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ABSTRACT
This article constructs an approximate Bayes estimator for the par-
ameter vector consisted of regression coefficients and variance par-
ameter in the linear model in which the error terms follow
multivariate t distribution. Its superiorities over the classical estimators
are strictly proved in terms of the mean squared error matrix (MSEM)
criterion. Compared with the Bayes estimator computed via the MCMC
method, the proposed Bayes estimator is simple and easy to interpret
and compute, which only requires relatively little prior designation. The
numerical computations further verify that the approximate Bayes esti-
mator performs well. Also, the proposed procedure can be easily
extended to other multivariate distribution cases.
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1. Introduction

There is a growing body of literatures that recognize the multivariate normal distribu-
tion as the most widely used assumption for the distribution of error terms in linear
models. However, in some cases, its application effects are controversial. For example,
some random phenomena with thick tail characteristics, such as stock return rate in the
financial field mentioned by Fama (1965), modeled using normal assumptions can lead
to some misleading conclusions. A question which has got a lot of attention for a long
time is whether t distribution can be introduced as the error term’s assumption.
According to Lin (1972), t distribution can be defined as the mixture of a normal distri-
bution and a inverse gamma distribution, and specifically, an intermediate random vari-
able obeying the inverse gamma distribution is used to adjust the spread of the normal
distribution. Hence, compared with the normal distribution, West (1984) and Lange
et al. (1989) indicate that t distribution is more flexible in characterizing tail characteris-
tics of random phenomena, which is reflected in the ability to reduce the influence of
outliers in data and enhance the robustness of statistical analysis. The readers are
referred to Fernandez and Steel (1998), Chib et al. (2002) and Jacquier et al. (2004) for
more details, which provide some useful accounts of how random phenomena with
thick tail features can be modeled using the theory of t distribution.
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The multivariate t can be considered as a generalization of the univariate t
distribution. The density function of n dimension t distribution, denoted as Tvðl,R, nÞ,
is given by

fnðxÞ ¼
C �þn

2

� �jRj�1
2

ðp�Þn2C �
2

� � 1þ 1
�
ðx� lÞ0R�1ðx � lÞ

� ���þn
2

, (1.1)

where � is a shape parameter (degrees of freedom), l and R denote mean vector and
scale matrix respectively. For the study of linear models, many researchers suggest the
use of multivariate t distribution as the distribution assumption of error terms. See
Sutradhar and Ali (1986), Giles (1991), Singh (1991) and Liu and Rubin (1995), etc.
From the Bayesian point of view, a posterior distribution of the regression coefficients
and the variance parameter has been established by Zellner (1976) under a diffuse prior,
and Bayesian analysis of these two parameters are well conducted. In the case that the
error term obeys an independent multivariate t distribution, Fonseca et al. (2008)
develop a Bayesian analysis based on two different Jeffreys priors and show that the
proposed Bayesian estimator is comparable to other estimators based on priors previ-
ously used in the literature.
The main issue of the article is to conduct a Bayesian analysis of linear regression

model with an uncorrelated multivariate t error term. We propose to estimate the
regression coefficients and the variance parameter of the model simultaneously via a lin-
ear Bayesian procedure, which is originally suggested by Hartigan (1969) and then dis-
cussed by Rao (1973) from linear optimization viewpoint. Consider the following linear
model

yn�1 ¼ Xn�pbp�1 þ en�1, (1.2)

where the error term en�1 � T�ð0, r2I, nÞ with known �ð> 2Þ, yn�1 denotes the observa-
tion vector and Xn�p is the full column rank design matrix. Following the property of
multivariate t distribution, we know that the density of y is

gðy; b, r2Þ ¼ C �þn
2

� �
rnðp�Þn2C �

2

� � 1þ 1
�r2

ðy� XbÞ0ðy� XbÞ
� ���þn

2

: (1.3)

Denote h ¼ ðb0, r2Þ0: Assume that the joint prior of b and r2 is HðhÞ and adopt the
following multivariate weighted quadratic loss

Lðĥ, hÞ ¼ ðĥ � hÞ0Aðĥ � hÞ, (1.4)

where A is a positive definite matrix and ĥ denotes a estimation of h. Thus, by the
Bayes theorem, the usual Bayes estimators (BE) of b and r2 would be given by

b̂BE ¼
ð ð

bgðy; hÞdHðhÞ=gðyÞ, (1.5)

r̂2
BE ¼

ð ð
r2gðy; hÞdHðhÞ=gðyÞ, (1.6)

where gðyÞ ¼ Ð Ð gðy; hÞdHðhÞ:
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Obviously, the above two integrals are not easy to handle, even if some seemingly
convenient priors HðhÞ are selected. Therefore, in such cases, approximate Bayesian
methods such as Lindley (1980) and Tierney and Kadane (1986) are raised. However,
calculating the third derivative of posterior is often an arduous task of the Lindley
approximation, and the Tierney and Kadane approximation needs to satisfy a main con-
dition that the product of likelihood and prior is unimodal, which more or less limits
its application. Also, using the idea of MCMC such as the Gibbs sampling procedure
and the Metropolis method have been suggested in the past twenty years, see Martinez
and Martinez (2007), Albert (2009) and Martino and Elvira (2017), etc. Anyway, in this
case the usual Bayes estimators are somewhat intricate and not convenient to use.
Employing the linear Bayesian procedure, Lamotte (1978) develops a class of Bayes

