̂ =
θ̂

ϕ̂
, σ̂2 =

1

ϕ̂
. (3)

It is clear that the NL in [17] and the NAL in [16] are special cases of the NAEN.
Note that the quality of the NAEN for β and σ2 relies on the choice of tuning

parameters λn,1, λn,2 and weight vector w. The orders of λn,1 and λn,2, in theory,
are discussed in Section 3. The weight vector w is generated by the following
two-step procedure:

• Step 1. Obtain a consistent estimator β̃ as the initial estimator for β.

• Step 2. Set w with wj = p′λn,1
(|β̃j |), j = 1, · · · , p, where pλn,1 is a folded-

concave penalty function (such as smoothly clipped absolute deviation (SCAD)
in [9, 7] or minimax concave penalty (MCP) in [18]).

The Lasso estimator β̂lasso in [15, 5, 19, 3] can be taken as the initial estimator
for β. Theoretical properties in next section show the effectiveness of this two-step
procedure.

3. Theoretical properties. This section establishes the relationship between the
naive adaptive elastic-net and the NAEN, and discusses the asymptotic properties
of the NAEN for β and σ2.

Recall that the naive adaptive elastic-net in [22] is defined as

min
β∈Rp

Qn(β) :=
1

n
∥y −Xβ∥22 + 2λn,1∥w ◦ β∥1 + 2λn,2∥β∥22. (4)

The next result establishes the relationship between the naive adaptive elastic net
and the NAEN.

Proposition 3.1. Let (β̂, σ̂2) be the NAEN estimator for β and σ2 defined in (3),

where (θ̂, ϕ̂) is a solution of (2). Then,

(i) β̂ is the solution of problem (4);
(ii) σ̂2 is the optimal value of problem (4).

Furthermore, we have σ̂2 = n−1(∥y∥22 − ∥Xβ̂∥22).

Proof. (i) Since (θ̂, ϕ̂) is a solution of (2), θ̂ is the solution of the optimization

min
θ∈Rp

L(θ, ϕ̂) + λn,1∥w ◦ θ∥1 +
λn,2∥θ∥22

ϕ̂
.
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By the first-order optimality of above optimization, we have

−XTy +XTX
θ̂

ϕ̂
+ nλn,1w ◦ ĝ + 2nλn,2

θ̂

ϕ̂
= 0,

where ĝ ∈ ∂(∥θ̂∥1). Since sign(θ̂) = sign(β̂), we have ∂(∥θ̂∥1) = ∂(∥β̂∥1). It follows
that

−XTy +XTXβ̂ + nλn,1w ◦ ĝ + 2nλn,2β̂ = 0,

which implies that β̂ is the solution of problem (4). Here, we use the fact that the
objective function of the problem (4) is strong convex.

(ii) Since (θ̂, ϕ̂) is a solution of (2), by the first-order optimality of problem (2),
we have

−XTy +XTX
θ̂

ϕ̂
+ nλn,1w ◦ ĝ + 2nλn,2

θ̂

ϕ̂
= 0,

− 1

ϕ̂
+

1

n
∥y∥22 −

∥Xθ̂∥22
nϕ̂2

− 2λn,2∥θ̂∥22
ϕ̂2

= 0,

where ĝ ∈ ∂(∥θ̂∥1). Therefore we have

−XTy +XTXβ̂ + nλn,1w ◦ ĝ + 2nλn,2β̂ = 0, (5)

− 1

ϕ̂
+

1

n
∥y∥22 −

∥Xθ̂∥22
nϕ̂2

− 2λn,2∥θ̂∥22
ϕ̂2

= 0. (6)

Since ∂(∥θ̂∥1) = ∂(∥β̂∥1), we have ĝ ∈ ∂(∥β̂∥1). Thus,

β̂T (w ◦ ĝ) =
p∑

i=1

wiβ̂iĝi =

p∑
i=1

|wiβ̂i| = ∥w ◦ β̂∥1. (7)

Combining (5)-(7), we have

0 = −β̂TXTy + ∥Xβ̂∥22 + nλn,1∥w ◦ β̂∥1 + 2nλn,2∥β̂∥22, (8)

σ̂2 =
1

n

(
∥y∥22 − ∥Xβ̂∥22

)
− 2λn,2∥β̂∥22. (9)

Furthermore, by (8), it holds that

∥y −Xβ̂∥22 = ∥y∥22 − ∥Xβ̂∥22 + 2

(
∥Xβ̂∥22 − yTXβ̂

)
= ∥y∥22 − ∥Xβ̂∥22 − 2nλn,1∥w ◦ β̂∥1 − 4nλn,2∥β̂∥22.

Then, by (9),

σ̂2 =
1

n

(
∥y∥22 − ∥Xβ̂∥22

)
− 2λn,2∥β̂∥22

=
1

n
∥y −Xβ̂∥22 + 2λn,1∥w ◦ β̂∥1 + 2λn,2∥β̂∥22,

which proves that σ̂2 is the optimal value of problem (4).

