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ABSTRACT
In this paper, a linear Bayes procedure is suggested to estimate the
regression parameter of the linear model with an inequality con-
straint. The superiority of the proposed linear approximate Bayes
estimator (LABE) over the inequality constrained least square estima-
tor (CLSE) is investigated in terms of the mean square error matrix
(MSEM) criterion. Also, the simulation results and a numerical
example show that the LABE is a good approximation to the usual
Bayes estimator (BE).
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1. Introduction

Linear model is a kind of common model and representative model in statistical model.
Many phenomena in the fields of medicine, biology, economy, finance, engineering and
so on can be described approximately by linear models, which is one of the most widely
used models in modern statistics. The research on its parameter estimation without con-
straints has been very mature. However, sometimes simple linear models can not
describe the relationship between variables very well. In many cases, variables them-
selves are constrained. For instance, in applied econometrics, the hypothesis testing
problem and other scientific applications, the linear regression model with inequality
constraints is often involved.
Let us consider the following inequality constrained linear model

y ¼ Xbþ e, EðeÞ ¼ 0, CovðeÞ ¼ r2In, (1.1)

and c0b � d, (1.2)

where y is an observation vector of n� 1, X is an n� p full column rank matrix, b is
the regression parameter, e denotes a random error vector, c is a known column vector
of p� 1 and d is a scalar.
In fact, a large number of literatures have studied the regression parameter in linear

model with inequality constraints. Chong (1976) applies Dantzig-Cottle algorithm to
obtain an inequality constrained least square estimator and discusses its statistical prop-
erties by simulations. Lius and Bradley (1984) gives the closed form of the inequality
constrained least square estimator by using the Kuhn-Tucker condition. Hans (1990)
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studies the generalized least square estimator with inequality constraints and obtains the
closed form of the estimator. Under the balanced loss function, Alan (1994) calculates
the risk function of the inequality constrained least square estimator and the pretest
estimator. Further, many researchers have improved the inequality constrained least
square estimator and obtain some new inequality constrained estimators. For example,
Geroge and Thomas (1984) derives the expression of a Stein-like inequality estimator
and gives the sufficient condition, which is the risk function of the Stein-like inequality
constrained estimator to be less than that of the inequality maximum likelihood
restricted estimator. Alan and Kazuhiro (2000) investigates the adaptive least mean
square error estimator with an inequality constraint and shows numerical calculations
of the risks. Following the idea of Chong (1976), Selma, Gulesen, and Selahattin (2013)
constructs the expression of inequality constrained ridge regression estimator and exhib-
its its superiorities by simulations.
From a Bayesian perspective, Zhang, Wei, and Yang (2005) derives an empirical

Bayes estimator of the estimable functions of the regression parameter in normal linear
model. Ma (2008) obtains the least square kernel estimator and the best Bayes estimator
in the partial linear regression model with inequality constraints by using the optimiza-
tion technique and Bayesian method. Since the linear Bayesian thought is put forward
by Rao (1973), many Bayesian scholars have developed and extended this method to
many fields. Lamotte (1978) obtains a class of the Bayes linear estimator by searching
among all linear estimators. Goldstein (1983) discusses the problem of modifying the
linear Bayes estimator by using an estimate of sample variance. Samanigo and Vetrup
(1999) constructs the linear empirical Bayes estimators and establishs their superiorities
over the standard and traditional estimators. Recently, Qiu, Luo, and Zheng (2014)
compares the performances of Bayes linear unbiased estimator under different loss func-
tions. On the other hand, Wang and Singh (2014) applies the linear Bayes method to
the problem of parameter estimation in the two-parameter distributions. However, the
above papers limit the application of the linear Bayes method to the case of parameters
without constraints. In this paper, we focus on how to apply the linear Bayesian method
to the linear model with an inequality constraint, and construct a linear approximate
Bayes estimator (LABE) of the regression parameter. It is shown that the proposed
LABE is superior to the inequality constrained least square estimator (CLSE).
The paper is organized as follows. In Section 2, the expression of the proposed LABE is

obtained by minimizing the Bayes risk. In Section 3, its superiority is exhibited under the
MSEM criterion. In Section 4, numerical simulations are carried out to compare the pro-
posed LABE with the inequality CLSE. A numerical example is discussed in Section 5.
Finally, we make some conclusions and remarks. Some proofs are given in Appendix.