linear estimators by searching, among all linear estimators, ones which have least aver-
age total mean squared error. Since then many authors have given their attention to it,
such as Robbins (1983), Maritz (1989), Samaniego and Vestrup (1999), Zhang and Wei
(2005) and Wang and Singh (2014). Recently, Jones et al. (2016) has considered how to
employ Bayesian linear analysis to find an optimal experimental design. In particular,
Weinstein et al. (2018) uses the linear Bayesian method to construct linear empirical
Bayesian estimator of the normal mean vector under heteroscedasticity.
In this article, we plan to replace the completely specified prior HðhÞ by an assump-

tion about just a few moments of the prior and then employ the linear Bayes procedure
to simultaneously estimate the parameters b and r2: In contrast to those traditional
Bayes estimators highly depending on all priori information and hardly being expressed
explicitly, the proposed linear approximate Bayes estimator not only has a well-defined
expression but also has properties that are easy to depict only by using the priori
moments, which are easily determined in most occasions.
The organization of the remaining Sections is as follows. Section 2 constructs a simultan-

eously linear approximate Bayes estimator for the regression coefficients and the variance
parameter. Section 3 states some theoretical results which show that the approximate Bayes
estimator is superior to the least squared estimator (LSE) and the maximum likelihood esti-
mator (MLE) in terms of the mean square error matrix (MSEM) criterion. Section 4 com-
pares the approximate Bayes estimator with the BE obtained via the MCMC method and
further illustrates its superiorities by numerical computations. Finally, we make some con-
clusions in Section 5.

2. The proposed approximate Bayes estimator

For the model (1.2), we know that the least square estimators (LSE) of b and r2 are

b̂LS ¼ X0Xð Þ�1
X0y and r̂2

LS ¼
� � 2
�

y0 I � PXð Þy
n� p

, (2.1)

where PX ¼ XðX0XÞ�1X0 and Eðr̂2
LSÞ ¼ r2

ðn�pÞ trðI � PXÞ ¼ r2:

Thus, we have the following two conclusions.

Theorem 2.1 b̂LS and r̂2
LS are conditionally uncorrelated, i.e., Cov½ðb̂LS, r̂

2
LSÞjh� ¼ 0:
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Proof. Because yjh � TvðXb, r2I, nÞ, one can write

yjs2, h � NnðXb, s2r2IÞ, (2.2)

s2 � IGðv=2, v=2Þ: (2.3)

Put C ¼ ðX0XÞ�1X0, then

Cov ðb̂LS, r̂
2
LSÞjh

h i
¼ Cov Cy,

� � 2
�ðn� pÞ y

0ðI � PXÞy
� �����h

( )

¼ C
� � 2

� n� pð ÞCov y, y0ðI � PXÞy
� �jh	 


¼ C
� � 2

� n� pð Þ Cov Eðyjs2, hÞ,Eðy0ðI � PXÞyjs2, hÞjh
� �þ E Covðy, y0ðI � PXÞyjs2, hÞjh

� �	 


¼ C
� � 2

� n� pð Þ fCov Xb, ðn� pÞr2s2jh� �þ E 2r2s2ðI � PXÞXbjh
� �g

¼ 0:

(2.4)

Therefore, given h ¼ ðb0, r2Þ0, we conclude that b̂LS and r̂2
LS are conditionally

uncorrelated.

Theorem 2.1 is proved.

Set ĥLS ¼ ðb̂0
LS, r̂

2
LSÞ0: Define the class of linear estimators of the parameter vector h

as R ¼ ĥ : ĥ ¼ BĥLS þ bg,
n

where B and b are unknown matrix and vector respect-

ively. Under the loss (1.4), the best linear Bayes estimator, say ĥLBE, is searched by satis-
fying the following conditions

RðĥLBE, hÞ ¼ min
B, b

Eðy, hÞ ðĥ � hÞ0Aðĥ � hÞ
h i

, (2.5)

Eðy, hÞðĥLBE � hÞ ¼ 0, (2.6)

where Eðy, hÞ denotes the joint expectation with respect to y and h ¼ ðb0, r2Þ0:

Theorem 2.2. Under the condition that the prior distribution HðhÞ belongs to the family

H ¼ fHðhÞ : EðhÞ2 < 1g, the expression of the linear Bayes estimator ĥLBE is

ĥLBE ¼ CovðhÞ W þ CovðhÞ½ ��1ĥLS þW W þ CovðhÞ½ ��1Eh, (2.7)

where for � > 4,

W ¼ E CovðĥLSjhÞ
h i

¼ diag
�

� � 2
ðX0XÞ�1Eðr2Þ, 2ðn� pþ � � 2Þ

ðn� pÞð� � 4Þ Eðr4Þ
� �

: (2.8)
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Proof. From (2.6), b ¼ Eh� BEh: Then

Rðĥ, hÞ ¼ Eðy, hÞ ðĥ � hÞ0Aðĥ � hÞ
h i

¼ Eðy, hÞðBĥLS þ Eh� BEh� hÞ0AðBĥLS þ Eh� BEh� hÞ
¼ tr ABEðy, hÞ ðĥLS � EhÞðĥLS � EhÞ0

h i
B0

n o
þ tr ACovðhÞ½ �

� 2tr ACovðhÞB0� �
:

(2.9)

For given h, according to Theorem 2.1, Cov½ðb̂LS, r̂
2
LSÞjh� ¼ 0: Therefore,

E y, hð Þ ðĥLS � EhÞðĥLS � EhÞ0
h i

¼ E CovðĥLSjhÞ
h i

þ Cov EðĥLSjhÞ
h i

¼ W þ CovðhÞ:

(2.10)

