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ABSTRACT 

Reliability assessment is the foundation for reliability 
engineering and reliability-based design optimization.  It 
has been a difficult task, however, to perform both 
accurate and efficient reliability assessment after 
decades of research.  This work proposes an innovative 
method that deviates significantly from conventional 
methods.  It applies a discriminative sampling strategy to 
directly generate more points close to or on the limit 
state.  A sampling guidance function was developed for 
such a strategy.  Due to the dense samples in the 
neighborhood of the limit state, a kriging model can be 
built which is especially accurate near the limit state.  
Based on the kriging model, reliability assessment can 
be performed.  The proposed method is tested by using 
well-known problems in the literature.  It is found that it 
can efficiently assess the reliability for problems of single 
failure region and has a good performance for problems 
of multiple failure regions.  The features and limitations 
of the method are also discussed, along with the 
comparison with the importance sampling (IS) based 
assessment methods. 

INTRODUCTION 

One of the principal aims of engineering design is the 
assurance of system performance within given 
constraints.  While uncertainties present in the real 
world, the satisfaction of constraints such as structural 
safety can be of primary concern. This leads to the 
development of reliability-based design. Reliability, as 
defined in Ref. (Ang and Tang 1984), is the probabilistic 
measure of assurance of performance.  The assessment 
of reliability, or reliability analysis, is the foundation for 
the reliability-based design and the recent heated 
research topic reliability-based design optimization 
(RBDO). 

As a general formulation, the performance function, or 
state function, is defined as an n-component system with 
design (variable) space n

xS ℜ⊆ . 

)...,,,()( 21 nxxxfXf =                  (1) 

Where )...,,,( 21 nxxxX =  is defined on the space 
n

xS ℜ⊆  with a joint probability density function (JPDF) 
jx(x). 

In reliability analysis, a limit state function, g(X), is 
defined such that for a particular limit state value f0 of the 
performance function, 

0)()( 0 =−= fXfXg                            (2) 

The limit state value, f0, is equivalent to an engineering 
performance specification.  This limit state function 
divides the variable space into the safe region for which 
g(X) > 0 and the failure region for which 0)( ≤Xg .  
Geometrically, the limit state Eq. 2 is an n-dimensional 
surface that is called the failure surface.  One side of the 
failure surface is the safe region, whereas the other side 
of the failure surface is the failure region.  The reliability 
of a system or product, R, is defined as the rate of 
compliance to the performance specification and is given 
by 
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Eq. 3 is simply the volume integral of )(xjx over the 
success region.  Conversely the failure probability of a 
system or product, fP , is defined as the rate of 

noncompliance to the performance specification or the 
complimentary event of reliability and is given by 
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Eq.  4 is simply the volume integral of )( xj x  over the 
failure region.  By definition 1=+ fPR .  The quantitative 

evaluation of the true R or fP  often poses two major 

difficulties.  One is the determination of the correct forms 
of )(xjx , which is often unavailable or difficult to obtain 
in practice because of insufficient data (Ang and Tang 
1975).  Another is the determination of the limit state 
surface g(X) = 0, which separates the failure region and 
success region.  When the computation of the 
performance function is expensive, such a difficulty 
aggravates.  Therefore, direct calculation of reliability 
R or failure probability fP  from formula Eq. 3 or Eq. 4 

may be impractical.  There roughly exist two classes of 
methods to solve R or fP . 

The first class of methods are Monte Carlo Simulation 
(MCS) and its variations (Ang and Tang 1984).  The 
MCS method involves three steps: (1) repetitive 
sampling from the set of random variables according to 
their respective probability distributions, (2) obtaining the 
corresponding performance function values to the 
samples, and (3) identifying whether failure has 
occurred.  The estimated probability of failure is then 
simply the number of failures, mf, divided by the total 
number of simulations, m, or Pf = mf /m, when m is 
sufficiently large.  MCS is accurate and reliable, 
especially for problems having multiple failure regions.  
Therefore, its results are often used as a standard to test 
other methods (Kloess et al. 2003). However, MCS is 
computationally intensive because it requires a large m.  
For implicit and computational intensive performance 
functions, the computation burden could become 
unbearable.  Therefore, a class of more commonly-used 
method is based on mathematical analysis and 
approximation (Ang and Tang 1984; Wu and Wang 
1998).  These methods are based on the concepts of a 
“most probable point” or MPP.  MPP was from the 
phrase “most probable failure point” coded in 
(Freudenthal 1956).  For non-normal distribution 
problems, the original distribution was transformed into a 
standard normal distribution.  The MPP, defined in the 
standard normal vector space U, is the most likely 
combination of random variable values for a specific 
performance or limit state value.  By transforming the 
limit state function, g(X), from the X-space to the U-
space, the MPP is the point of minimum distance, d, 
from the origin to the limit state surface, g(U) = 0.  d 
equals in value to the reliability index, β . By the Taylor 
expansion approximation on the MPP, the reliability R is 
set equal to )(βΦ in the standard normal distribution 
space.  These approaches use approximate analytic 
techniques to alleviate the computational burden of direct 
MCS.  These methods’ computation efficiency is high, 
but for problems with a nonlinear limit-state function, 