2. Linear approximate bayes estimator

Suppose that the prior distribution of the parameter b in (1.1) is GðbÞ and the likeli-
hood function is f ðyjbÞ: Then the posterior density of b would be

dHðbjyÞ / f ðyjbÞIðc0b � dÞdGðbÞ,
where Ið�Þ denotes the indictor function.
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Under the loss function

Lðd, bÞ ¼ ðd� bÞ0Dðd� bÞ, (2.1)

where d denotes an estimator of b and D is a positive define matrix. The Bayes estimator

(BE) of the parameter b, say b̂BE, can be obtained by b̂BE ¼ EðHðbjyÞÞ: However, it is not
easy to deal with the integration related to HðbjyÞ: Simulation-based methods such as the
Gibbs sampling procedure and Metropolis method maybe work, but they are somewhat
inconvenient to use since they have no explicit expressions. In this Section we propose a
linear Bayes procedure to estimate the parameter b, which replaces the completely speci-
fied prior GðbÞ by an assumption about just a few moments of the prior.
Considering the model (1.1), it is well known that the least square estimator (LSE) of

b is b̂ ¼ ðX0XÞ�1X0y: When we take into account the restriction c0b ¼ d, the equality

constrained LSE of b would be ~b ¼ b̂ � ðX0XÞ�1cðc0ðX0XÞ�1cÞ�1ðc0b̂ � dÞ:
According to Geroge and Thomas (1981), we transform the model (1.1) and the con-

straint (1.2) into the following expression

y ¼ Zhþ e, EðeÞ ¼ 0, CovðeÞ ¼ r2I, (2.2)

and h1h1 � d, (2.3)

where Z ¼ XðX0XÞ�1=2Q, h ¼ Q0ðX0XÞ1=2b, h1 and h1 are the first component of h ¼
Q0ðX0XÞ�1

2c and h respectively, and Q is an orthogonal matrix such that

Q0ðX0XÞ�1
2cðc0ðX0XÞ�1cÞ�1c0ðX0XÞ�1

2Q ¼ 1 01�ðp�1Þ
0ðp�1Þ�1 0ðp�1Þ�ðp�1Þ

� �
p�p

:

Note that the LSE of h in model (2.2) is ĥ ¼ ðZ0ZÞ�1Z0y ¼ Z0y, then under the equal-

ity constraint h1h1 ¼ d, the equality constrained LSE of h is ~h ¼ ðd1, ĥ0ðp�1ÞÞ0, where

d1 ¼ d=h1 and ĥðp�1Þ is a ðp� 1Þ � 1 column vector composed of the last p� 1 compo-

nents of ĥ: Hence, under (2.3) the inequality CLSE of h is defined as

ĥC ¼ ~h, h1ĥ1 < d,
ĥ, h1ĥ1 � d,

(
(2.4)

where ĥ1 is the first component of ĥ:
Alternatively, it can be expressed as

ĥC ¼
�
Ið�1, dÞðh1ĥ1Þd1 þ I½d,þ1Þðh1ĥ1Þĥ1

ĥðp�1Þ

�

¼ ĥ þ
�
Ið�1, dÞðh1ĥ1Þðd1 � ĥ1Þ

0

�
, (2.5)

where Iða, bÞð�Þ denotes the indicator function.

Define the class of linear estimators of h as F ¼ f�hL : �hL ¼ BĥC þ bg, where B and b
are p� p and p� 1 undetermined matrices respectively. Under the loss function (2.1),

we propose a LABE of h, say ĥLB, satisfying the following conditions
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RðĥLB, hÞ ¼ minRð�hL, hÞ ¼ minELð�hL, hÞ, (2.6)

EðĥLB � hÞ ¼ 0, (2.7)

where E denotes the expectation with respect to the joint distribution of y and h.

Given the parameter h, we write the expectation of ĥC as

EðĥCjhÞ ¼ hþ E
Ið�1, dÞðh1ĥ1Þðd1 � ĥ1Þ

0

����h
" #

¼ hþ w (2.8)

with

w ¼ E Ið�1, dÞðh1ĥ1Þðd1 � ĥ1Þ
0

jh
" #

:

We first derive the expression of ĥLB defined by the formulas (2.6) and (2.7).
Then we obtain the following equation

EðĥCÞ ¼ E EðĥCjhÞ
h i

¼ Eðhþ wÞ: (2.9)

From the formula (2.7), we know b ¼ Eh� BEðhþ wÞ: Hence, we have

Rð�hL, hÞ ¼ Eð�hL � hÞ0Dð�hL � hÞ ¼ tr DEð�hL � hÞð�hL � hÞ0
� �

¼ tr

�
DE BĥC þ Eh� BEðhþ wÞ � h

h i
BĥC þ Eh� BEðhþ wÞ � h
h i0� 	


¼ tr

�
DE B ĥC � Eðhþ wÞ

h i
� ðh� EhÞ

n o
B ĥC � Eðhþ wÞ
h i

� ðh� EhÞ
n o0


¼ tr

�
DBE ĥC � Eðhþ wÞ

h i
ĥC � Eðhþ wÞ
h i0� 	

B0

þ DE ðh� EhÞðh� EhÞ0
� �

� DE ðh� EhÞ ĥC � Eðhþ wÞ
h i0� 	

B0

� DBE ĥC � Eðhþ wÞ
h i

ðh� EhÞ0
n o


¼ tr

�
DBE ĥC � Eðhþ wÞ

h i
ĥC � Eðhþ wÞ
h i0� 	

B0

þ DE ðh� EhÞðh� EhÞ0
� �

� 2DE ðh� EhÞ ĥC � Eðhþ wÞ
h i0� 	

B0



¼ tr DBCovðĥCÞB0 þ DCovðhÞ � 2DMB0
n o

,

(2.10)

where M ¼ CovðhÞ þ Covðh,wÞ:
Differentiating Rð�hL, hÞ with respect to B and setting the result to zero gives