Proposition 3.1 is similar to Proposition 1 in [17] and Proposition 1 in [16]. Es-
sentially, the NAEN for σ2 is the optimal value of the optimization of the naive
adaptive elastic-net. This fact not only makes NAEN easy to implement, but also
establishes the following conclusions, which is a deterministic result and does not
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rely on statistical assumptions for X and ε and is the core of the asymptotic prop-
erties of the NAEN.

Proposition 3.2. Assume that λn,1 ≥ ∥ 1
nε

TX − 2λn,2β
∗∥∞. Then,∣∣∣∣σ̂2 − 1

n
∥ε∥22

∣∣∣∣ ≤ 2max
{
λn,1∥w ◦ β∗∥1 + λn,2∥β∗∥22,∣∣λn,1∥β̂ − β∗∥1 − λn,2∥β∗∥22

∣∣}.
Proof. By Proposition 3.1, we have

σ̂2 ≤ 1

n
∥y −Xβ∗∥22 + 2λn,1∥w ◦ β∗∥1 + 2λn,2∥β∗∥22

=
1

n
∥ε∥22 + 2λn,1∥w ◦ β∗∥1 + 2λn,2∥β∗∥22.

(10)

On the other hand, since 1
n∥y −Xβ∥22 + 2λn,2∥β∥22 in (4) is convex, we have

σ̂2 =
1

n
∥y −Xβ̂∥22 + 2λn,1∥w ◦ β̂∥1 + 2λn,2∥β̂∥22

≥ 1

n
∥y −Xβ∗∥22 + 2λn,2∥β∗∥22

+

[
2

n
XT (XTβ∗ − y) + 4λn,2β

∗
]T

(β̂ − β∗)

=
1

n
∥ε∥22 + 2λn,2∥β∗∥22 −

[
2

n
εTX − 4λn,2β

∗
]T

(β̂ − β∗)

≥ 1

n
∥ε∥22 + 2λn,2∥β∗∥22 −

∥∥∥∥ 2nεTX − 4λn,2β
∗
∥∥∥∥
∞
∥β̂ − β∗∥1

≥ 1

n
∥ε∥22 + 2λn,2∥β∗∥22 − 2λn,1∥β̂ − β∗∥1.

(11)

Combining inequalities (10) with (11), we obtain∣∣∣∣σ̂2 − 1

n
∥ε∥22

∣∣∣∣ ≤ max
{
2λn,1∥w ◦ β∗∥1 + 2λn,2∥β∗∥22,

|2λn,1∥β̂ − β∗∥1 − 2λn,2∥β∗∥22|
}
,

which completes the proof.

Unlike the analysis of Lemma 1 in [17], Proposition 3.2 has nothing to do with
duality. Since σ̂2 is the optimal value of problem (4), the objective value of problem
(4) at β∗ provides an upper bound for σ̂2. The convexity of the objective function
in problem (4) provides a lower bound for σ̂2.

We now discuss the asymptotic properties of the NAEN for β and σ2 based on
Propositions 3.1 and 3.2. We first give some regularity assumptions as follows.

Assumption 3.3. With probability tending to one, the initial estimator satisfies

∥β̃ − β∗∥2 ≤ C1

√
s(log p)/n, where C1 > 0 is constant.

Assumption 3.4. p′λn,1
(t) is non-increasing in t ∈ (0,∞) and is Lipschitz with

constant C2, that is,

|p′λn,1
(|t1|)− p′λn,1

(|t2|)| ≤ C2|t1 − t2|

for any t1, t2 ∈ R. Moreover, p′λn,1
(C1

√
s log p/n) > (1/2)p′λn,1

(0+) for sufficiently

large n, where C1 is defined in Assumption 3.3.
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Assumption 3.5. There exist positive constants 2λn,2 < cmin < cmax < ∞ such
that

cmin ≤ λmin

(
1

n
XT

A0
XA0

)
≤ λmax

(
1

n
XT

A0
XA0

)
≤ cmax.

Assumption 3.6. The following inequalities hold:∥∥∥∥ 1nXT
Ac

0
XA0

∥∥∥∥
2,∞

<
λn,1

4C3∥w−1
Ac

0
∥∞an

,

where ∥B∥2,∞ = max∥v∥2≤1 ∥Bv∥∞, w−1
Ac

0
= (w−1

s+1, . . . , w
−1
p )T , C3 and an is de-

fined in Theorem 3.7.

Theorem 3.7. Suppose Assumptions 3.3-3.6 hold, mini∈Ac
0
w∗

i > C−1
4 , λn,1 ≥

4C4σ
∗
√

2M log p/n, where M > 1 and C4 > 0 are constants. Then, with probability

tending to one, the minimizer β̂ = (β̂T
A0

, β̂T
Ac

0
) of problem (4) satisfies β̂Ac

0
= 0

and ∥β̂ − β∗∥2 ≤ C3an, where an = {σ∗
√
2Ms log p/n + λn,1(C1C2

√
s(log p)/n +

∥w∗
A0

∥2) + 2λn,2∥β∗∥2}, C3 > 0 is a sufficiently large constant, C1, C2 are defined
in regularity assumptions.

