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ABSTRACT
In linear regression model, the superiority of ordinary least squares
estimator (OLSE) will be failed when there exist multi-collinearity prob-
lems. Based on the class of generalized shrunken least squares (GSLS)
estimators suggested by Wang (1990), this article proposes a two-stage
shrunken least squares estimator and discusses its superiority theoreti-
cally, and finally verifies the results by numerical simulations.
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1. Introduction

Considering the following linear regression model:

Y = Xβ + e, e ∼ (0, σ 2In), (1.1)

where Y is an n × 1 vector of observations, X is an n × p design matrix with full column rank,
e is an n × 1 random error vector, β is a p × 1 vector of unknown regression coefficients.
According to Gauss-Markov Theorem, the OLSE of β is

β̂ = (X′X)−1X′Y , (1.2)

which is best linear unbiased estimator. However, with the wide applications of the OLSE, we
find that when multi-collinearity problems exist, the OLSE tends to perform poorly. This is
because that X′X is close to be a singular matrix when multi-collinearity exists, which comes
its eigenvalues (denoted by λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0) to be close to be zero and accordingly the
mean squares error of the OLSE will be very large.

Stein (1956) proves that the OLSE of a normal mean vector is inadmissible in the case
that its dimension is greater than 2, that is, there is another estimator which consistently
outperforms the OLSE in some sense. Trenkler (1981) points out that the performance of
OLSE β̂ may become poor when there exist multi-collinearity. In recent decades, many
new estimators have been proposed, among which are ridge estimator, principal component
estimator, stein estimator, etc. These estimators are all biased estimator, but they have smaller
variance compared to the OLSE β̂ . In what follows, we introduce a new estimator class,
generalized shrunken least squares (GSLS) estimators, to which many of the commonly used
biased estimators belong. Then, the two-stage shrunken least squares (TSLS) estimator in this
class will be given, and finally its property will be discussed.
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2. Two-stage shrunken least squares estimator

Definition 2.1. An estimator class of the following form is known as a generalized shrunken
least squares estimators (see Wang 1990), that is,

β̂GS(A) = PAP′β̂ , (2.1)
where A = diag(a1, . . . , ap), 0 ≤ ai ≤ 1(i = 1, . . . , p) and P is a p × p orthogonal matrix such
that

P′X′XP = diag(λ1, . . . , λp) = Λ,
where λ1 ≥ λ2 ≥ · · · ≥ λp are eigenvalues of X′X.

Research based on GSLS estimators has already yielded some results, for example, Zhao
(1995) gives a note on GSLS estimators, Guo and Guo (1997) discusses the problem of
choosing parameter about GSLS estimators, Sun (1997) discusses the advantages of GSLS
estimators and the multiple k-class GSLS estimator suggested by Shi (1999), Duan (1999)
gives a new method to choose A, and Sun (1999) proposes a new criterion for selecting A
named Q(c). And this estimator class includes a lot of biased estimators, such as:

1) The generalized ridge regression estimator suggested by Hoerl and Kennard (1970):
β̂RR(K) = (X′X + PKP′)−1X′Y = β̂GS(Λ(Λ + K)−1),

where K = diag(k1, . . . , kp), ki ≥ 0(i = 1, . . . , p).
2) The principal component estimator suggested by Kendall (1957):

β̂PC(r) =
r∑

i=1

1
λi

PiP′
iX

′Y = β̂GS
( [

Ir 0
0 0

] )
,

where P = (P1, . . . , Pp).
3) Stein estimator:

β̂S(c) = (1 − c)β̂ = β̂GS((1 − c)I),
where c ∈ (0, 1).

4) The universal ridge estimator suggested by Yang (1991):
β̂UR = (PKP′ + X′X)−1PSP′X′Y = β̂GS((K + Λ)−1SΛ),

where K = diag(k1, . . . , kp), S = diag(s1, . . . , sp), ki ≥ 0, si ≥ 0, i = 1, . . . , p.

Since A is arbitrary, we will concentrate on how to choose an A. To this end, the two-stage
shrunken least squares (TSLS) estimator is proposed.