DBCovðĥCÞ � DM ¼ 0, which yields
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B ¼ MðCovðĥCÞÞ�1: (2.11)

Together with b ¼ Eh�MðCovðĥCÞÞ�1Eðhþ wÞ, we obtain

ĥLB ¼ MðCovðĥCÞÞ�1ĥC þ Eh�MðCovðĥCÞÞ�1Eðhþ wÞ: (2.12)

Note that even if the unbiased constraint EðĥLB � hÞ ¼ 0 is removed, the same result

as (2.12) can be obtained. This indicates that the LABE ĥLB not only satisfies the

unbiased condition EðĥLB � hÞ ¼ 0, but also performs the best among all the linear
Bayes estimators.

From the above, we know b ¼ ðX0XÞ�1
2Qh, so we figure out the inequality CLSE of b

as b̂C ¼ ðX0XÞ�1
2QĥC: Our aim is to construct the LABE of b, which is superior to b̂C:

Let the LABE of b be of the form b̂LB ¼ Ab̂C þ a, which is also characterized by the

equations (2.6) and (2.7). By b̂C ¼ ðX0XÞ�1
2QĥC and mimicking the derivation process of

ĥLB we obtain

A ¼ ðX0XÞ�1
2QM ðX0XÞ�1

2Q
h i0

Covðb̂CÞ
h i�1

,

a ¼ EðbÞ � ðX0XÞ�1
2QM ðX0XÞ�1

2Q
h i0

Covðb̂CÞ
h i�1

EðbÞ þ ðX0XÞ�1
2QEðwÞ

h i
:

Thus, we integrate the above discussions into the following theorem.

Theorem 2.1. Assume that the prior covariance of b exists. Thus under the model (1.1)

and the constraint (1.2), the expression of b̂LB is

b̂LB ¼ ðX0XÞ�1
2QM ðX0XÞ�1

2Q
h i0

Covðb̂CÞ
h i�1

b̂C þ EðbÞ

� ðX0XÞ�1
2QM ðX0XÞ�1

2Q
h i0

Covðb̂CÞ
h i�1

EðbÞ þ ðX0XÞ�1
2QEðwÞ

h i
: (2.13)

3. The superiority of Labe

In this Section, we compare the MSEMs of b̂C and b̂LB from Bayesian viewpoint on the

basis of studying the MSEMs of ĥC and ĥLB:

Lemma 3.1. Let ĥC and ĥLB be given by (2.5) and (2.12), respectively. Then

MSEMðĥCÞ �MSEMðĥLBÞ � 0: (3.1)

Proof. See the Appendix.

Thus, we come to the following result.

Theorem 3.1. Let b̂LB be given in (2.13) and b̂C ¼ ðX0XÞ�1
2QĥC. Then b̂LB is superior to

b̂C in terms of MSEM criterion, i.e., MSEMðb̂LBÞ � MSEMðb̂CÞ:
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Proof. The relationship between b̂LB and ĥLB is as follows

b̂LB ¼ ðX0XÞ�1
2QM ðX0XÞ�1

2Q
h i0

Covðb̂CÞ
h i�1

b̂C þ EðbÞ

� ðX0XÞ�1
2QM ðX0XÞ�1

2Q
h i0

Covðb̂CÞ
h i�1

EðbÞ þ ðX0XÞ�1
2QEðwÞ

h i
¼ ðX0XÞ�1

2QM CovðĥCÞ
h i�1

ðX0XÞ�1
2Q

h i�1

b̂C þ EðbÞ

� ðX0XÞ�1
2QM CovðĥCÞ

h i�1

ðX0XÞ�1
2Q

h i�1

EðbÞ þ ðX0XÞ�1
2QEðwÞ

h i
¼ ðX0XÞ�1

2Q MðCovðĥCÞÞ�1ĥC þ Eh�MðCovðĥCÞÞ�1Eðhþ wÞ
h i

¼ ðX0XÞ�1
2QĥLB: (3.2)

Using (3.1), we have

MSEMðb̂CÞ �MSEMðb̂LBÞ ¼ ðX0XÞ�1
2Q MSEMðĥCÞ �MSEMðĥLBÞ
h i

Q0ðX0XÞ�1
2 � 0:

The proof of the Theorem 3.1 is complete.