Proof. Since problem (4) is a convex optimization with a strong convex objective
function, the minimizer of problem (4) is unique and we only need to show that

there exists a β̂ satisfying

XT
A0

(y −Xβ̂)− nλn,1wA0
◦ ĝA0

− 2nλn,2β̂A0
= 0, (12)

∥XT
Ac

0
(y −Xβ̂)− 2nλn,2β̂Ac

0
∥∞ ≤ nλn,1wAc

0
, (13)

where ĝ ∈ ∂∥β̂∥1.
Since ∥Xj∥22 = n and ε ∼ N(0, (σ∗)2), it follows from Corollary 4.3 in [10] that

for any L > 0,

Pr

{
∥XTε∥∞

nσ∗ >

√
2 log p+ 2L

n

}
≤ e−L.

Take L = (M − 1) log p, where M > 1 is constant. Then we have

Pr

{
∥XTε∥∞

nσ∗ >

√
2M log p

n

}
≤ e−(M−1) log p. (14)

Now we show that the minimizer β̂ of problem (4) satisfies conditions (12)-(13).
We first consider the minimizer of problem (4) in the subspace {β = (βT

A0
,βT

Ac
0
)T :

βAc
0
= 0}. Let β = (βT

A0
,0T )T , where βA0 = β∗

A0
+ anvA0 ∈ Rs with

an = σ∗
√

2Ms log p

n
+ λn,1

(
C1C2

√
s log p

n
+ ∥w∗

A0
∥2
)
+ 2λn,2∥β∗∥2,

∥vA0
∥2 = C3 and C3 > 0 is some large enough constant. Note that

Qn(β
∗
A0

+ anvA0 ,0)−Qn(β
∗
A0

,0) = I1(vA0) + I2(vA0) + I3(vA0), (15)

where I1(vA0
) = 1

n∥X(β∗ + anv) − y∥22 − 1
n∥Xβ∗ − y∥22, I2(vA0

) = 2λn,1∥wA0
◦

(β∗
A0

+anvA0)∥1−2λn,1∥wA0◦β∗
A0

∥1, I3(vA0) = 2λn,2∥β∗
A0

+anvA0∥22−2λn,2∥β∗
A0

∥22.
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For I1(vA0), by (14), we have

I1(vA0) =
1

n
∥X(β∗ + anv)− y∥22 −

1

n
∥Xβ∗ − y∥22

=
1

n
a2nv

TXTXv +
2

n
εTXanv

=
1

n
a2nv

T
A0

XT
A0

XA0
vA0

+
2

n
anε

TXA0
vA0

≥ cmina
2
n∥vA0

∥22 − 2an

∥∥∥∥XT
A0

ε

n

∥∥∥∥
2

∥vA0
∥2

≥ cmina
2
n∥vA0∥22 − 2anσ

∗
√

2Ms log p

n
∥vA0

∥2,

(16)

where the last inequality holds due to ∥ · ∥2 ≤
√
s∥ · ∥∞. For I2(vA0

), we have

|I2(vA0
)| = |2λn,1∥wA0

◦ (β∗
A0

+ anvA0
)∥1 − 2λn,1∥wA0

◦ β∗
A0

∥1|
≤ 2λn,1∥wA0

◦ anvA0
∥1 ≤ 2anλn,1∥wA0

∥2∥vA0
∥2.

(17)

From the two-step procedure and Assumptions 3.3, 3.4, it holds that

∥wA0∥2 ≤ ∥wA0 −w∗
A0

∥2 + ∥w∗
A0

∥2 ≤ C2∥β̃A0 − β∗
A0

∥2 + ∥w∗
A0

∥2

≤ C1C2

√
s log p

n
+ ∥w∗

A0
∥2.

Combining the above inequality with (17), we have

|I2(vA0
)| ≤ 2anλn,1

(
C1C2

√
s log p

n
+ ∥w∗

A0
∥2
)
∥vA0

∥2. (18)

For I3(vA0
),

|I3(vA0
)| = |2λn,2∥β∗

A0
+ anvA0

∥22 − 2λn,2∥β∗
A0

∥22|

=

∣∣∣∣2λn,2

∑
i∈A0

(2β∗
i + anvi)anvi

∣∣∣∣
≤ 4anλn,2∥β∗∥2∥vA0∥2 + 2a2nλn,2∥vA0∥22.

(19)

Thus, by (15)-(19), it holds that

Qn(β
∗
A0

+ anvA0 ,0)−Qn(β
∗
A0

,0)

≥ cmina
2
n∥vA0

∥22 − 2an∥vA0
∥2σ∗

√
2Ms log p

n

− 2anλn,1

(
C1C2

√
s log p

n
+ ∥w∗

A0
∥2
)
∥vA0

∥2

− 4anλn,2∥β∗∥2∥vA0
∥2 − 2a2nλn,2∥vA0

∥22

= (cmin − 2λn,2)a
2
nC

2
3 − 2C3anσ

∗
√

2Ms log p

n

− C3an

[
2λn,1

(
C1C2

√
s log p

n
+ ∥w∗

A0
∥2
)
+ 4λn,2∥β∗∥2

]
.