In addition, note that

Varðb̂jhÞ ¼ �

ð� � 2Þ ðX
0XÞ�1r2 (2.11)

and

Varðr̂2
LSjhÞ ¼

ðv� 2Þ2
ðn� pÞ2v2 Var y0ðI � PXÞyjh

� �

¼ ðv� 2Þ2
ðn� pÞ2v2

n
E Varðy0ðI � PXÞyjh, s2Þjh
� �þ Var Eðy0ðI � PXÞyjh, s2Þjh

� �o

¼ ðv� 2Þ2
ðn� pÞ2v2 f2E ðn� pÞs4r4jh� �þ ðn� pÞ2Varðs2r2jhÞg

¼ ðv� 2Þ2
ðn� pÞ2v2

(
2ðn� pÞ v2=4

ðv=2� 1Þ2 þ
v2=4

ðv=2� 1Þ2ðv=2� 2Þ

" #

þ ðn� pÞ2 v2=4

ðv=2� 1Þ2ðv=2� 2Þ

" #)
r4

¼ 2ðn� pþ � � 2Þ
ðn� pÞð� � 4Þ r4:

(2.12)

Thus, combining (2.11), (2.12) and Theorem 2.1 yields W ¼ diagf �
ð��2Þ ðX0XÞ�1

Eðr2Þ, 2ðn�pþ��2Þ
ðn�pÞð��4Þ Eðr4Þg: Inserting (2.10) into (2.9) and setting @Rðĥ, hÞ

@B ¼ 0, we have

AB W þ CovðhÞ½ � � ACovðhÞ ¼ 0,

which leads to

B ¼ Ipþ1 �W W þ CovðhÞ½ ��1: (2.13)

Together with b ¼ ðI � BÞEh, we come to the conclusion of Theorem 2.2.
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Theorem 2.2 is proved.

Remark 2.1. In fact, the constraint on unbiasedness by (2.6) is unnecessary, which
means that the expression of linear Bayes estimator has nothing to do with the con-
straint. Therefore, the requirement for unbiasedness does not impose additional restric-
tion on the linear estimator.

Remark 2.2. It is worth noting that the proposed LBE combines the information of the
observed data with the prior information. It is seen from the formula (2.7) that the
expression of LBE is the weighted sum of the LSE and the prior mean.

3. The superiorities of the approximate Bayes estimator

Theorem 3.1. Under the MSEM criterion, ĥLBE is superior to ĥLS:

Proof. Since Eðy, hÞðĥLBE � hÞ ¼ 0, we have

MSEMðĥLBEÞ ¼ Eðy, hÞ ðĥLBE � hÞðĥLBE � hÞ0
h i

¼ E CovðĥLBE � hjhÞ
h i

þ Cov EðĥLBE � hjhÞ
h i

:
(3.1)

Let M ¼ W þ CovðhÞ½ ��1, we further have

MSEMðĥLBEÞ ¼ I �WMð ÞW I �WMð Þ0 þWMCovðhÞ WMð Þ0

¼ W � 2WMW þWM W þ CovðhÞ½ �MW

¼ W �WMW:

(3.2)

Otherwise

MSEMðĥLSÞ ¼ Eðy, hÞ ðĥLS � hÞðĥLS � hÞ0
h i

¼ E E ðĥLS � hÞðĥLS � hÞ0jh
h in o

¼ W:

(3.3)

Comparing (3.2) with (3.3), we have

MSEM ĥLBE
� �

� MSEM ĥLS
� �

: (3.4)

Theorem 3.1 is proved.

Lemma 3.1. For the model (1.2), the MLE of h is ĥML ¼ b̂
0
LS,

ðy�Xb̂LSÞ0ðy�Xb̂LSÞ
n

 �0
:

Proof. See the Appendix.

Theorem 3.2. Let ĥLBE and ĥML be given by Theorem 2.2 and Lemma 3.1 respectively. If

n > �p
2 and � > 4, then MSEMðĥLBEÞ � MSEM ðĥMLÞ:

Proof. See the Appendix.
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4. Numerical simulations

4.1. Settings of the model and the priors of the parameters

In this Section, numerical simulations are carried out to study the performances of the

ĥLBE and the BE ĥBE: We set p¼ 2, v¼ 5, 15, 35 and let the true value of h ¼
ðb0, b1, r2Þ0 be equal to ð2, � 1, 3Þ0: The design matrix would be

X ¼ ð1n xÞn�2,

where 10n ¼ ð1, 1, :::, 1Þ and x is a constant vector which is generated from Nð0, InÞ:
Once X is generated, the observed vector y is simulated by the multivariate t distribu-
tion, TnðXb, r2In, vÞ, which can also be expressed in a hierarchical structure:

yjs2 � NnðXb, s2r2InÞ, (4.1)

s2 � IGðv=2, v=2Þ: (4.2)

The following prior form is adopted. Let the prior of b be Nð~l,RÞ, where R ¼
r21 qr1r2

qr1r2 r22

� �
in which q is correlation coefficient, and ~l ¼ ðl0, l1Þ0: r2 has an

inverted Gamma prior with density

pðr2Þ / ðr2Þ�ðrþ1Þ exp � k
r2

� �
, r > 2, k > 0: (4.3)

Therefore, the joint posterior density of b, r2 and s2 is

pðb, r2, s2jyÞ / s2ð�n=2�v=2�1Þðr2Þ�ðn=2þrþ1Þ exp
n
� 1
2

h
ðy� XbÞ0ðy� XbÞ=ðs2r2Þ

þ ðb� ~lÞ0R�1ðb� ~lÞ þ v
s2

þ 2
k
r2

io
:

(4.4)