Note that, the mean squares error of β̂GS(A) is given by

MSE(β̂GS(A)) = tr
(

Cov
(
β̂GS(A)

))
+

(
Bias

(
β̂GS(A)

))′ (
Bias

(
β̂GS(A)

))
= σ 2tr

(
A2�−1) + β ′P(I − A)2P′β

=
p∑

i=1

[
σ 2a2

i
λi

+ δ2
i (1 − ai)

2
]

=
p∑

i=1
Di (ai) ,

where δi is the ith element of the vector P′β .
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Let ∂
∑p

i=1 Di(ai)/∂ai = 0, we have

aopt
i = λiδ

2
i

λiδ2
i + σ 2 .

Note that for i �= j, we have

∂2 ∑p
i=1 Di(ai)

∂ai∂aj
= 0

and

∂2 ∑p
i=1 Di(ai)

∂ai∂ai
= 2σ 2

λi
+ 2δ2

i > 0,

thus its Hessian matrix is positive definite, that is, (aopt
1 , aopt

2 , . . . , aopt
p ) is the point of optimal

value that makes MSE(β̂GS(A)) reach the minimum value. Usually we do not know the true
value of β and σ , so we use the least squares estimator β̂ and unbiased estimator σ̂ 2 = ‖Y −
Xβ̂‖2/(n − p) to estimate β and σ 2, respectively. Finally we obtain

âi = λiδ̂
2
i

λiδ̂
2
i + σ̂ 2

.

Definition 2.2. The two-stage shrunken least squares estimator is given by

β̂GS(Â) = PÂP′β̂ , (2.2)

where

Â = diag(â1, â2, · · · , âp),

âi = λiδ̂
2
i

λiδ̂2
i + σ̂ 2

= λiβ̂ ′PiP′
iβ̂

λiβ̂ ′PiP′
iβ̂ + σ̂ 2

,

δ̂i = P′
iβ̂ is the ith element of the vector P′β̂ = (P1, · · · , Pp)

′
β̂ .

The advantages of the TSLS estimator are obvious, because it not only belongs to the class
of GSLS, and also it solves the problem of choosing the parameter A.

3. The superiority of TSLS estimator

3.1. Expectation

In what follows, we assume e ∼ N(0, σ 2In) in the model (1.1).

Theorem 3.1. When σ is sufficiently small, the expectation of the TSLS estimator has the
following approximation:

E(PÂP′β̂) = Pdiag
(

1 − σ 2

λ1β ′P1P′
1β

+ o(σ 2), · · · , 1 − σ 2

λpβ ′PpP′
pβ

+ o(σ 2)
)

P′β . (3.1)
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Proof. Let m = (Y − Xβ)/σ , then m ∼ Nn(0, I) and β̂ = β + σ(X′X)−1X′m, we obtain

β̂ ′PiP′
iβ̂ = [β + σ(X′X)−1X′m]′PiP′

i[β + σ(X′X)−1X′m]
= β ′PiP′

iβ + 2σβ ′PiP′
i(X′X)−1X′m + σ 2m′X(X′X)−1PiP′

i(X′X)−1X′m.

Noting that

σ̂ 2 = ‖Y − Xβ̂‖2

n − p
= ‖Y − Xβ̂‖2

tr(I − PX)
.

Therefore,

σ̂ 2 = σ 2m′[I − X(X′X)−1X′]m
n − p

= σ 2m′Mm
n − p

,

where

M = I − X(X′X)−1X′.

Denote λiβ̂ ′PiP′
iβ̂ = bi

1 + 2σbi
2 + σ 2m′bi

3m, where

bi
1 = λiβ

′PiP′
iβ ,

bi
2 = λiβ

′PiP′
i(X′X)−1X′m,

bi
3 = λiX(X′X)−1PiP′

i(X′X)−1X′.
Then we have

σ̂ 2 + λiβ̂
′PiP′

iβ̂ = bi
1 + 2σbi

2 + σ 2m′(bi
3 + M

n − p
)m.

Thus

(σ̂ 2 + λiβ̂
′PiP′

iβ̂)−1 = 1
bi

1

[
1 +

2σbi
2 + σ 2m′(bi

3 + M
n−p )m

bi
1

]−1
. (3.2)

Because there exists σ > 0 sufficiently small such that
∣∣∣2σbi

2 + σ 2m′(bi
3 + M

n−p )m

bi
1

∣∣∣ < 1.