4. Numerical comparisons

In this Section we use some simulations results under different prior distributions to

exhibit the properties of b̂LB: To see the effect of the number of observations, n is
chosen to be 5, 10, :::, 100: Then let p¼ 3, r¼ 3, d¼ 2. According to Selma, Gulesen,

and Selahattin (2013), those elements of the matrix X are simulated by xij ¼
ð1� c2Þ12zij þ czi, pþ1, i ¼ 1, 2, :::, n, j ¼ 1, 2, :::, p where zij subject to independent standard
normal distribution and c is the correlation coefficient, whose value is taken as 0.75.
The parameter vector b is generated from the prior distribution. Once X and b are gen-
erated, the observed vector y is simulated by NðXb, r2IÞ:
Suppose that the random error vector e in (1.1) is normally distributed, i.e.,

e � Nnð0, r2InÞ: (4.1)

We first calculate EðĥCÞ and CovðĥCÞ, as follows

EðĥCÞ ¼ Ehþ E ðd1 � h1ÞUðrÞ þ rffiffiffiffiffi
2p

p jh1j
h1

exp

�
� ðd1 � h1Þ2

2r2

	
0

2
64

3
75, (4.2)

where r ¼ ðd1�h1Þ
r

h1
jh1j and U is the cumulative distribution function of standard normal

distribution.

1536 J. JIANG ET AL.



And

CovðĥCÞ ¼ E CovðĥCjhÞ
h i

þ Cov EðĥCjhÞ
h i

¼ r2
0 0

0 Iðp�1Þ

" #
þ E

I1 � I22 0

0 0

" #

þ Covðhþ wÞ, (4.3)

where

I1 ¼ ðh1 � d1Þ2ð1� UðrÞÞ þ r2
rffiffiffiffiffi
2p

p exp � r2

2

� 

þ ð1� UðrÞÞ

" #

þ 2ðh1 � d1Þ jh1jh1
r

1ffiffiffiffiffi
2p

p exp � r2

2

� 

(4.4)

and

I2 ¼ ðh1 � d1Þð1� UðrÞÞ þ jh1j
h1

r
1ffiffiffiffiffi
2p

p exp � r2

2

� 

: (4.5)

The proofs of (4.2)-(4.5) are given in Appendix.

Case 1: We assume that b follows a truncated normal prior distribution
Npðl0,R0ÞIðc0b � dÞ, then the posterior distribution of b would be

hðbjyÞ / exp

�
� 1
2
ðb� l1Þ0

X0X
r2

þ R�1
0

� 

ðb� l1Þ

	
Iðc0b � dÞ,

where l1 ¼ R1 R�1
0 l0 þ X0y

r2

� 

and R1 ¼ X0X

r2 þ R�1
0

� 
�1
: Let hyper parameters l0 ¼

ð1, :::, 1Þ0 and R0 ¼ q1p10p þ ð1� qÞIp, where 1p ¼ ð1, :::, 1Þ0 and q is correlation coeffi-

cient, which is chosen as 0:1, 0:2, :::, 1:

Figure 1. The changes of the MSEs under the normal prior.
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First, 5000 samples of b are generated from Npðl0,R0ÞIðc0b � dÞ: Using the fact that

h ¼ Q0ðX0XÞ12b, we obtain h. Then the values of w,EðhÞ and CovðĥCÞ are obtained by

Monte Carlo simulation, so that the MSEMs of ĥC and ĥLB can be calculated and MSEs

are obtained by the trace of MSEM: Finally, by the relationships of b̂C and ĥC, similarly

b̂LB and ĥLB, we obtain the MSEs of b̂C and b̂LB: The process is repeated 500 times and
the average of MSEs is taken.
As n and q change, Figure 1 presents the corresponding variations of the MSEs of

b̂LB and b̂C respectively. For q¼ 0, Figure 1(a) exhibits that the MSEs are decreasing

with the increasing of n, and the MSEs of b̂C are always larger than those of b̂LB: In

particular, both the MSEs of b̂LB and b̂C are greatly different for small n. For n¼ 50,

Figure 1(b) points out the change of q has little influence on the MSE of b̂C, while the

MSE of b̂LB decreases gradually as q grows larger. Note that when q is not equal to 0

the prior distribution has a uniform correlation structure (see �Ze�zula (2006), Klein and
�Ze�zula (2007), etc.), so we can find that for this covariance structure the MSEs of b̂LB

are always less than those of b̂C

Case 2: When b has a three-dimension uniform prior over the region D and satisfies
c0b � d, we obtain the posterior distribution of b as

hðbjyÞ / exp

�
� 1
2
ðb� l2Þ0R2ðb� l2Þ

	
IDðbÞIðc0b � dÞ,

where l2 ¼ ðX0XÞ�1X0y and R2 ¼ X0X
r2

� 
�1
:

Figure 2 exhibits the MSE performances of b̂C and b̂LB under the same scenarios as
Figure 1 except that b is simulated from the uniform distribution. The two graphs of

Figure 2 present the MSEs of b̂C and b̂LB are changing with n in the case that these
components of b are independent. Specifically, Figure 2(a) exhibits the influence of n
on MSE when the three components of b follow the uniform distributions U(10, 12),

Figure 2. The situation of the components of b are independent.
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U(13, 15) and U(14, 17), respectively. Figure 2(b) is plotted under the condition that
the prior distributions are U(9, 13), U(12, 16) and U(13, 19), where the prior informa-
tion is getting more dispersed. Comparing with Figure 2(a) we see that the two lines in
Figure 2(b) are closer to each other as the sample size n gets larger. It also indicates
that the more scattered prior provides information the less, and if the information about
the regression parameter comes mainly from the sample, then the difference between

the MSEs of b̂LB and those of b̂C is becoming small. Figure 3 is plotted when b follows
an uniform distribution on the sphere, i.e., b21 þ b22 þ b23 � R2

0, where the radius of ball
R0 is assumed to be 5 and 10, and the larger R0 implies the variance is larger. Figures
3(a) and 3(b) present the influence of n on the MSE when R0s are 5 and 10 respectively,

and we find that the difference between the MSEs of b̂LB and b̂C is getting smaller as
R0 turns larger.In all of the above Figures, the MSEs of the two estimators are compared

under the same prior conditions. It is readily seen that the MSEs of b̂LB are always less

than those of b̂C, which is consistent with the theoretical results, i.e., b̂LB is superior

to b̂C:

In order to examine the approximate performances of b̂LB and b̂C to b̂BE, the follow-
ing formula is defined by

k �b � b̂BE k¼ 1
500

X500
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
i¼1

ð�bij � b̂BEijÞ2
vuut , (4.6)

where �b can be b̂LB or b̂C: The above formula indicates 500 times experiments are

repeated. b̂LB would be computed by the formula (3.2) and b̂C can be computed by

using the expression b̂C ¼ ðX0XÞ�1
2QĥC: It is noted that the b̂BE does not have an expli-

cit expression, which needs to be calculated via the Monte Carlo method.

In this part, k b̂LB � b̂BE k and k b̂C � b̂BE k are calculated for the several priors in
Table 1 respectively. Note that b1, b2 and b3 in pr2 and pr4 also satisfy c0b � d:

In Figures 4 and 5, we plot the curves of jjb̂C � b̂BEjj and jjb̂LB � b̂BEjj changing
with sample size n for priors 1, 2, 3 and 4, respectively. From Figures 4 and 5 we see

Figure 3. The situation of the components of b are dependent.
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that jjb̂C � b̂BEjjs are less than jjb̂LB � b̂BEjjs for almost all n, which implies that as an

approximation b̂LB outperforms b̂C:

In particular, the pr4 is defined on the sphere which is more complex than the other

three prior distributions. But, it can be found that b̂LB still behaves better than b̂C:

Figures 6 and 7 further exhibit the frequency histograms of jjb̂C � b̂BEjj and jjb̂LB �
b̂BEjj for the priors 1 and 3, which are obtained by repeating the simulations 100 times.

From Figure 6 we see that jjb̂C � b̂BEjjs are concentrated in the interval (1.02, 1.08),

while jjb̂LB � b̂BEjjs are always concentrated in the interval (0.226, 0.23). Also, from

Figure 7 we know that jjb̂C � b̂BEjjs are concentrated in the interval (1.39, 1.47), and

jjb̂LB � b̂BEjjs are concentrated in the interval (0.685, 0.725). Obviously, it can be found

Table 1. The priors of b.
independent priors dependent priors

pr1: b � N3ðl, s2I3ÞIðc0b � dÞ pr3: b � N3ðl,RÞIðc0b � dÞ
pr2: b1 � Uð6, 14Þ; b2 � Uð8, 17Þ; b3 � Uð9, 20Þ pr4: b21 þ b22 þ b23 < R20

Figure 4. The changes of jjb̂C � b̂BEjj and jjb̂LB � b̂BEjj under the pr1 and the pr2.

Figure 5. The changes of jjb̂C � b̂BEjj and jjb̂LB � b̂BEjj under the pr3 and the pr4.
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Figure 6. The histograms of jjb̂C � b̂BEjj and jjb̂LB � b̂BEjj under the pr1.

Figure 7. The histograms of jjb̂C � b̂BEjj and jjb̂LB � b̂BEjj under the pr3.