It is hard to calculate a posterior expectation of h, which involves multiple integrals,

so one can obtain the ĥBE numerically via the MCMC method. To this end, the full
conditional posterior distribution of b is given by

bjr2, s2, y � Nðlð1Þ,Rð1ÞÞ, (4.5)

where Rð1Þ ¼ ðX0X=ðs2r2Þ þ R�1Þ�1 and lð1Þ ¼ Rð1ÞðX0y=ðs2r2Þ þ R�1~lÞ:
The full conditional posterior distribution of r2 is given by

r2jb, s2, y � IGðn=2þ r, ðy� XbÞ0ðy� XbÞ=ð2s2Þ þ kÞ: (4.6)

Also, the full conditional posterior distribution of s2 is

s2jb, r2, y � IG
nþ v
2

, ðy� XbÞ0ðy � XbÞ=ð2r2Þ þ v=2

� �
: (4.7)

We employ the MCMC method to obtain the numerical solution of ĥBE: The steps of
the Gibbs sampling (see Albert (2009)) are given below.
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Step 1. Choose the initial values of b, r2 and s2, say bð0Þ, r2ð0Þ and s2ð0Þ, and note
the values of b, r2 and s2 at the j-th step by bðjÞ, r2ðjÞ and s2ðjÞ:

Step 2. Update the (jþ 1)-th iteration as follows
(a) Sample bðjþ1Þ from distribution pðbjr2ðjÞ, s2ðjÞ, yÞ;
(b) Sample r2ðjþ1Þ from distribution pðr2jbðjþ1Þ, s2ðjÞ, yÞ;
(c) Sample s2ðjþ1Þ from distribution pðs2jbðjþ1Þ, r2ðjþ1Þ, yÞ:
Step 3. Repeat Step 2 N times.
Step 4. Calculate the average of the N samples to get the posterior expectation.

In the above steps, we introduce the parameter s2 to simplify the iterations but we
are not interested in it. For the following numerical studies, we take N¼ 5000.
The prior distributions involved in the above simulations are listed in Table 1. In

simulations, the distance between the LBE and the BE is defined by k ĥLBE � ĥBE k¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb̂LBE � b̂BEÞ0ðb̂LBE � b̂BEÞ þ ðr̂2LBE � r̂2

BEÞ2
q

: The smaller value indicates that the LBE

and the BE are closer.
Here tr½CovðhÞ� describes the variation of the prior. Note that the large variances in

the prior are considered. The purpose is that we expect the experimental results to be
somewhat robust with respect to prior distributions.

4.2. Numerical computations and comparisons

Figures 1 and 2 plot the distances between the LBE and the BE for different priors,
respectively. It can be seen that in the case of v¼ 5 the distances between the LBE and
the BE are small already. Further, when the prior distributions are the same, taking
larger values of the degrees of freedom is more favorable for the approximation effect
of the LBE. The reason is that when the degrees of freedom v is getting larger the t dis-
tribution is approaching the normal distribution. At this point, in our experimental
setup the LBE and the BE corresponding to the component b are very close to each
other, which causes the difference between the LBE and the BE of h to be smaller.
Besides, as the prior variance becomes small, the distance gets smaller, which implies a
better approximation of the LBE at this time.
Since in the theoretical part we obtain the conclusion that the LBE outperforms the

MLE under the MSEM criterion when n > pv
2 , we will examine the superiority of the

LBE in the case of n � pv
2 : The numerical results displayed in Table 2 show that

MSEM(ĥML) >MSEM(ĥLBE) for different combinations of n and v, which satisfy the
condition n � pv

2 :

Table 1. Various prior distributions.
Prior Prior distribution tr Cov hð Þ½ �

Pr1: b � N
1

�1:5

� �
, 102 �75

�75 102

� �� �
, r2 � IG 8, 21ð Þ 201.5

Pr2: b � N
1

�1:5

� �
, 102 75

75 102

� �� �
, r2 � IG 3, 21ð Þ 310.25
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4.3. Robustness analysis of the LBE

In the previous simulations, the real data is generated from multivariate t-distribution. In
this subsection, to investigate the robustness of the proposed LBE based on multivariate t
regression, the data is intentionally generated from multivariate Normal and multivariate
Laplace (ML) distributions. We use the distance between the estimate and the true value as

a criterion, which is defined by k ĥ � h k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb̂ � bÞ0ðb̂ � bÞ þ ðr̂2 � r2Þ2

q
, where ĥ can

be ĥLBE, ĥLS and ĥML: We set p¼ 2, v¼ 5 and use Pr1 as the prior of h.
In Figure 3, the data y is simulated from TnðXb, r2In, vÞ: Fixing the expectation and

the covariance matrix, in Figures 4 and 5, the data y is sampled from N Xb, vr2
v�2 In

 �
and ML vr2

v�2 ,Xb, In
 �

, respectively. It is seen from Figures 3–5 that k ĥLBE � h k is

Figure 1. The distance between ĥLBE and ĥBE for Pr 1.

Figure 2. The distance between ĥLBE and ĥBE for Pr 2.
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always smaller than k ĥLS � h k and k ĥML � h k even the error distribution is changed.
Then we can conclude that the LBE is somewhat robust to the error distribution.