Using the Taylor formula to expand Equation (3.2) yielding:

(σ̂ 2 + λiβ̂
′PiP′

iβ̂)−1 = 1
bi

1

[
1 −

2σbi
2 + σ 2m′(bi

3 + M
n−p )m

bi
1

+
(2σbi

2 + σ 2m′(bi
3 + M

n−p )m

bi
1

)2

−
(2σbi

2 + σ 2m′(bi
3 + M

n−p )m

bi
1

)3 + o(σ 6)
]

= 1
bi

1

[
1 − 2σbi

2
bi

1
+ σ 2

(4bi
2

2

bi
1

2 −
m′(bi

3 + M
n−p )m

bi
1

)

+ σ 3
(4bi

2m′(bi
3 + M

n−p )m

bi
1

2 − 8bi
2

3

bi
1

3

)]
+ o(σ 3).
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Therefore,

âi = λiβ̂ ′PiP′
iβ̂

λiβ̂ ′PiP′
iβ̂ + σ̂ 2

= 1 − σ 2m′Mm
bi

1(n − p)
+ 2σ 3bi

2m′Mm
bi

1
2
(n − p)

+ o(σ 3).

Since E(m′Mm) = n − p, then

E(âi) = 1 − σ 2

λiβ ′PiP′
iβ

+ o(σ 2).

Noting that Â = diag(â1, â2, · · · , âp), which can be seen as a function of m′Mm. At the
same time, by the fact that

(X′X)−1X′M = (X′X)−1X′ − (X′X)−1X′X(X′X)−1X′ = 0,

and from the independence conditions for linear and quadratic forms, we conclude that
m′Mm and (X′X)−1X′m are independent. Since β̂ = β + σ(X′X)−1X′m, so Â and β̂ are
independent.

Together we come to the conclusion of Theorem 3.1.
The proof of Theorem 3.1 is finished.

3.2. The mean squares error

Theorem 3.2. When σ is sufficiently small, a sufficient condition for the TSLS estimator to
outperform the OLSE in terms of mean squares error criterion is

n > p + 2. (3.3)

Proof. Note that β̂GS(Â) = PÂP′[β + σ(X′X)−1X′m], and β̂GS(Â) − β = P(Â − I)P′β +
σPÂP′(X′X)−1X′m, we have

MSE(β̂GS(Â)) = E[β ′P(Â − I)P′P(Â − I)P′β + σ 2m′X(X′X)−1PÂP′PÂP′(X′X)−1X′m
+ 2σβ ′P(Â − I)P′PÂP′(X′X)−1X′m]

= E[β ′P(Â − I)2P′β + σ 2m′X(X′X)−1PÂ2P′(X′X)−1X′m
+ 2σβ ′P(Â − I)ÂP′(X′X)−1X′m]

= E[	1 + 	2 + 	3].
By the fact that

P′(X′X)−1X′M = P′(X′X)−1X′ − P′(X′X)−1X′X(X′X)−1X′ = 0,

we know that Â and P′(X′X)−1X′m are independent, that is, (Â − I)Â and P′(X′X)−1X′m are
independent. Hence

E[	3] = 2σE[β ′P(Â − I)Â]E[P′(X′X)−1X′m] = 2σE[β ′P(Â − I)Â] · 0 = 0.

Then using the facts that

Â − I = diag
(

− σ 2m′Mm
b1

1(n − p)
+ 2σ 3b1

2m′Mm
b1

1
2
(n − p)

+ o(σ 3), · · · , − σ 2m′Mm
bp

1(n − p)
+ 2σ 3bp

2m′Mm

bp
1

2
(n − p)

+ o(σ 3)
)
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and

(Â − I)2 = diag
(σ 4(m′Mm)2

b1
1

2
(n − p)2

+ o(σ 4), · · · ,
σ 4(m′Mm)2

bp
1

2
(n − p)2

+ o(σ 4)
)

.

Also E[(m′Mm)2] = Var(m′Mm) + [E(m′Mm)]2 = 2tr(M2) + tr2(M) = 2(n − p) +
(n − p)2 = (n − p)(n − p + 2).

Thus, we have

E[	1] = β ′PE[(Â − I)2]P′β

= β ′(P1, · · · , Pp)diag(
σ 4(n − p + 2)

b1
1

2
(n − p)

, · · · ,
σ 4(n − p + 2)

bp
1

2
(n − p)

)(P1, · · · , Pp)
′β + o(σ 4)

=
p∑

i=1
β ′Pi · σ 4(n − p + 2)

n − p
· 1
(λiβ ′PiP′

iβ)2 · P′
iβ + o(σ 4)

= n − p + 2
n − p

σ 4 ·
p∑

i=1

1
λ2

i β
′PiP′

iβ
+ o(σ 4).