their accuracy is doubtful (Ang and Tang 1984). They 
also have difficulties in solving problems of multiple 
failure regions. 

More recently, the Importance Sampling (IS) method was 
used to combine the analysis method with sampling to 
improve the accuracy of analysis method (Wu 1994).  
Continuing on their previous work (Kloess et al. 2003; 
Zou et al. 2002), Zou and colleagues developed an 
indicator response surface based method, in which MCS 
is only performed in a reduced region around the limit 
state (Zou et al. 2003).  Qu and Haftka (Qu and Haftka 
2003) has proposed a probabilistic sufficiency factor 
when using MCS. As far as probabilistic design methods 
concern, though there are a large quantity of archived 
papers on this topic, most of them are based on the 
approximation of MPP (Du and Sudjianto 2003; Du et al. 
2003; Liu et al. 2003).   

As the engineering technologies advance, many 
engineering design problems involve expensive analysis 
and simulation processes such as finite element analysis 
(FEA) and computational fluid dynamics (CFD).  Since 
FEA and CFD processes are based on complex and 
numerous simultaneous equations, these processes are 
often treated as “black-box” functions, for which only 
inputs and outputs are known. For reliability analysis 
problems involving expensive black-box functions, the 
computational burden aggravates, making the MCS 
method difficult.  It also disables the traditional analysis 
methods unless response surface method is used as a 
surrogate for the performance function.  

This work presents a new reliability analysis method, 
which has advantages of MCS and avoids disadvantages 
of both MCS and the MPP concept based analysis 
method.  It does not rely on the conventional MPP, but 
re-defines MPP according to its literal meaning in the X-
space and automatically searches for it.  The proposed 
method is found efficient, accurate, and robust for 
reliability analysis in small scale problems. Section 2 will 
discuss the concepts and algorithm of the proposed 
method.  Section 3 gives numerical examples and 
illustrations for problems of both single and multiple 
failure regions. Section 4 discusses features of the 
method and compares it with importance sampling 
based assessment methods. Section 5 gives the 
conclusions and future work. 

PROPOSED METHOD 

For black-box functions, metamodeling techniques are 
usually used (Haftka et al. 1998).  A common practice is 
to obtain an accurate metamodel, or surrogate, to a 
black-box function.  Based on the metamodel, 
optimization or sensitivity analysis is then performed.  As 
we know, in general the more sample points are used to 
construct a metamodel, the higher fidelity would the 
model achieve. The difficulties for metamodeling-based 
approaches include the unsure loyalty of the model to the 
real function, and the exponentially increasing 
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computation burden for high-dimensional problems.  For 
reliability analysis, the model accuracy is important 
around the limit state.  The accuracy, however, is of 
much less concern in either the success or failure region, 
as long as the model predicts 0)( ≤Xg  or 0)( >Xg  
correctly.  Such an observation indicates unevenly 
distributed sample points might be possible to construct 
a metamodel for the purpose of reliability analysis.  
Therefore a discriminative sampling strategy might be 
developed, so that more sample points are generated 
near or on the limit state while fewer points are in other 
areas.  This is exactly the aim of this work. 

KRIGING MODEL 

The metamodel chosen in this work is the Kriging model 
as defined below (Jones et al. 1998; Martin and Simpson 
2003; Wang and Simpson 2004).  
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Kriging model consists of two parts.  The first part is a 
simple linear regression of the data.  The second part is 
a random process.  The coefficients, iβ , are regression 
parameters.  )(Xf i  is the regression model.  The 

random process )(Xz  is assumed to have mean zero 

and covariance, )(),( 12
2

21 xxRxxv −= σ .  The 

process variance is given by 2σ and its standard 
deviation isσ .  The smoothness of the model, the 
influence of other nearby points, and differentiability of 
the response surface are controlled by the spatial 
correlation function, R(.).  Kriging is flexible to 
approximate different and complex response functions. 
The response surface of Kriging model interpolates 
sample points, and the influence of other nearby points is 
controlled by the spatial correlation function.  These 
features are useful for the proposed reliability analysis 
method. 