4.4. An application to real data

The real data set from Siegel (1977) is applied to illustrate the results presented in this
Subsection. These data have also been analyzed by Sheather (2009) and Yang and Yuan
(2017). We take the bid price as the dependent variable and the coupon rate as the
regressor variable. As Yang analyzed, it is appropriate to analyze the data by using
Student-t linear regression model with the degrees of freedom v and the scale param-
eter r2:

Table 2. The MSEM( ĥML) and MSEM( ĥLBE) under two priors.
Prior n, v MSEM( ĥML)–MSEM( ĥLBE)

Pr1: n¼ 5, v¼ 15
0:0421 0:0873 0:0000
0:0874 0:1966 0:0000
0:0000 0:0000 4:5667

0
@

1
A

n¼ 10, v¼ 15
0:0038 0:0037 0:0000
0:0037 0:0051 0:0000
0:0000 0:0000 3:1777

0
@

1
A

n¼ 20, v¼ 35
0:0006 0:0006 0:0000
0:0006 0:0009 0:0000
0:0000 0:0000 0:9285

0
@

1
A

Pr2: n¼ 5, v¼ 15
0:0880 0:0713 0:0000
0:0713 1:0691 0:0000
0:0000 0:0000 50:6143

0
@

1
A

n¼ 10, v¼ 15
0:0259 �0:0172 0:0000
�0:0172 0:0385 0:0000
0:0000 0:0000 37:1325

0
@

1
A

n¼ 20, v¼ 35
0:0064 �0:0055 0:0000
�0:0055 0:0099 0:0000
0:0000 0:0000 7:6653

0
@

1
A

Figure 3. The distance between estimators and real value for multivariate t distribution.
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We assume that b � Nðð�16, 0:5Þ0, 100I2Þ and r2 � IGðk, rÞ: We analyze the data by

using several different values of ðk, rÞ and the degrees of freedom v. The values of ĥLBE
in Table 3 are obtained by Theorem 2.2. To visually compare the magnitudes of the

Figure 4. The distance between estimators and real value for multivariate Normal distribution.

Figure 5. The distance between estimators and real value for multivariate Laplace distribution.

Table 3. Estimations for different v and (k, r).
v ðk, rÞ ĥLBE ĥBE k ĥLBE � ĥBE k
5 (3) (�16.1062, 0.2450, 1.3763)0 (�16.1091, 0.2451, 1.3113)0 0.07956

(2.5, 11.25) (�16.0762, 0.2447, 5.9404)0 (�16.1367, 0.2453, 2.9121)0 3.0290
20 (3) (�16.1099, 0.2451, 1.3230)0 (�16.1078, 0.2450, 1.3430)0 0.04525

(2.5, 11.25) (�16.08633, 0.2448, 2.6577)0 (�16.1163, 0.2451, 2.2777)0 0.3813
50 (3) (�16.1103, 0.2451, 1.3667)0 (�16.1008, 0.2450, 1.3714)0 0.03855

(2.5, 11.25) (�16.0878, 0.2449, 2.1885)0 (�16.0966, 0.2449, 2.0793)0 0.1095

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 11



matrices, we present the eigenvalues of matrices MSEM ðĥLSÞ-MSEM ðĥLBEÞ and MSEM

ðĥMLÞ-MSEM ðĥLBEÞ in Table 4 and the eigenvalues of these two matrices are denoted
as kLS and kML respectively.
As can be seen from Table 3, except for the case of v ¼ 5, k ¼ 2:5, r ¼ 11:25, the

LBE and the BE are close to each other, also the distance k ĥLBE � ĥBE k gradually
becomes smaller as v becomes larger, which indicates that v has some influence on the
LBE and the BE. Therefore, the estimation of v could be an important step in making
inference with this kind of models.
On the other hand, from Table 4 we know that the MSEMs of LBE are always smaller

than those of the other two classical estimates for the real data. Combined with the

above analysis, the LBE ĥLBE is feasible and applicable in this practical application case.

5. Conclusions

The multivariate t distribution is widely used in many fields, see Kotz and Nadarajah
(2004), Kibria and Joarder (2006) and among others. This article employs a linear Bayes
procedure to propose an approximate Bayes estimator for the parameter vector consist-
ing of the regression coefficients and the variance parameter in the linear model whose
error terms obey an uncorrelated multivariate t distribution. The proposed linear esti-
mator only designates some prior moments instead of some specific priors and is simple
and easy to compute. In terms of the mean square error matrix criterion, its superior-
ities over the classical estimators such as the least squared estimator and the maximum
likelihood estimator are strictly proved. The numerical computations show that the pro-
posed linear Bayes estimator is a good approximation, regardless of whether the degrees
of freedom is large or small. Also, a real data example further verifies that the linear
approximate Bayes estimator is feasible and applicable. Moreover, the procedure used in
this article can be further extended to some elliptically contoured distributions such as
multivariate normal and multivariate Laplace, see Fang (1987) and Eltoft et al.
(2006), etc.
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v ðk, rÞ kLS kML
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Appendix

The proof of Lemma 3.1.
Note that the likelihood function of ðb, r2Þ can be written as

L b, r2jy� � ¼ lð�Þ r2ð Þ�n
2 � þ y� Xbð Þ0 y� Xbð Þ

r2

� ��nþ�
2

, (A1)

where lð�Þ ¼ �
�
2p�

n
2C �þn

2

� �
=C �

2

� �
: First, by @ ln Lðb, r2jyÞ

@b ¼ 0, we have

b̂ML ¼ ðX0XÞ�1X0y ¼ b̂LS: (A2)

Next, by the derivation result that

@ ln a0 þ b0
x

 � �
@x

¼ @ ln a0xþ b0ð Þ � ln xð Þ
@x

¼ a0
a0xþ b0

� 1
x
, (A3)

where a0 and b0 are constants, we have

@ ln L b, r2jy� �
@r2

¼ �

2r2
� � nþ �ð Þ
2 �r2 þ y� Xbð Þ0 y� Xbð Þ
� � : (A4)
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Setting @ ln Lðb, r2jyÞ
@r2 ¼ 0 we have

r̂2
ML ¼

y� Xb̂LS

 �0
y� Xb̂LS

 �
n

: (A5)

Therefore, we obtain the MLE of h.
Lemma 3.1 is proved.