Because

Â2 = diag
(

1 − 2
σ 2m′Mm
b1

1(n − p)
+ o(σ 2), · · · , 1 − 2

σ 2m′Mm
bp

1(n − p)
+ o(σ 2)

)
,

and P′(X′X)−1P = Λ−1, so

E[	2] = E[σ 2m′XPP′(X′X)−1PÂ2P′(X′X)−1PP′X′m]
= E[σ 2m′XPΛ−1Â2Λ−1P′X′m]
= σ 2E[m′X(P1, · · · , Pp)Λ

−1Â2Λ−1(P1, · · · , Pp)
′X′m]

= σ 2E

{
m′[ p∑

i=1
XPi(

1
λ2

i
(1 − 2

σ 2m′Mm
bi

1(n − p)
))P′

iX
′]m

}
+ o(σ 4)

= σ 2E
[ p∑

i=1
m′ XPiP′

iX′

λ2
i

m − 2σ 2
p∑

i=1

(
m′ XPiP′

iX′

λ2
i

m · m′Mm
bi

1(n − p)

)]
+ o(σ 4),

where we further have

E
[ p∑

i=1
m′ XPiP′

iX′

λ2
i

m
]

=
p∑

i=1
E
[

m′ XPiP′
iX′

λ2
i

m
]

=
p∑

i=1
tr

(XPiP′
iX′

λ2
i

)
=

p∑
i=1

tr(XPiP′
iX′)

λ2
i

=
p∑

i=1

1
λi

.
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Given that λ−2
i MXPiP′

iX′ = 0, m′Mm and λ−2
i m′XPiP′

iX′m are independent, then we
obtain

E
[ p∑

i=1

(
m′ XPiP′

iX′

λ2
i

m · m′Mm
bi

1(n − p)

)]

=
p∑

i=1

[
E
(

m′ XPiP′
iX′

λ2
i

m
)

· E
( m′Mm

bi
1(n − p)

)]

=
p∑

i=1

[ tr(XPiP′
iX′)

λ2
i

· 1
λiβ ′PiP′

iβ

]

=
p∑

i=1

1
λ2

i β
′PiP′

iβ
.

Thus

E[	2] = σ 2E
[ p∑

i=1
m′ XPiP′

iX′

λ2
i

m − 2σ 2
p∑

i=1

(
m′ XPiP′

iX′

λ2
i

m · m′Mm
bi

1(n − p)

)]
+ o(σ 4)

= σ 2 ·
p∑

i=1

1
λi

− 2σ 4 ·
p∑

i=1

1
λ2

i β
′PiP′

iβ
+ o(σ 4)

= MSE(β̂) − 2σ 4 ·
p∑

i=1

1
λ2

i β
′PiP′

iβ
+ o(σ 4).

Together, we obtain

MSE(β̂GS(Â)) = σ 2 ·
p∑

i=1

1
λi

+ n − p + 2
n − p

σ 4 ·
p∑

i=1

1
λ2

i β
′PiP′

iβ
− 2σ 4 ·

p∑
i=1

1
λ2

i β
′PiP′

iβ
+ o(σ 4)

= σ 2 ·
p∑

i=1

1
λi

+
(n − p + 2

n − p
− 2

)
σ 4 ·

p∑
i=1

1
λ2

i β
′PiP′

iβ
+ o(σ 4).

Note that

MSE(β̂GS(Â)) − MSE(β̂) =
(n − p + 2

n − p
− 2

)
σ 4 ·

p∑
i=1

1
λ2

i β
′PiP′

iβ
+ o(σ 4).

When σ is sufficiently small, let the above equation be less than 0, then a sufficient
condition for β̂GS(Â) to be superior to β̂ in terms of mean squares error criterion is

n − p + 2
n − p

− 2 < 0,

that is,

n > p + 2.

So, we come to the conclusion of Theorem 3.2.
The proof of Theorem 3.2 is complete.
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3.3. The matrix mean squares error

Theorem 3.3. When σ is sufficiently small, a sufficient condition for the TSLS estimator to
outperform the OLSE in terms of matrix mean squares error criterion is

n − p + 2
n − p

∑
1≤i,j≤p

PiP′
iββ ′PjP′

j

λiλjβ ′PiP′
iββ ′PjP′

jβ
−

∑
1≤i≤p

2PiP′
i

λ2
i β

′PiP′
iβ

(3.4)

is non positive definite.