Making C3 large enough, we obtain that with probability tending to one,

Qn(β
∗
A0

+ anvA0 ,0)−Qn(β
∗
A0

,0) > 0. (20)



10 XIN WANG, LINGCHEN KONG, XINYING ZHUANG AND LIQUN WANG

Thus, with probability tending to one, there exists a solution β̂ := (β̂T
A0

,0T )T to

the problem (4) subject to subspace {β = (βT
A0

,βT
Ac

0
)T : βAc

0
= 0} and satisfies

∥β̂A0 − β∗
A0

∥2 ≤ C4an with some constant C4 > 0. Therefore, it follows that β̂
satisfies equality (12) with probability tending to one.

It remains to prove that (13) holds for β̂ with probability tending to one. By
triangle inequality, we have

∥XT
Ac

0
(y −Xβ̂)∥∞ ≤ ∥XT

Ac
0
(y −Xβ∗)∥∞ + ∥XT

Ac
0
X(β∗ − β̂)∥∞. (21)

By Assumption 3.3, |β̃i| ≤ C1

√
s(log p)/n with probability approaching one, where

i ∈ Ac
0. Then, by the features of fold-concave penalty function,

p′λn,1
(|β̃i|) ≥ p′λn,1

(
C1

√
s log p

n

)
. (22)

Therefore, it follows from Assumption 3.4 and inequality (22) that

∥w−1
Ac

0
∥∞ = [min

i∈Ac
0

p′λn,1
(|β̃i|)]−1 ≤

[
p′λn,1

(
C1

√
s log p

n

)]−1

<
2

p′λn,1
(0+)

= 2∥(w∗
Ac

0
)−1∥∞.

(23)

Thus, for the first term of the right-hand side of inequality (21), by (14), (23) and
the condition that mini∈Ac

0
{w∗

i } > C−1
4 , it holds with probability tending to one

that

1

n
∥XT

Ac
0
(y −Xβ∗)∥∞ =

1

n
∥XT

Ac
0
ε∥∞ < σ∗

√
2M log p

n

≤ λn,1

4C4
<

λn,1

4∥(w∗
Ac

0
)−1∥∞

<
λn,1

2∥w−1
Ac

0
∥∞

.
(24)

For the second term of right hand of inequality (21), by Assumption 3.5, (14) and
(22), it holds with probability tending to one that

1

n
∥XT

Ac
0
X(β∗ − β̂)∥∞ ≤ 1

n
∥XT

Ac
0
XA0∥2,∞∥β∗

A0
− β̂A0

∥2

≤ λn,1

4∥(w∗
Ac

0
)−1∥∞

<
λn,1

2∥w−1
Ac

0
∥∞

.

Combining β̂T
Ac

0
= 0 with (19), (23) and (24), we obtain inequality (13). Thus, β̂ is

the minimizer of problem (4). This completes the proof of Theorem 3.7.

Based on Proposition 3.2 and Theorem 3.7, the mean squared error bound of the
NAEN for σ2 can be established.

Theorem 3.8. Suppose conditions in Theorem 3.7 hold and λn,1 ≥ 4C4σ
∗√

2M log p/n + 2∥λn,2β
∗∥∞, where M > 1 is a constant. Then, with probability

tending to one, it holds
(i) |σ̂2 − ∥ε∥22/n| ≤ bn;
(ii) E{(σ̂2 − ∥ε∥22/n|)2} ≤ (M + p1−M/ log p)b2n;

(iii) E{(σ̂2/(σ∗)2 − 1)2} ≤ [bn
√

M + p1−M/ log p/(σ∗)2 +
√
2/n]2,

where bn = max{2λn,1∥w ◦ β∗∥1 + 2λn,2∥β∗∥22, |2C3
√
sλn,1an − 2λn,2∥β∗∥22|}.
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Proof. (i) By (14), we obtain that ∥ 1
nε

TX∥∞ ≤ 4C4σ
∗
√
2M log p/n with probabil-

ity tending to one. Therefore,∥∥∥∥ 1nεTX − 2λn,2β
∗
∥∥∥∥
∞

≤
∥∥∥∥ 1nεTX

∥∥∥∥
∞

+ 2∥λn,2β
∗∥∞

≤ 4C4σ
∗
√

2M log p

n
+ 2∥λn,2β

∗∥∞

≤ λn,1.

By Proposition 3.2 and the fact that ∥ · ∥1 ≤
√
s∥ · ∥2 for any vector with sparsity

s, we have∣∣σ̂2 − 1

n
∥ε∥22

∣∣
≤ max{2λn,1∥w ◦ β∗∥1 + 2λn,2∥β∗∥22, |2λn,1∥β̂ − β∗∥1 − 2λn,2∥β∗∥22|}
≤ max{2λn,1∥w ◦ β∗∥1 + 2λn,2∥β∗∥22, |2C3

√
sλn,1an − 2λn,2∥β∗∥22|}.

Thus, (i) holds with probability tending to one.
(ii) It follows from (14) that for any constant M > 1,

Pr

((
σ̂2 − 1

n
∥ε∥22

)2

> Mb2n

)
≤ e−(M−1) log p.