Figure 8. The changes of jjb̂C � bjj and jjb̂LB � bjj under the pr1 and the pr3.
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from Figures 6 and 7 that the mode of jjb̂LB � b̂BEjj is smaller than that of jjb̂C � b̂BEjj,
which provides further evidence that b̂LB has a better approximate representation

for b̂BE:

On the other hand, in order to study the estimation performance of b̂C and b̂LB for

b, under the normal prior we discuss jjb̂C � bjj and jjb̂LB � bjj, which are defined by

replacing b̂BE in (4.6) with the truth value of parameter b. Figures 8(a) and 8(b) show

the variations of jjb̂C � bjj and jjb̂LB � bjj with n for the pr1 and the pr3, respectively.

From Figure 8, it is clear that all jjb̂LB � bjjs are relatively small. In Figures 9 and 10,

we draw the frequency histograms of jjb̂C � bjj and jjb̂LB � bjj for the pr1 and the pr3,
respectively. In Figure 9, we can see that the shapes of the two graphs are roughly the

same, but the mode of jjb̂LB � bjj is still smaller than that of jjb̂C � bjj: In Figure 10,

jjb̂C � bjjs are substantially concentrated in the interval (0.5, 1.25), while jjb̂LB � bjjs
are substantially concentrated in the interval (0.2, 0.5), so the mode of jjb̂LB � bjj is

Figure 9. The histograms of jjb̂C � bjj and jjb̂LB � bjj under the pr1.

Figure 10. The histograms of jjb̂C � bjj and jjb̂LB � bjj under the pr3.
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significantly smaller than that of jjb̂C � bjj: In summary, Figures 8–10 all show that as

an estimator of b the performances of b̂LB are better.

5. Numerical examples

In this Section we employ an example to demonstrate the application of the proposed
LABE. The Portland cement data are used (Hald and Friedman 1952). The data mainly
focuses on the relationship between the heat produced by the silicate cement in the pro-
cess of solidification and hardening and the percentage of the four compounds. These
four components are tricalcium aluminate(X1), tricalcium silicate(X2), tetracalcium
ferricaluminate(X3) and dicalcium silicate(X4). The heat generated after 180 days of cur-

ing is calculated by the calories(y) per gram of cement. The details are as follows: X1 ¼
ð7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10Þ0, X2 ¼ ð26, 25, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68Þ0,
X3 ¼ ð6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 8Þ0, X4 ¼ ð60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 12,

12Þ0, y ¼ ð78:5, 74:3, 104:3, 87:6, 95:9, 109:2, 102:7, 72:5, 93:1, 115:9, 83:8, 113:3, 109:4Þ0:
Denote X13�5 ¼ ð1,X1,X2,X3,X4Þ and b ¼ ðb0, b1, b2, b3, b4Þ0, where 1 is a 13� 1

vector consisting of 1. We present the linear model:

y ¼ Xbþ e, e � N13ð0, r2I13Þ: (5.1)

We intend to add the constraint condition b1 � b2 þ b3 � b4 � 0 or c0b � 0, where

c ¼ ð0, 1, � 1, 1, � 1Þ0: We test the hypothesis H0 : c0b � 0 and alternative hypothesis
H1 : c0b < 0 in the framework of the unconstrained linear model (5.1) from the view of
Bayesian inference.

We use the estimator jjy� Xb̂Cjj2=ðn� 4Þ to estimate r2 which is approximately
equal to 5.67 and assume that the parameter b follows Nðl,RÞ with R ¼ q1p10p þ ð1�
qÞIp: Then the posterior distribution of b is Nðl�,R�Þ, where R� ¼ X0X

r2 þ R�1
� 
�1

and

l� ¼ R� R�1lþ X0y
r2

� 

: Thus we calculate the posterior probability of the hypothesis H0,

say a0 ¼ Pðc0b � 0jyÞ, which is obtained by using 50000 samples from Nðl�,R�Þ: Note
that the posterior probability of the hypothesis H1 would be a1 ¼ 1� a0:
Firstly, we fix l ¼ ð1, 1, 1, 1, 1Þ0 and set q ¼ 0:5, 0:75, 0:95: For these three different

values of q we present a0, a1 and the posterior probability ratio k in Table 2.

Table 2. The values of a0, a1 and k for different correlation coefficients q.
q a0 a1 k

0.50 0.8357 0.1643 4.5163
0.75 0.7636 0.2364 3.2298
0.95 0.6716 0.3284 2.0449

Table 3. The values of a0, a1 and k for different prior mean vectors l.
l a0 a1 k

ð1, 1, 1, 1, 1Þ0 0.7106 0.2894 2.4549
ð�1, 1, 2, 2, 1Þ0 0.7167 0.2833 2.5298
ð�0:5, 1:5, 2, 1:5, 1Þ0 0.7900 0.2100 3.7615
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Then, let l ¼ ð1, 1, 1, 1, 1Þ0, ð�1, 1, 2, 2, 1Þ0 and ð�0:5, 1:5, 2, 1:5, 1Þ0 and fix q ¼ 0:85,
imitating the above calculation, the results of a0, a1 and k are shown in Table 3.
From Tables 2 and 3, it is easily found that k > 1 for all priors, which means that

the hypothesis H0 is accepted from Bayesian viewpoint.