Proof. Since β̂GS(Â) − β = P(Â − I)P′β + σPÂP′(X′X)−1X′m, we have

MMSE(β̂GS(Â)) = E[P(Â − I)P′ββ ′P(Â − I)P′ + σ 2PÂP′(X′X)−1X′mm′X(X′X)−1PÂP′

+ 2σP(Â − I)P′βm′X(X′X)−1PÂP′]
= E[P(Â − I)P′ββ ′P(Â − I)P′ + σ 2PÂΛ−1P′X′mm′XPΛ−1ÂP′

+ 2σP(Â − I)P′βm′XPΛ−1ÂP′]
=̂E[	1 + 	2 + 	3].

Note that

E[	3] = E[2σP(Â − I)P′βm′XPΛ−1ÂP′]
= E[2σP(Â − I)(P1, · · · , Pp)

′βm′X(P1, · · · , Pp)Λ
−1ÂP′]

= 2σE
[

P(Â − I)

⎛
⎜⎝

P′
1βm′XP1 · · · P′

1βm′XPp
... . . . ...

P′
pβm′XP1 · · · P′

pβm′XPp

⎞
⎟⎠Λ−1ÂP′

]

= 2σE
[

P

⎛
⎜⎜⎜⎜⎜⎝

(â1 − 1)â1
λ1

P′
1βm′XP1 · · · (â1 − 1)âp

λp
P′

1βm′XPp

... . . . ...
(âp − 1)â1

λ1
P′

pβm′XP1 · · · (âp − 1)âp

λp
P′

pβm′XPp

⎞
⎟⎟⎟⎟⎟⎠ P′

]

= 2σE
[ ∑

1≤i,j≤p

(âi − 1)âj

λj
PiP′

iβm′XPjP′
j

]
.

By the fact that when 1 ≤ i, j ≤ p

MXPiPj = XPiPj − X(X′X)−1X′XPiPj = 0,

we know that (â1 − 1)â1 and m′XPiP′
j are independent. Hence

E
[ (âi − 1)âj

λj
PiP′

iβm′XPjP′
j

]
= E

[ (âi − 1)âj

λj
PiP′

iβ
]

E
[

m′XPjP′
j

]
= 0.

So we can obtain E[	3] = 0.
Then, using the facts that

(âi − 1)(âj − 1) = σ 4(m′Mm)2

λiλj(n − p)2β ′PiP′
iββ ′PjP′

jβ
+ o(σ 4)
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and

E[(m′Mm)2] = (n − p)(n − p + 2).

Thus, we have

E[	1] = E[P(Â − I)P′ββ ′P(Â − I)P′]

= E
[

P(Â − I)

⎛
⎜⎝

P′
1ββ ′P1 · · · P′

1ββ ′Pp
... . . . ...

P′
pββ ′P1 · · · P′

pββ ′Pp

⎞
⎟⎠ (Â − I)P′

]

= E
[

P

⎛
⎜⎝

(â1 − 1)(â1 − 1)P′
1ββ ′P1 · · · (â1 − 1)(âp − 1)P′

1ββ ′Pp
... . . . ...

(p̂1 − 1)(1̂1 − 1)P′
pββ ′P1 · · · (âp − 1)(âp − 1)P′

pββ ′Pp

⎞
⎟⎠ P′

]

= E
[ ∑

1≤i,j≤p
(âi − 1)(âj − 1)PiP′

iββ ′PjP′
j

]

= E
[ ∑

1≤i,j≤p

σ 4(m′Mm)2

λiλj(n − p)2β ′PiP′
iββ ′PjP′

jβ
PiP′

iββ ′PjP′
j + o(σ 4)

]

= n − p + 2
n − p

∑
1≤i,j≤p

σ 4

λiλjβ ′PiP′
iββ ′PjP′

jβ
PiP′

iββ ′PjP′
j + o(σ 4).

Also

âiâj = 1 − σ 2m′Mm
n − p

(λiβ ′PiP′
iβ + λjβ ′PjP′

jβ

λiλjβ ′PiP′
iββ ′PjP′

jβ

)
+ o(σ 2),

so

E[	2] = σ 2PÂΛ−1P′X′mm′XPΛ−1ÂP′

= σ 2E
[

PÂΛ−1

⎛
⎜⎝

P′
1X′mm′XP1 · · · P′

1X′mm′XPp
... . . . ...