A Kriging toolbox is given by (Lophaven et al. 2002).  It 
provides regression models with polynomials of orders 0, 
1, and 2, as well as 7 spatial correlation functions for 
selection.   This work uses the regression model with 
polynomials of order 0, and the Gaussian correlation 
model.  A detailed description of Kriging is in the lead 
author’s previous work (Wang and Simpson 2004).  

SAMPLING METHOD 

As we know, there exists many methods in Statistics to 
generate a sample from a given probability density 
function (PDF) (Ross 2002).  These methods include 
inverse transformation, acceptance-rejection technique, 
Markov Chain Monte Carlo (MCMC), importance 
sampling, and so on.  A recently developed method is 
especially capable for  high dimensional problems and 
for problems with multiple modes (Fu and Wang 2002). 

The goal of such sampling is to generate sample points 
that conform to a given PDF, i.e. more points in the area 
that has high probability and fewer points in the area that 
has low probability, as defined by the PDF.  Inspired by 
such sampling, the authors developed a Mode Pursuing 
Sampling (MPS) method before (Wang et al. 2004) for 
global optimization, which adapts the Fu and Wang’s 
method (Fu and Wang 2002). MPS used a variation of 
the objective function to act as a PDF so that more 
points are generated in areas leading to lower objective 
function values and fewer points in other areas. It is thus 
in essence a discriminative sampling method. By 
generalizing the idea in (Wang et al. 2004), the authors 
defined a sampling guidance function, which could be 
developed according to the sampling goal to realize a 
certain discriminative sampling scheme (Shan and Wang 
2004).  A sampling guidance function of a random 
variable vector X is described as a function )(ˆ Xz which 
satisfies: 

i. 0)(ˆ ≥Xz  
ii. representing the nature of the problem 
iii. reflecting one’s sampling goal, and 
iv. expressing prior information if used iteratively 

 
In this work, the sampling goal is to have more sample 
points near or on the limit state and fewer in other areas.  
A sampling guidance function, )(ˆ xz , is defined as: 

|)(||,)(||)(|)(ˆ 0000 XgCfXfCXgCXz ≥−−=−=           (6) 

where, C0 is a constant.  It is easy to see )(ˆ Xz  is always 
positive. Viewing the )(ˆ Xz  function as a PDF, it means 
that areas close to the limit state have a high sampling 
probability.  The further away from the limit state, the less 
likely to be sampled, guided by the )(ˆ Xz  function defined 
in Eq. 6. This property represents the problem and 
reflects our goal of sampling as discussed before.  As 
one can see, since the performance function f(X) is to be 
approximated by the metamodel, which iteratively 
improves with more sample points, Requirement (iv) is 
thus also satisfied.  

RE-DEFINING THE MOST PROBABLE POINT (MPP) 

As described in Section 1, the MPP was defined in the 
standard normal vector space U as the most likely 
combination of random variable values for a specific 
performance or limit state value.  Such a definition was 
given to facilitate the computation of the safety index.  
There are two problems associated with such definition.  
The first is because when transforming design variables 
of any distribution (X-space) to a normal distribution (U-
space), approximation usually has to be made. It means 
that the MPP in the U-space is not guaranteed to 
translate to the point having the largest failure probability 
in the original X-space.  Second, the conventional 
reliability assessment method based on the reliability 
index could be either conservative or risky as it is based 
only on the tangent line of the limit state (Ang and Tang 
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1984).  This work re-defines MPP in its original space, 
and the proposed algorithm will search the redefined 
MPP directly in the original space and thus no 
transformation is involved. 

Definition:  The most probable point (MPP) is the point 
in the original design space (X-space) having the largest 
joint probability density function (JPDF) value among all 
the points in the failure region. 

It is believed that the above definition restores the literal 
meaning of MPP, eliminates possible sources of error in 
transformation, and brings the search attention back to 
the original space, from which the optimal design will be 
eventually determined.  This work will use MPP 
according to the above definition in the ensuing sections 
unless otherwise indicated.  