The proof of Theorem 3.2.
Note that ĥML ¼ B0ĥLS with B0 ¼ diagðIp, �ðn�pÞ

nð��2ÞÞ: Thus,
MSEM ĥML

� �
¼ B0WB0

0 þ ðB0 � Ipþ1ÞEhh0ðB0 � Ipþ1Þ0

¼
�

��2 ðX0XÞ�1Er2 0

0
2�2 n�pð Þ n�pþ��2ð Þþ 2n��pð Þ2 ��4ð Þ½ �Er4

��2ð Þ2n2 ��4ð Þ

0
B@

1
CA,

(A6)

where H ¼ �
��2 ðX0XÞ�1: Denote Q ¼ HEr2 þ CovðbÞ, we have

M ¼ W þ CovðhÞð Þ�1

¼ Q�1 þ Q�1Cov b, r2
� �

D�1Cov b0, r2
� �

Q�1 �Q�1Cov b, r2
� �

D�1

�D�1Cov b0, r2
� �

Q�1 D�1

 !
,

(A7)

where

D ¼ Varðr2Þ þ 2 n� pþ � � 2ð Þ
n� pð Þ � � 4ð Þ Er4 � Cov b0, r2

� �
Q�1Cov b, r2

� �
: (A8)

Rewrite the MSEM of the LBE as

MSEM ĥLBE
� �

¼ W �WMW ¼ WMCovðhÞ ¼ R11 R12

R21 R22

� �
, (A9)

where

R11 ¼ HEr2Q�1CovðbÞ � HEr2Q�1Covðb, r2ÞD�1Covðb0, r2ÞQ�1HEr2, (A10)

R12 ¼ 2 n� pþ � � 2ð ÞEr4
n� pð Þ � � 4ð Þ HEr2Q�1Cov b, r2

� �
D�1, (A11)

R21 ¼ 2 n� pþ � � 2ð ÞEr4
n� pð Þ � � 4ð Þ D�1Covðb0, r2ÞQ�1HEr2, (A12)

and

R22 ¼ � 2 n� pþ � � 2ð ÞEr4
n� pð Þ � � 4ð Þ D�1Cov b0, r2

� �
Q�1Cov b, r2

� �
þ 2 n� pþ � � 2ð ÞEr4

n� pð Þ � � 4ð Þ D�1Var r2ð Þ:
(A13)

From (A6) and (A9), we get

MSEM ĥML

� �
�MSEM ĥLBE

� �
¼

HEr2 � R11 �R12

�R21
2�2 n�pð Þ n�pþ��2ð Þþ 2n��pð Þ2 ��4ð Þ½ �Er4

��2ð Þ2n2 ��4ð Þ � R22

0
@

1
A ¼̂ K:

(A14)
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To prove the MSEM superiority of the LBE, we only need to show that the matrix

K � 0: (A15)

Let s0 ¼ 2�2ðn�pÞðn�pþ��2Þþð2n��pÞ2ð��4Þ½ �Er4
ð��2Þ2n2ð��4Þ � R22, we first have

s0 ¼
2�2 n� pð Þ n� pþ � � 2ð Þ þ 2n� �pð Þ2 � � 4ð Þ
h i

Er4

� � 2ð Þ2n2 � � 4ð Þ
þ 2 n� pþ � � 2ð ÞEr4

n� pð Þ � � 4ð Þ D�1Cov b0, r2
� �

Q�1Cov b, r2
� �

� 2 n� pþ � � 2ð ÞEr4
n� pð Þ � � 4ð Þ D�1Var r2ð Þ

¼
2�2 n� pð Þ n� pþ � � 2ð Þ þ 2n� �pð Þ2 � � 4ð Þ
h i

Er4

� � 2ð Þ2n2 � � 4ð Þ
þ 2 n� pþ � � 2ð ÞEr4

n� pð Þ � � 4ð Þ D�1 Cov b0, r2
� �

Q�1Cov b, r2
� �

� Var r2ð Þ
h i

�
2�2 n� pð Þ n� pþ � � 2ð Þ þ 2n� �pð Þ2 � � 4ð Þ
h i

Er4

� � 2ð Þ2n2 � � 4ð Þ � 2 n� pþ � � 2ð ÞEr4
n� pð Þ � � 4ð Þ

¼ Er4

� � 4

2 n� pþ � � 2ð Þ �2 n� pð Þ2 � � � 2ð Þ2n2
h i

þ 2n� �pð Þ2 � � 4ð Þ n� pð Þ
� � 2ð Þ2n2 n� pð Þ

¼ Er4

� � 4
c0

ð� � 2Þ2n2ðn� pÞ ,

(A16)

where c0¼ n� �p
2

 �
½12ð� � 2Þn2 þ ð24p� 24� � 8�p� 2�2pþ 8�2þ 16Þnþ 2�2p2 � 4�2p� 4�p2þ

8�p� and the third inequality takes advantage of the fact that D�1½Covðb0, r2ÞQ�1Covðb, r2Þ
�Varðr2Þ� > �1: In order to prove s0 > 0, it is enough to show that c0 > 0: Note that the equation
c0 ¼ 0 has the following three different roots

x1 ¼ �p
2
, (A17)

x2 ¼ p
2
� �

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2p2 � 8�2pþ 16�2 � 12�p2 þ 8�p� 32� þ 36p2 þ 48pþ 16

p
12

þ �p
12

þ 1
3

(A18)

and

x3 ¼ p
2
� �

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2p2 � 8�2pþ 16�2 � 12�p2 þ 8�p� 32� þ 36p2 þ 48pþ 16

p
12

þ �p
12

þ 1
3
:

(A19)

Differentiating c0 with respect to n, we obtain a polynomial about n

dc0
dn

¼ l1n
2 þ l2nþ l3, (A20)

where

l1 ¼ 36 � � 2ð Þ, (A21)
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l2 ¼ 8ð6p� 6� þ �p� 2�2pþ 2�2 þ 4Þ, (A22)

l3 ¼ �3p2 � 4�3pþ 6�2p2 þ 8�2p� 16�p2: (A23)

Note that l1 > 0 for � > 4 and c0 strictly increases when n is larger than the largest root.
Using x1 >

x2þx3
2 and the relationship among the three roots, we have x1 > maxfx2, x3g:

Therefore, we conclude that s0 > 0 when n > �p
2 and � > 4:

Note that

Ip s�1
0 R12

0 1

 !
HEr2 � R11 �R12

�R21 s0

 !
Ip 0

s�1
0 R21 1

 !

¼ HEr2 � R11 � s�1
0 R12R21 0

0 s0

 !
:

(A24)

To prove the matrix K � 0, we still need to prove the following fact

HEr2 � R11 � R12
2�2ðn� pÞðn� pþ � � 2Þ þ ð2n� �pÞ2ð� � 4Þ
� �

Er4

ð� � 2Þ2n2ð� � 4Þ � R22

" #�1

R21

¼ HEr2Q�1 Qþ Covðb, r2Þ 1
D
� 4ðn� pþ � � 2Þ2ðEr4Þ2

D2s0ðn� pÞ2ð� � 4Þ2
 !

Covðb0, r2Þ
" #

Q�1HEr2 � 0:

(A25)

If

1
D
� 4ðn� pþ � � 2Þ2 Er4ð Þ2

D2s0ðn� pÞ2ð� � 4Þ2 � 0,

the inequality (A25) obviously holds. Conversely, if

1
D
� 4ðn� pþ � � 2Þ2 Er4ð Þ2

D2s0ðn� pÞ2ð� � 4Þ2 < 0,

let a ¼ Covðb0, r2ÞQ�1Covðb, r2Þ, then
1
a
þ 1
D
� 4 n� pþ � � 2ð Þ2 Er4ð Þ2

D2s0 n� pð Þ2 � � 4ð Þ2

¼ ðaþ DÞDs0 n� pð Þ2 � � 4ð Þ2 � 4a n� pþ � � 2ð Þ2 Er4ð Þ2

aD2s0 n� pð Þ2 � � 4ð Þ2 ¼̂ F1
G
,

(A26)

where we have

F1 ¼ ðaþ DÞD n� pð Þ2 � � 4ð Þ2
2�2 n� pð Þ n� pþ � � 2ð Þ þ 2n� �pð Þ2 � � 4ð Þ
h i

Er4

� � 2ð Þ2n2 � � 4ð Þ

0
@

1
A

þ ðaþ DÞD n� pð Þ2 � � 4ð Þ2 2 n� pþ � � 2ð ÞEr4
n� pð Þ � � 4ð Þ D�1a

 !

� ðaþ DÞD n� pð Þ2 � � 4ð Þ2 2 n� pþ � � 2ð ÞEr4
n� pð Þ � � 4ð Þ D�1Var r2ð Þ

 !

� 4a n� pþ � � 2ð Þ2 Er4ð Þ2
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¼ aþ Dð Þ
2�2 n� pð Þ n� pþ � � 2ð Þ þ 2n� �pð Þ2 � � 4ð Þ
h i

D n� pð Þ2 � � 4ð Þ2Er4
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0
@

1
A
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 �
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 �
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¼ aþ Dð Þ
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h i
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@
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D n� pð Þ2 � � 4ð Þ2Er4

� � 2ð Þ2n2 � � 4ð Þ

0
@

1
A

þ aþ Dð Þ 4 n� pþ � � 2ð Þ2 Er4ð Þ2
h i

� aþ Dð Þ 2 n� pþ � � 2ð Þ n� pð Þ � � 4ð ÞDEr4
h i

� 4a n� pþ � � 2ð Þ2 Er4ð Þ2

¼ � � 2ð Þ2n2 � � 4ð Þ
� ��1

aþ Dð Þ2�2 n� pð Þ n� pþ � � 2ð ÞD n� pð Þ2 � � 4ð Þ2Er4

þ � � 2ð Þ2n2 � � 4ð Þ
� ��1

aþ Dð Þ 2n� �pð Þ2 � � 4ð ÞD n� pð Þ2 � � 4ð Þ2Er4

� � � 2ð Þ2n2 � � 4ð Þ
� ��1

aþ Dð Þ2 n� pþ � � 2ð Þ n� pð Þ � � 4ð Þ2n2 � � 2ð Þ2DEr4

þ � � 2ð Þ2n2 � � 4ð Þ
� ��1

4D n� pþ � � 2ð Þ2 � � 2ð Þ2n2 � � 4ð Þ Er4ð Þ2:
After further simplification, we come to