P′
pX′mm′XP1 · · · P′

pX′mm′XPp

⎞
⎟⎠Λ−1ÂP′

]

= σ 2E
[

P

⎛
⎜⎜⎜⎜⎜⎝

â1â1
λ1λ1

P′
1X′mm′XP1 · · · â1âp

λ1λp
P′

1X′mm′XPp

... . . . ...
âpâ1

λpλ1
P′

pX′mm′XP1 · · · âpâp

λpλp
P′

pX′mm′XPp

⎞
⎟⎟⎟⎟⎟⎠ P′

]

= σ 2E
[ ∑

1≤i,j≤p

âiâj

λiλj
PiP′

iX
′mm′XPjP′

j

]
.

Since

MX = X − X(X′X)−1X′X = 0,
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we conclude that âi and m′X are independent, accordingly, âi and X′mm′X are independent.
Hence

E[	2] = σ 2E
[ ∑

1≤i,j≤p

âiâj

λiλj
PiP′

iX
′mm′XPjP′

j

]

= σ 2E
[ ∑

1≤i,j≤p

PiP′
iX′XPjP′

j

λiλj

−
∑

1≤i,j≤p

PiP′
iX′XPjP′

j

λiλj

σ 2m′Mm
n − p

(λiβ ′PiP′
iβ + λjβ ′PjP′

jβ

λiλjβ ′PiP′
iββ ′PjP′

jβ

)]
+ o(σ 4)

= MMSE(β̂) − σ 4
∑

1≤i,j≤p

PiP′
iX′XPjP′

j

λiλj

(λiβ ′PiP′
iβ + λjβ ′PjP′

jβ

λiλjβ ′PiP′
iββ ′PjP′

jβ

)]
+ o(σ 4)

= MMSE(β̂) − σ 4
∑

1≤i≤p

PiP′
i

λi

( 2
λiβ ′PiP′

iβ

)
+ o(σ 4).

Together, we obtain

MMSE(β̂GS(Â)) − MMSE(β̂) = σ 4
[

n − p + 2
n − p

∑
1≤i,j≤p

PiP′
iββ ′PjP′

j

λiλjβ ′PiP′
iββ ′PjP′

jβ

−
∑

1≤i≤p

2PiP′
i

λ2
i β

′PiP′
iβ

]
+ o(σ 4).

When σ is sufficiently small, let the above equation be less than 0, then a sufficient
condition for β̂GS(Â) to be superior to β̂ in terms of MMSE criterion is

n − p + 2
n − p

∑
1≤i,j≤p

PiP′
iββ ′PjP′

j

λiλjβ ′PiP′
iββ ′PjP′

jβ
−

∑
1≤i≤p

2PiP′
i

λ2
i β

′PiP′
iβ

≤ 0.

The condition of the above theorem has a simpler form. The condition n > p + 2 is actually
implied here.

Note that

n − p + 2
n − p

∑
1≤i,j≤p

PiP′
iββ ′PjP′

j

λiλjβ ′PiP′
iββ ′PjP′

jβ

= n − p + 2
n − p

P

⎛
⎜⎜⎜⎜⎜⎜⎝

1
λ2

1β
′P1P′

1β
· · · P′

1ββ ′Pp

λ1λpβ ′P1P′
1ββ ′PpP′

pβ
... . . . ...

P′
pββ ′P1

λpλ1β ′PpP′
pββ ′P1P′

1β
· · · 1

λ2
pβ ′PpP′

pβ

⎞
⎟⎟⎟⎟⎟⎟⎠

P′
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and

2
∑

1≤i≤p

PiP′
i

λ2
i β

′PiP′
iβ

= 2P

⎛
⎜⎜⎜⎜⎜⎝

1
λ2

1β
′P1P′

1β
· · · 0

... . . . ...

0 · · · 1
λ2

pβ ′PpP′
pβ

⎞
⎟⎟⎟⎟⎟⎠ P′,

so the condition of Theorem 3.3 is equivalent to⎛
⎜⎜⎜⎜⎜⎜⎝

(n − p + 2
n − p

− 2
) 1
λ2

1β
′P1P′

1β
· · · n − p + 2

n − p
P′

1ββ ′Pp

λ1λpβ ′P1P′
1ββ ′PpP′

pβ
... . . . ...

n − p + 2
n − p

P′
pββ ′P1

λpλ1β ′PpP′
pββ ′P1P′

1β
· · ·

(n − p + 2
n − p

− 2
) 1
λ2

pβ ′PpP′
pβ

⎞
⎟⎟⎟⎟⎟⎟⎠

≤ 0. (3.5)

If the inequality (3.5) holds, we conclude(n − p + 2
n − p

− 2
) 1
λ2

1β
′P1P′

1β
≤ 0,

which is just the condition of Theorem 3.2.