Denote Zn = (σ̂2 − 1
n∥ε∥

2
2)

2. Then,

E

(
Zn

b2n

)
=

∫ ∞

0

Pr

(
Zn

b2n
> t

)
dt =

∫ M

0

Pr

(
Zn

b2n
> t

)
dt+

∫ ∞

M

Pr

(
Zn

b2n
> t

)
dt

≤ M +

∫ ∞

M

e−(t−1) log p dt = M +
p1−M

log p
,

(25)

which completes the proof of (ii).
(iii) Since (σ∗)−2∥ε∥22 ∼ χ2(n), we have

E

(
1

n
∥ε∥22

)
= (σ∗)2, Var

(
1

n
∥ε∥22

)
=

2(σ∗)4

n
.

By the proof of Theorem 12 in [17], we have

E

{
(σ̂2 − (σ∗)2)2

}
≤

{[
E

{(
σ̂2 − 1

n
∥ε∥22

)2}] 1
2

+

{
Var(

1

n
∥ε∥22)

} 1
2
}2

. (26)

By (25) and (26), it holds that

E

{
(σ̂2 − (σ∗)2)2

}
≤

[(
M +

p1−M

log p

) 1
2

bn + (σ∗)2
(
2

n

) 1
2
]2
.

Thus, (iii) holds.

When λn,2 = 0, Theorems 3.7 and 3.8 coincide with Theorems 1 and 4 in [16]
respectively. Theorems 3.7 and 3.8 are general results for the NAEN. Next, we give
asymptotic properties of the NAEN with SCAD penalty for β and σ2. The SCAD
used in two-step procedure is defined as follows:

p′λn,1
(|t|) = 1{|t| ≤ λn,1}+

(aλn,1 − |t|)+
(a− 1)λn,1

1{|t| > λn,1}, (a ≥ 2),
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where often a = 3.7 is used. It can be easily verified that Assumption 3.4 holds if
λn,1 > 2(a+ 1)−1C1

√
s log p/n.

Corollary 3.9. Assume λn,1 = O(
√

s log p(log log n)/n), s log p = O(nγ), γ ∈
(0, 1), λn,2∥β∗∥2 = O(

√
s log p/n), mini∈A0 β

∗
i ≥ 2aλn,1. Further assume that

∥n−1XT
Ac

0
XA0

∥2,∞ < C5

√
log log n with some positive constant C5. Then, under

Assumptions 3.3, 3.5, for sufficiently large n, with asymptotic probability one, the

minimizer β̂ = (β̂T
A0

, β̂T
Ac

0
) of problem (4) satisfies ∥β̂ − β∗∥2 ≤ O(

√
s log p/n),

sign(β̂A0
) = sign(β∗

A0
) and β̂Ac

0
= 0.

Proof. We need to verify that the conditions in Theorem 3.7 hold. Since the order of
λn,1 is

√
s log p(log log n)/n, Assumption 3.4 and the conditions related to λn,1 hold

when n is sufficiently large. Conditions mini∈A0 β
∗
i ≥ 2aλn,1 and s log p = O(nγ),

γ ∈ (0, 1) imply w∗
A0

= 0 and λn,1 = o(1) respectively. Combining these results

with λn,2∥β∗∥22 = O(
√
s log p/n), we have an = O(

√
s log p/n). Moreover, by

Assumption 3.3, we know that |β̃i| < C1

√
s log p/n for any i ∈ Ac

0. Then, wi = 1
for any i ∈ Ac

0 when n is sufficiently large. Thus, Assumption 3.6 follows from the

conditions λn,1 = O(
√
s log p(log log n)/n) and ∥n−1XT

Ac
0
XA0

∥2,∞ < C5

√
log log n.

Hence, it following from Theorem 3.7 that ∥β̂ − β∗∥2 ≤ O(
√
s log p/n), β̂Ac

0
= 0.

The result sign(β̂A0) = sign(β∗
A0

) holds due to condition mini∈A0 β
∗
i ≥ 2aλn,1.

Finally, the convergence rate of the mean squared error bound of NAEN with
SCAD for σ2 can be established as follows.

Corollary 3.10. Assume that the conditions in Corollary 3.9 hold. Then, with
probability tending to one,

(i) |σ̂2 − ∥ε∥22/n| ≤ O(s
√
log p/n);

(ii) E{(σ̂2 − ∥ε∥22/n|)2} ≤ O(s2 log p/n);
(iii) E{(σ̂2/(σ∗)2 − 1)2} ≤ O(s2 log p/n).

Proof. Under the conditions in Corollary 3.9 and Assumption 3.3, with probability

tending to one, |β̃i| < λn,1 for i ∈ Ac
0 and |β̃i| > aλn,1 for i ∈ A0. Then, w = w∗

and ∥w ◦ β∗∥1 = 0 with probability tending to one. Thus,

2λn,1∥w ◦ β∗∥1 + 2λn,2∥β∗∥22 = 2λn,2∥β∗∥22 = O

(√
s log p

n

)
. (27)

Moreover, condition s log p = O(nγ), γ ∈ (0, 1) implies that λn,1 = o(1). Thus,

|2C3

√
sλn,1an − 2λn,2∥β∗∥22| ≤ O

(
s

√
log p

n

)
. (28)

It follows from (27) and (28) that with probability tending to one,

bn ≤ O(s
√
log p/n). Thus,the results follows from Thereom 3.8.