F1 ¼ D � � 2ð Þ2n2
� ��1

Er4 � Er2ð Þ2 þ 2 n� pþ � � 2ð ÞEr4
n� pð Þ � � 4ð Þ

" #

� 2�2 n� pð Þ n� pþ � � 2ð Þ n� pð Þ2 � � 4ð ÞEr4

þ D � � 2ð Þ2n2
� ��1

Er4 � Er2ð Þ2 þ 2 n� pþ � � 2ð ÞEr4
n� pð Þ � � 4ð Þ

" #

� 2n� �pð Þ2 � � 4ð Þ n� pð Þ2 � � 4ð ÞEr4

� D � � 2ð Þ2n2
� ��1

Er4 � Er2ð Þ2 þ 2 n� pþ � � 2ð ÞEr4
n� pð Þ � � 4ð Þ

" #

� 2 n� pþ � � 2ð Þ n� pð Þ � � 4ð Þn2 � � 2ð Þ2Er4

þ D � � 2ð Þ2n2
� ��1

4 n� pþ � � 2ð Þ2 � � 2ð Þ2n2 Er4ð Þ2:

(A27)

Let F2 ¼ 2�2ðn� pÞðn� pþ � � 2Þ þ ð2n� �pÞ2ð� � 4Þ
� �

ðn� pÞ2ð� � 4Þ � 2ðn� pþ � � 2Þ
ðn� pÞð� � 4Þn2ð� � 2Þ2 and F3 ¼ 4ðn� pþ � � 2Þ2ð� � 2Þ2n2, then (A27) can be represented
as

F1 ¼ D � � 2ð Þ2n2
� ��1

F4 Er4ð Þ2 � F2Er
4 Er2ð Þ2

h i
, (A28)

where
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F4 ¼
2 n� pþ � � 2ð Þ þ n� pð Þ � � 4ð Þ

n� pð Þ � � 4ð Þ F2 þ F3

¼ 2 n� pþ � � 2ð Þ þ n� pð Þ � � 4ð Þ� �
� 2�2 n� pð Þ n� pþ � � 2ð Þ þ 2n� �pð Þ2ð� � 4Þ

h i
n� pð Þ � 2 n� pþ � � 2ð Þn2 � � 2ð Þ2

n o
þ 4 n� pþ � � 2ð Þ2 � � 2ð Þ2n2

¼ 2 n� pþ � � 2ð Þ þ n� pð Þ � � 4ð Þ� �
� 2�2 n� pð Þ n� pþ � � 2ð Þ þ 2n� �pð Þ2ð� � 4Þ
h i

n� pð Þ
� 2 n� pþ � � 2ð Þn2 � � 2ð Þ2 n� pð Þ � � 4ð Þ

¼ n� pð Þ n� pþ � � 2ð Þ J11 þ J22 þ J33 � J44½ � þ 2n� �pð Þ2 � � 4ð Þ2
n o

,

(A29)

with J11 ¼ 4�2ðn� pþ � � 2Þðn� pÞ, J22 ¼ 2�2ðn� pÞ2ð� � 4Þ, J33 ¼ 2ð2n� �pÞ2ð� � 4Þ and
J44 ¼ 2n2ð� � 2Þ2ð� � 4Þ: Let F5 ¼ J22 � J44: Then for n > �p

2 and � > 4, obviously

F5 ¼ n� �p
2

� �
8 � � 4ð Þ � � 1ð Þn� 49�2 þ 16p�
� �

> 0: (A30)

Hence, we obtain F4 > 0: Using (A28) and the fact that Er4 � ðEr2Þ2, we obtain

F1 � D � � 2ð Þ2n2
� ��1 2 n� pþ � � 2ð Þ þ n� pð Þ � � 4ð Þ

n� pð Þ � � 4ð Þ � 1

 !
F2 þ F3

" #
Er4 Er2ð Þ2

¼ 2D � � 2ð Þ2n2
� ��1

J55 þ J66 þ J77½ �Er4 Er2ð Þ2,
(A31)

where J55 ¼ 2�2ðn� pþ � � 2Þðn� pÞ2, J66 ¼ ð2n� �pÞ2ð� � 4Þðn� pÞ and J77 ¼ 2ðn� pþ � �
2Þð�� 2Þ2n2:

Then by (A26), we have

1
a
þ 1
D
� 4 n� pþ � � 2ð Þ2 Er4ð Þ2

D2s0 n� pð Þ2 � � 4ð Þ2 ¼ F1
G

� 2 aDs0 n� pð Þ2 � � 4ð Þ2 v� 2ð Þ2n2
h i�1

� 2v2 n� pþ � � 2ð Þ n� pð Þ2 þ 2n� �pð Þ2 � � 4ð Þ n� pð Þ þ 2 n� pþ � � 2ð Þ v� 2ð Þ2n2
h i

� Er4 Er2ð Þ2 > 0:

Thus, we come to

aþ 1
D
� 4ðn� pþ � � 2Þ2 Er4ð Þ2

D2s0ðn� pÞ2ð� � 4Þ2
 !�1

< 0: (A32)

Then, we have

Qþ Cov b,r2
� � 1

D
� 4ðn� pþ � � 2Þ2 Er4ð Þ2

D2s0ðn� pÞ2ð� � 4Þ2
 !

Cov b0 , r2
� � !�1

¼ Q�1 � Q�1Cov b, r2
� �

aþ 1
D
� 4ðn� pþ � � 2Þ2 Er4ð Þ2

D2s0ðn� pÞ2ð� � 4Þ2
 !�1

2
4

3
5
�1

Cov b0, r2
� �

Q�1 > 0:

Hence, in the case that 1
D � 4ðn�pþ��2Þ2ðEr4Þ2

D2s0ðn�pÞ2ð��4Þ2 < 0, we still conclude that the inequality (A25) holds.

Theorem 3.2 has been proved.
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