4. Numerical simulations

In this section, some numerical simulations are conducted to demonstrate the performances
of the TSLS estimator and test the superiority condition, which are designed as follows:

Let the model be

Y = 1 + 2X1 + 3X2 + 5X3 + 4X4 + e,

where e ∼ N(0, σ), X1 ∼ N(0, σ0), X2 ∼ N(1, σ0), X3 ∼ N(2, σ0), X4 = 0.5X1 + 3X2 + e1,
e1 ∼ N(0, 
).

Among the above parameters, 
 is used to control the degree of multi-collinearity that
exists among X4, X1, X2, which becomes greater as 
 gets smaller. And n is the number of
observations and σ and σ0 denotes the random error.

Experiment 1: To compare the performances of TSLS estimator with some estimator at
different levels of multi-collinearity.

Set n = 500, σ = 1 and number of simulations iter = 100, the sample mean squares error∑iter
i=1 ‖β̂ i − β‖2/(iter − 5) will be used in this experiment as a proxy for the mean squares

error. where β̂ i denotes the estimator obtained from the i-th simulation, and then vary the
size of 
 to observe the performance of the estimators.

Experiment 2: To verify TSLS estimator is superior when the σ is sufficiently small.

Set n = 500, 
 = 0.001 and number of simulations iter = 100, and then vary the size of σ

to compare the mean squares error of the estimators.
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Table 1. σ = 1.

 MSE_TSLS MSE_OLSE MSE_Stein MSE_Ridge

1 0.0482 0.0470 0.6144 0.0470
0.1 1.8181 1.9303 2.1829 1.9296
0.01 84.1752 171.6564 138.7557 164.8265
0.001 10670.4812 22875.7016 18536.0625 2475.2325

Figure 1. MSE while σ = 1.

Table 2. 
 = 0.001.
MSE_TSLS MSE_OLS MSE_Stein MSE_Ridge

0.01 1.8339 2.0351 2.2318 1.9338
0.1 73.9481 174.3933 142.1233 20.5975
1 13418.4613 25012.8790 20261.1433 2640.4777
10 947655.5705 2105286.5463 1705291.1071 225292.6000

Finally two experiments produce the following results:
From Table 1, we can see that as 
 decreases and the multi-collinearity increases, both

the mean squares errors of the TSLS estimator and the other estimators increase significantly,
while the advantage of the TSLS estimator becomes more obvious, and this is also visualized
in Figure 1. Table 2 then verifies the conclusion that the TSLS estimator performs the best
when σ is sufficiently small, that is, in the case that σ is 0.01 or less in this experiment. For
different cases, the requirements for “sufficiently small” will be different, but for most models,
it is basically guaranteed “σ is sufficiently small”.

5. Real data analysis

This section uses real data to illustrate the superiority of TSLS estimator in comparison to
other estimators.

5.1. Boston housing data

The data used in this subsection is named Boston Housing (see Harrison and Rubinfeld 1978),
which is a set of 506 rows and 14 columns of data on Boston house prices and some basic
social information. We can find the data form package “MASS” in the R software. This data
set contains the following columns: crim (per capita crime rate by town), zn (proportion of
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Table 3. Comparisons under Boston housing data.
TSLS OLSE Stein Ridge

3.194 3.355 3.275 3.337

Table 4. Head of Hartnagel.
Year tfr Partic Degrees fconvict ftheft mconvict mtheft