In what follows, under the constraint condition we exhibit jjb̂LB � b̂BEjj, jjb̂C �
b̂BEjj, jjb̂LB � bjj and jjb̂C � bjj for different q and l in Tables 4 and 5, where we set

the true value of b be ð0:6, 1:3, 1:3, 0:05, 0:6Þ0:
In Table 4, it is easily seen that jjb̂LB � b̂BEjj and jjb̂C � b̂BEjj slightly fluctuate when

q takes different values and jjb̂LB � b̂BEjj is consistently less than jjb̂C � b̂BEjj: In Table

5, we find that jjb̂C � b̂BEjj fluctuates for different prior means l, which implies jjb̂C �
b̂BEjj is sensitive to the choice of l, while the different values of l have little influence

on jjb̂LB � b̂BEjj: On the other hand, we see that both jjb̂LB � bjj and jjb̂C � bjj tend to

be smaller as q gets larger. Also, jjb̂LB � bjj � jjb̂C � bjj can be found from all the

numerical results in Tables 4 and 5. These show that b̂LB outperforms b̂C in this case,
which further indicates that the LABE is applicable and feasible.

6. Conclusions

This paper employs the linear Bayes procedure to estimate the regression parameter
with an inequality constraint since the usual Bayes estimator has no explicit form which
causes it not easy to be used. We obtain the expression of the linear approximate Bayes
estimator (LABE) without specifying the form of prior distribution and only make an
assumption on the second moment of the prior instead. It is further proved that the
proposed LABE is superior to the inequality constrained least square estimator (CLSE)
under the MSEM criterion. Also, the simulation results show that the LABE has not
only small MSEs but also good approximation performances compared with the
inequality CLSE. Finally, we present a real example to verify the availability of
the LABE.
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Table 4. Distances under different correlation coefficients
q (l ¼ ð1, 1, 1, 1, 1Þ0).
q jjb̂LB � b̂BE jj jjb̂C � b̂BE jj jjb̂LB � bjj jjb̂C � bjj
0.50 0.3038 106.2768 1.6038 6.2768
0.75 0.4599 106.5145 1.4268 4.5951
0.95 0.1865 106.5099 1.3652 2.5529

Table 5. Distances under different prior mean vectors l (q ¼ 0:85).
l jjb̂LB � b̂BE jj jjb̂C � b̂BE jj jjb̂LB � bjj jjb̂C � bjj
ð1, 1, 1, 1, 1Þ0 0.3494 106.5161 1.8788 2.4384
ð�1, 1, 2, 2, 1Þ0 0.3396 109.0290 2.5930 4.0804
ð�0:5, 1:5, 2, 1:5, 1Þ0 0.2703 108.5066 1.9862 3.6210
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Appendix

The proof of Lemma 3.1
The MSEM of ĥLB is

MSEMðĥLBÞ ¼ EðĥLB � hÞðĥLB � hÞ0

¼ Ef½MðCovðĥCÞÞ�1ĥC þ Eh�MðCovðĥCÞÞ�1Eðhþ wÞ � h	
½MðCovðĥCÞÞ�1ĥC þ Eh�MðCovðĥCÞÞ�1Eðhþ wÞ � h	0g

¼ EfMðCovðĥCÞÞ�1½ĥC � Eðhþ wÞ	 � ðh� EhÞg
fMðCovðĥCÞÞ�1½ĥC � Eðhþ wÞ	 � ðh� EhÞg0

¼ MðCovðĥCÞÞ�1M0 �MðCovðĥCÞÞ�1M0

�MðCovðĥCÞÞ�1M0 þ CovðhÞ
¼ CovðhÞ �MðCovðĥCÞÞ�1M0: (A1)

On the other hand, we know that the MSEM of ĥC is

MSEMðĥCÞ ¼ EðĥC � hÞðĥC � hÞ0

¼ EðĥCĥ0CÞ � EðĥCh0Þ � Eðhĥ0CÞ þ Eðhh0Þ
¼ EðĥCĥ0CÞ � ðM0 þ EĥCEh

0Þ � ðM þ EhEĥ
0
CÞ þ EhEh0 þ CovðhÞ

¼ EðĥCĥ0CÞ � EĥCEĥ
0
C þ ðEĥC � EhÞðEĥC � EhÞ0

þ CovðhÞ �M �M0

¼ CovðĥCÞ þ EwEw0 þ CovðhÞ �M �M0, (A2)

where note that

EĥCðh� EhÞ0 ¼ EfE ĥCðh� EhÞ0jh
h i

g
¼ Eðhþ wÞðh� EhÞ0
¼ E h� Ehþ w� Ewþ Eðhþ wÞ½ 	ðh� EhÞ0
¼ CovðhÞ þ Covðw, hÞ ¼ M0,