If s2 log p = o(nγ), γ ∈ (0, 1), then error bounds in Corollary 3.10 converge
to 0 with probability tending to one. Let λn denote the tuning parameter in
SCAD penalty. We now discuss the convergence rate of the mean squared er-
ror bound of NAEN with SCAD for σ2 in the case that λn and λn,1 are dif-

ferent. If λn = O(
√
s log p(log log n)/n) and ∥n−1XT

Ac
0
XA0

∥2,∞ < C6

√
1/s with

some positive constant C6, then the condition on λn,1 can be weakened to λn,1 =

O(
√

log p/n). Thus, bn ≤ O(max{s log p/n,
√

s log p/n}) and the order of the
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bounds of E{(σ̂2−∥ε∥22/n|)2} and E{(σ̂2/(σ∗)2−1)2} in Corollary 3.10 are all bn ≤
O(max{s2(log p)2/n2, s log p/n}). As long as s log p = o(n), these bounds converge
to 0 with probability tending to one and the order of these bounds in Corollary 3.10
are

√
s log p/n, s log p/n, s log p/n. Moreover, if λn,1 = O(1/

√
s) > O(

√
log p/n),

then the order of these bounds in Corollary 3.10 are
√
s log p/n, s log p/n, s log p/n

without the condition s log p = o(n). In fact, under different assumptions about the
order of some parameters, the convergence rates in Corollary 3.10 are different.

All theoretical properties in this section can be generalized to the case where the
model error εi is sub-Gaussian or sub-exponential.

4. Simulation study. In this section, we study the finite-sample performance of
the NAEN. The SCAD in [7] is applied to calculate the weight vector w in (2). The
five methods mentioned in Section 1 are used for comparison, which are SL, NL,
OL, NAL and MUE based on adaptive elastic-net. In addition, the oracle estimator
(OE) (1/n)∥ε∥22 is included as the benchmark.

4.1. Numerical optimization of NAEN. Proposition 3.1 establishes the rela-
tionship between the NAEN and the naive elastic-net, and it shows that the NAEN
estimator for β is the solution of problem (4) and the NAEN estimator for σ2 is
the optimal value of problem (4). Thus, we can obtain the NAEN estimators for β
and σ2 by solving problem (4).

Clearly, the gradient of 1
n∥y−Xβ∥22+2λn,2∥β∥22 is globally Lipschitz continuous

with modulus ∥(2/n)XTX + 2λn,2Ip∥2 and problem (4) is a convex optimization.
We apply FISTA in [2] to solve problem (4). Theorem 4.4 in [2] shows that the
complexity of FISTA is O(1/k2).

Let Gk := ∇((1/n)∥y − zk∥22 + 2λn,2∥zk∥22) = (2/n)XT (Xzk − y) + 4λn,2z
k,

L = ∥(2/n)XTX + 4λn,2Ip∥2. Then, the framework of FISTA for problem (4) is
as follows.

Algorithm 1 Framework of FISTA

• Initialize: z0 = β0, L and t0 = 1.
• General step: for any k = 0, 1, 2, · · · execute the following steps:

(a) set βk+1 = prox(2λn,1/L)∥w◦β∥1
(zk − 1

LGk).

(b) set tk+1 =
1+

√
1+4t2k
2 ;

(c) compute zk+1 = βk+1 +
(
tk−1
tk+1

)
(βk+1 − βk).

By Definition 6.1 in [1],

prox 2λn,1
L ∥w◦z∥1

(
zk− 1

L
Gk

)
:= argminz∈Rp

1

2

∥∥∥∥z−(
zk− 1

L
Gk

)∥∥∥∥2
2

+
2λn,1

L
∥w◦z∥1.

Analytical study shows that

zk+1 =

[∣∣∣∣zk − 1

L
Gk

∣∣∣∣− 2λn,1

L
w

]
+

◦ sign
([

zk − 1

L
Gk

])
.

The stopping criterion of FISTA is

∥βk+1 − βk∥2
max{1, ∥βk+1∥2}

≤ ϵ,

where ϵ > 0 is a small constant, or the maximum number of iterations is reached.
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4.2. Selection of tuning parameters. As we know that almost all regularization
estimators depend on tuning parameters. The tuning parameter for SL is suggested
as λ =

√
2 log p/n in [14]. Reference [17] also developed a fixed choice of tuning

parameter λ = log p/n for OL in scenarios with low sparsity. However, these fixed
parameters are completely ineffective for SL and OL in our simulations. Notice that
the five-fold cross-validation (CV) (See [8, 14, 17]) works well for SL, NL, OL and
NAL in [14, 17, 16]. Therefore, we used the five-fold CV to select tuning parameters
in all estimations. It should be mentioned that the five-fold CV is only used for the
selection of λn,1 in NAEN. Since the order of tuning parameter λn,2 in NAEN is
O(1/n) under unified conditions that s log p = o(n) and λn,2∥β∗∥2 = O(

√
s/n), for

convenience we take λn,2 = 1/n.