1 1931 3200 234 12.4000 77.1000 778.7000
2 1932 3084 234 12.9000 92.9000 745.7000
3 1933 2864 235 13.9000 98.3000 768.3000
4 1934 2803 237 13.6000 88.1000 733.6000
5 1935 2755 238 13.2000 79.4000 20.4000 765.7000 247.1000
6 1936 2696 240 13.2000 91.0000 22.1000 816.5000 254.9000

residential land zoned for lots over 25,000 sq.ft.), indus (proportion of non retail business
acres per town.), chas (Charles River dummy variable (= 1 if tract bounds river; 0 otherwise),
nox (nitrogen oxides concentration (parts per 10 million)), rm ( average number of rooms per
dwelling), age (proportion of owner-occupied units built prior to 1940), dis (weighted mean of
distances to five Boston employment centers), rad (index of accessibility to radial highways),
tax ( full-value property-tax rate per $10,000), ptratio ( pupil-teacher ratio by town), black
(1000(Bk − 0.63)2, where Bk is the proportion of blacks by town), lstat (lower status of the
population (percent)), and medv (median value of owner-occupied homes in $1000s). The
dependent variable is medv, and the independent variables are crim, zn, indus, chas, nox, rm,
age, dis, rad, tax, ptratio, black, and lstat.

Then we use the first 406 rows of the data as the regression group and the last 100 rows
as the test group. The TSLS estimator and the other estimators are calculated using the data
of regression group. The estimated medv is then obtained by substituting the data from the
test group, summing the square of the difference with the true value, and comparing the
magnitude of the values. The results are given in Table 3.

From the results, we can see that the TSLS estimator is superior to the OLSE, which
corresponds to the conclusion of this article. And compared to other estimators the TSLS
estimator will be a good choice.

5.2. Hartnagel data

So far, we have done a real data analysis that illustrates the superiority of TSLS estimator. And
here, we will choose a small data set with a comparatively large multi-collinearity problem to
see how TSLS performs. The data used here is named Hartnagel (see Fox and Hartnagel 1979)
and is derived from the data package “car” in the R software and is structured as follows in
Table 4.

The data consists of a total of 38 rows and 7 columns of time series data on crime rates
in Canada from 1931 to 1968, with a few missing data. This data set contains the follow-
ing columns: year (1931–1968), tfr (Total fertility rate per 1000 women), partic (Women’s
labor-force participation rate per 1000), degrees (Women’s post-secondary degree rate per
10,000), fconvict (Female indictable-offense conviction rate per 100,000), ftheft (Female theft
conviction rate per 100,000), mconvict (Male indictable-offense conviction rate per 100,000),
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Table 5. Comparisons under Hartnagel data.
TSLS OLSE Stein Ridge

62510.91 78330.01 41106.06 78331.32

and mtheft (Male theft conviction rate per 100,000). The dependent variable is tfr, and the
independent variables are partic, degrees, fconvict, ftheft, mconvict, and mtheft.

Here, the missing data from the first four years are removed, and then the remaining 34
years of data are used as the regression group for the first 30 years and as the test group for
the last four years. The OLSE and the TSLS estimator are calculated using the data from the
first 30 years. The estimated tfr is then obtained by substituting the data from the test group,
summing the square of the difference with the true value, and comparing the magnitude of
the values. The results are given in Table 5.

From the results, we can see that the TSLS estimator performs better than the OLSE in the
situation of small data set, and even compared to other biased estimators it is also an option
worth considering.

6. Conclusions

In this article, a theoretical derivation gives a condition for the superiority of the newly
introduced two-stage shrunken least squares estimator in terms of mean squares error (MSE)
criterion, that is, when σ is sufficiently small, if n > p + 2 then the two-stage shrunken least
squares estimator is superior to the ordinary least squares estimator (OLSE). This conclusion
suggests that the sufficient conditions for the two-stage shrunken least squares estimator to
outperform the OLSE under the MSE criterion are only related to n and p when σ is sufficiently
small, which is fairly easy to determine in practice. Under the assumptions of this article, the
above sufficient conditions that “n > p + 2” and “σ is sufficiently small” are basically satisfied.
In other words, for the multiple linear model the two-stage shrunken least squares estimator
is superior to the OLSE in terms of MSE criterion in most situations. Also we discuss the
superiority of the two-stage shrunken least squares estimator under the matrix mean squares
error (MMSE) criterion. Compared to the MSE criterion, the corresponding conditions are
a bit more complex, but it also requires the condition that “n > p + 2”. With respect to the
MMSE criterion, the readers can refer to the conclusion in Wang (1990), which states that
MMSE(β̂GS(Â)) ≤ MMSE(β̂) if and only if β ′P(I − Â)(I + Â)−1P′β ≤ σ 4. The proposed
sufficient conditions are fairly easy to determine and have a little Bayesian flavor in practice.
At the same time, the obtained results enrich and extend the study on biased estimation for
the multiple linear models.
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