therefore, it is easy to see EðĥCh0Þ ¼ M0 þ EĥCEh
0 and Eðhĥ0CÞ ¼ M þ EhEĥ

0
C:

Comparing (A1) with (A2), we have

MSEMðĥCÞ �MSEMðĥLBÞ
¼ CovðĥCÞ þ EwEw0 �M �M0 þMðCovðĥCÞÞ�1M0

� CovðĥCÞ �M �M0 þMðCovðĥCÞÞ�1M0

¼ CovðĥCÞ �MðCovðĥCÞÞ�1CovðĥCÞ �M0 þMðCovðĥCÞÞ�1M0

¼ CovðĥCÞ þMðCovðĥCÞÞ�1 M0 � CovðĥCÞ
h i

�M0

¼ MðCovðĥCÞÞ�1 � I
h i

M0 � CovðĥCÞ
h i

¼ M � CovðĥCÞ
h i

ðCovðĥCÞÞ�1 M0 � CovðĥCÞ
h i

� 0: (A3)

The proofs of (4.2)-(4.5) in Section 4.
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Note that

w ¼ E Ið�1, dÞðh1ĥ1Þðd1 � ĥ1Þ
0

����h
" #

, (A4)

and set u1 ¼ h1ĥ1�h1h1ffiffiffiffiffiffiffi
h21r

2
p , we have u1jh � Nð0, 1Þ and Ið�1, dÞðh1ĥ1Þðd1 � ĥ1Þ ¼

Ið�1, rÞðu1Þ d1 � h1 � jh1j
h1

u1r
� 


, where r ¼ ðd1�h1Þ
r

h1
jh1j :

Let w1 be the first element of the vector w. We obtain

w1 ¼ E

�
Ið�1, rÞðu1Þ d1 � h1 � jh1j

h1
u1r

� 
����h
	

¼
ðr
�1

1ffiffiffiffiffi
2p

p d1 � h1 � jh1j
h1

u1r

� 

exp

�
� u21

2

	
du1

¼ ðd1 � h1ÞUðrÞ þ rffiffiffiffiffi
2p

p jh1j
h1

exp

�
� ðd1 � h1Þ2

2r2

	
, (A5)

where U is the cumulative distribution function of standard normal distribution.
Hence, EðĥCÞ can be expressed as

EðĥCÞ ¼ Ehþ E

�
ðd1 � h1ÞUðrÞ þ rffiffiffiffiffi

2p
p jh1j

h1
exp

n
� ðd1 � h1Þ2

2r2

o
0

�
: (A6)

Also, we have

CovðĥCÞ ¼ E½CovðĥCjhÞ	 þ Cov½EðĥCjhÞ	

¼ E

�
Cov

�
ĥ0 þ

�
Ið�1, rÞðu1Þd1 þ I½r,þ1Þðu1Þðh1 þ jh1j

h1
u1r Þ 0

�����h

	

þCovðhþ wÞ¼ r2
�
0 0
0 Iðp�1Þ

�
þ E

"
VarðI½r,þ1Þðu1Þ h1 þ jh1j

h1
u1r� d1

� 
����hÞ 0

0 0

#

þCovðhþ wÞ, (A7)

where ĥ0 is a p� 1 vector only with 0 replacing the first component of ĥ:

Furthermore, we write Var½Iðr,þ1Þðu1Þ h1 þ jh1j
h1

u1r� d1
� 


jh	 ¼ I1 � I22 with

I1 ¼ E½I½r,þ1Þðu1Þðh1 þ jh1j
h1

u1r� d1Þ2jh 	

¼
ðþ1

r
ðh1 � d1 þ jh1j

h1
u1rÞ2 1ffiffiffiffiffi

2p
p exp � u21

2

� 

du1

¼ ðh1 � d1Þ2ð1� UðrÞÞ þ r2
rffiffiffiffiffi
2p

p exp � r2

2

� 

þ ð1� UðrÞÞ

" #

¼ ðh1 � d1Þ2ð1� UðrÞÞ þ r2
rffiffiffiffiffi
2p

p exp � r2

2

� 

þ ð1� UðrÞÞ

" #

þ2ðh1 � d1Þ jh1jh1
r

1ffiffiffiffiffi
2p

p exp � r2

2

� 

(A8)
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and

I2 ¼ E

�
I½r,þ1Þðu1Þ h1 þ jh1j

h1
u1r� d1

� 
����h
�

¼
ðþ1

r
h1 � d1 þ jh1j

h1
u1r

� 

1ffiffiffiffiffi
2p

p exp � u21
2

� 

du1

¼ ðh1 � d1Þð1� UðrÞÞ þ jh1j
h1

r
1ffiffiffiffiffi
2p

p exp � r2

2

� 

: (A9)
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