4.3. Simulation in moderately sparse scenarios. Let n = 100, p = 200, s =
30, and the design matrix X is generated from the normal distribution with mean
0 and covariance matrix Σ, where Σij = ρ|i−j| and ρ = 0.3. Two types of sparse
regression parameters are considered in simulations.

• Model 1 (Fixed β∗). The non-zero sub-vector of the true parameter β∗ is
taken as fixed vector 1s := (1, · · · , 1)T ∈ Rs.

• Model 2 (Random β∗). Each non-zero element β∗
i , i ∈ A0 of the true pa-

rameter generated from Uni[0.5, 2] × Ber({1,−1}, 0.5), where Uni[0.5, 2] is
uniform distribution over [0.5, 2], Ber({1,−1}, 0.5) is a Bernoulli distribution
with probability 0.5 taking the value 1 or −1.

In each setting, N = 100 replications are used. Table 2 reports AMSE and ARR
of various estimators for different models. Figures 2 and 3 show 100 simulation
results of various estimators in different scenarios. Clearly, the NAEN outperforms
other methods, and its simulation curve is almost the same as that of the OE.
Indeed, NAEN can be regarded as a lifted version of NAL. As mentioned by Propo-
sition 1 in [16], the NAL for σ2 is the optimal value of the optimization of the
adaptive lasso, which is the sum of the residual-based estimator and the adaptive
regularization term in the adaptive Lasso. However, when β∗ has many non-zero
elements, the residual-based estimator seriously underestimates the error variance.
The value of the pure adaptive regularization term is not enough to bridge the
gap between the residual-based estimator and the true error variance. The idea of
NAEN is to fill this gap again through ridge term in (4). Moreover, MUE slightly
underestimates the error variance in model 1 and significantly underestimates the
error variance in model 2.

Table 2. AMSE and ARR of various methods in 100 simulations.

OE SL NL OL NAL MUE NAEN

(Model 1)
AMSE 0.022 0.724 14.302 0.120 0.144 0.040 0.019
ARR 0.990 0.153 4.780 1.341 0.642 0.906 0.940
(Model 2)
AMSE 0.019 0.647 26.319 1.260 0.306 0.075 0.008
ARR 0.983 0.202 6.129 2.120 0.453 0.759 0.965

Furthermore, while NAL and OL underestimate and overestimate error variance,
respectively, the corresponding AMSE and ARR are very close. Moreover, the trend



VARIANCE ESTIMATION IN HIGH-DIMENSIONAL LINEAR REGRESSION 15

of the curve of NAL is close to that of OL and the curve of OL is flatter. Finally,
SL severely underestimates error variance and the estimated values of NL are much
larger than the true variance. Both approaches almost fail. We now explain this
phenomenon. In fact, the essence of SL is a residual-based estimator, so SL tends
to underestimate error variance. Proposition 1 in [17] shows that NL for σ2 is the
optimal value of the optimization of the Lasso. However, the Lasso estimator has
the sure screening property, i.e., the selected model includes the true model and
the number of the selected variables is much more than true regression parameters.
Then, when each true parameter is moderate or large and the sparsity of the true
parameter vector is low, the value of the regularization function of NL is large.

Figure 2. All results of various estimatiors for model 1.

Figure 3. All results of various estimatiors for model 2.
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4.4. Simulation in extremely sparse scenarios. The following simulation re-
sults demonstrate the limitation of the NAEN. Here, we consider the extremely
sparse scenarios s ∈ {3, 5, 7, 10}. The remaining settings are the same as that in
Section 4.3.

Table 3. AMSE and ARR of various methods in extremely sparse scenarios.

OE SL NL OL NAL MUE NAEN

s = 3, Model 1
AMSE 0.027 0.040 0.019 0.025 0.027 0.027 0.025
ARR 0.991 0.902 1.099 0.890 0.950 0.972 0.981

s = 3, Model 2
AMSE 0.019 0.037 0.071 0.031 0.054 0.029 0.066
ARR 0.961 0.873 1.247 1.125 1.182 1.090 1.210

s = 5, Model 1
AMSE 0.021 0.028 0.095 0.058 0.020 0.019 0.018
ARR 1.016 0.943 1.297 1.214 0.963 1.004 1.101

s = 5, Model 2
AMSE 0.022 0.035 0.159 0.018 0.040 0.039 0.067
ARR 0.972 0.915 1.390 1.094 1.134 1.121 1.211

s = 7, Model 1
AMSE 0.020 0.028 0.060 0.015 0.028 0.022 0.027
ARR 0.983 0.956 1.235 1.076 0.955 0.982 1.026

s = 7, Model 2
AMSE 0.020 0.030 0.126 0.016 0.023 0.021 0.035
ARR 1.018 0.952 1.348 0.899 1.011 1.036 1.116

s = 10, Model 1
AMSE 0.022 0.035 0.016 0.019 0.032 0.022 0.017
ARR 0.994 0.918 1.111 0.885 0.875 0.954 0.975

s = 10, Model 2
AMSE 0.015 0.094 0.481 0.083 0.021 0.018 0.058
ARR 0.995 0.741 1.690 1.274 0.987 1.017 1.193

In extremely sparse scenarios, we are more likely to obtain the true model or
approximately accurate models which includes the true model, and the number of
selected variables is not significantly different from the true model. Table 3 lists
AMSE and ARR for 100 simulations of several methods. Overall, most estimation
methods perform well in extremely sparse scenarios. In general, the NAL or the
NAEN and MUE are respectively the sub-optimal and optimal when the true model
is accurately or approximately accurately selected. Intuitively, the NAEN does not
have any advantages over the MUE and the NAEN is often greater than the MUE.

5. Conclusion. In this paper, we proposed the NAEN for variance estimation
in high-dimensional linear models, which simultaneously selects and estimates re-
gression and variance parameters. The established theory shows that the NAEN
estimator for σ2 is essentially the optimal value of the optimization problem of the
naive adaptive elastic-net for regression coefficients. Furthermore, we established
the asymptotic properties of the NAEN for β and σ2. The FISTA was used to
obtain estimators of NAEN for σ2 and β. The simulation results show that the
NAEN is suitable for variance estimation in scenarios with moderate sparsity.

Essentially, the NAEN, NL, OL, and NAL are respectively the optimal values of
the adaptive elastic-net, Lasso, organic Lasso, and adaptive Lasso. These methods
involve the selection of tuning parameters, which is a costly process. Research on
methods for variance estimation with fixed tuning parameters or easily controllable
tuning parameters may be more attractive in the future.
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[13] N. Städler and P. Bühlmann, ℓ1-penalization for mixture regression models, Test , 19 (2010),

209-256.

[14] T. Sun and C.-H. Zhang, Scaled sparse linear regression, Biometrika, 99 (2012), 879-898.
[15] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B , 73

(1996), 273-282.

[16] X. Wang, L. Kong and L. Wang, Estimation of error variance in regularized regression models
via adaptive lasso, Mathematics, 10 (2022), 1937.

[17] G. Yu and J. Bien, Estimating the error variance in a high-dimensional linear model,

Biometrika, 106 (2019), 533-546.
[18] C.-H. Zhang, Nearly unbiased variable selection under minimax concave penalty, Ann. Stat.,

38 (2010), 894-942.
[19] C.-H. Zhang and J. Huang, The sparsity and bias of the lasso selection in high-dimensional

linear regression, Ann. Stat., 36 (2008), 1567-1594.
[20] Y. Zhou, R. Jin and S. Hoi, Exclusive lasso for multi-task feature selection, J. Mach. Learn.

Res., 9 (2010), 988-995.

[21] H. Zou, The adaptive lasso and its oracle properties, J. R. Stat. Soc. Ser. B , 101 (2006),

1418-1429.
[22] H. Zou and H.-H. Zhang, On the adaptive elastic-net with a diverging number of parameters,

Ann. Stat., 37 (2009), 1733-1751.

Received September 2022; revised May 2023; early access July 2023.

http://mathscinet.ams.org/mathscinet-getitem?mr=MR3719240&return=pdf
http://dx.doi.org/10.1137/1.9781611974997.ch1
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2486527&return=pdf
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1137/080716542
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2533469&return=pdf
http://dx.doi.org/10.1214/08-AOS620
http://dx.doi.org/10.1214/08-AOS620
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3716499&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2382644&return=pdf
http://dx.doi.org/10.1214/009053606000001523
http://dx.doi.org/10.1214/009053606000001523
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3215347&return=pdf
http://dx.doi.org/10.1093/biomet/ast065
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3189488&return=pdf
http://dx.doi.org/10.1214/13-AOS1191
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2885839&return=pdf
http://dx.doi.org/10.1111/j.1467-9868.2011.01005.x
http://dx.doi.org/10.1111/j.1467-9868.2011.01005.x
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1946581&return=pdf
http://dx.doi.org/10.1198/016214501753382273
http://dx.doi.org/10.1198/016214501753382273
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2396808&return=pdf
http://dx.doi.org/10.1214/009053607000000875
http://dx.doi.org/10.1214/009053607000000875
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4108940&return=pdf
http://dx.doi.org/10.1093/biomet/asz074
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2677722&return=pdf
http://dx.doi.org/10.1007/s11749-010-0197-z
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2999166&return=pdf
http://dx.doi.org/10.1093/biomet/ass043
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2815776&return=pdf
http://dx.doi.org/10.1111/j.1467-9868.2011.00771.x
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3992388&return=pdf
http://dx.doi.org/10.1093/biomet/asz017
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2604701&return=pdf
http://dx.doi.org/10.1214/09-AOS729
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2435448&return=pdf
http://dx.doi.org/10.1214/07-AOS520
http://dx.doi.org/10.1214/07-AOS520
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2279469&return=pdf
http://dx.doi.org/10.1198/016214506000000735
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2533470&return=pdf
http://dx.doi.org/10.1214/08-AOS625

	1. Introduction
	1.1. Literature review
	1.2. Challenge and motivation
	1.3. Notations

	2. Natural adaptive elastic-net
	3. Theoretical properties
	4. Simulation study
	4.1. Numerical optimization of NAEN
	4.2. Selection of tuning parameters
	4.3. Simulation in moderately sparse scenarios
	4.4. Simulation in extremely sparse scenarios

	5. Conclusion
	Acknowledgments
	REFERENCES