THE ALGORITHM 

This section provides a step-by-step description of the 
proposed procedure with the convergence criteria in a 
separate sub-section.  The flowchart of the procedure is 
illustrated in Figure 1. 

Step 1:  Generate a large number of sample points in the 
design space according to the PDF of each random 
variable.  From these sample points, (2n + 1) initial 
points are chosen;  n is the number of random variables.  
The end points along each variable direction, as well as 
the point defined by the mean of all xi components, are 
chosen as the initial points.  Note the number of initial 
points is modest and does not increase exponentially 
with the number of variables.  

Step 2: Evaluate the initial points by calling the expensive 
performance function, f(X).  All of the points evaluated by 
f(X) are referred as expensive points in this work. 

Step 3: Construct a kriging metamodel based on the 
initial points.  The kriging model is thus an approximation 
of f(X). 

Step 4: Randomly generate a large number of cheap 
points from the kriging model (e.g. 104).  From these 
cheap points, new sample points are to be picked and be 
evaluated.  We would like to avoid points that have an 
extremely low probability.  Also we need evenly 
distributed sample points from which points of desired 
property defined by the sampling guidance function will 
be picked.  The questions at this step are then 1) how to 
determine the sampling region?, and 2) how to avoid 
extremely low probability points? These questions are 
addressed by the following sub-algorithm: 

- A large number of sample points as per given 
variable distribution have been generated at Step 1.  
From these points, one can identify the minimum and 
maximum value along each x component direction.  
These values define a hyper-box from which evenly 
distributed grid points can be generated and their 

JPDF values can be computed.  Similarly, the JPDF 
values for all the sample points generated at Step 1 
can be computed; and the minimum JPDF value, 
min(JPDF), can be obtained. 

- Grid points whose JPDF value is less than 
min(JPDF) are discarded from the point set. As a 
result, the left-over grid points will be evenly 
distributed and all have a higher JPDF value than min 
(JPDF). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Flowchart of the proposed method. 

Step 5: Build the sampling guidance function defined in 
Eq. 6.  Draw n samples according to the sampling 
guidance function from the cheap points generated at 
Step 4. 

Yes 

1. Initial sampling 

Start 

2. Evaluation of initial samples 

3. Kriging modeling 

5. Building a sampling guidance function & drawing samples 

4. Randomly generating 104 cheap points from kriging model 

6. Identifying the most probable points 

Mix up model MPP with 
new samples 

Yes 

8. Evaluation of new samples 

7. JPDF value of model 
MPP > that of evaluated 
MPP 

9. Preliminary 
convergence 

No 

No 

Final convergence 
No 

Stop 

Yes 
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Step 6: Identify the most probable point (MPP) and its 
corresponding JPDF value from the existing set of 
expensive points and the set of cheap points, 
respectively.  MPP follows the definition given in Section 
2.3. 

Step 7: If the JPDF value of the most probable point 
obtained from the set of cheap points (model MPP) is 
greater than that of the point obtained from the set of 
expensive points (evaluated MPP), add the model MPP 
to the new sample set drawn at Step 5. 

Step 8: Evaluate the new sample set. 

Step 9: If convergence criteria are satisfied, the process 
terminates. Otherwise, go back to Step 3.  

CONVERGENCE CRITERIA 

This work applies two convergence criteria sequentially 
to obtain both the MPP and the reliability.   The first 
criterion is when the model MPP is sufficiently close to 
the evaluated MPP.  This criterion is realized by two 
conditions: 

1. abs (JPDF value of model MPP– JPDF value of 
evaluated MPP) <= 1ε , and 

2.  max {xi of model MPP – xi of evaluated MPP), i 
=1,.., n} <= 2ε              (7) 

where both 1ε  and 2ε  are small numbers. 1ε  is usually 

taken as 0.1; 2ε  is roughly one tenth of the converged 
coordinate value.  

The second criterion is when the estimated failure 
probabilities in two consecutive iterations are sufficiently 
close.  After each iteration, we will have an updated 
kriging model of the performance function.  One can then 
apply the MCS method on the kriging model to estimate 
the reliability.  In this work, 104 cheap points are used in 
MCS.  The second criterion can then be expressed as 

|Pf, k – Pf, k-1|< 3ε         (8) 

3ε  is a small number.  In this work, 3ε  is a constant, 3e-
4. Since the check of the second criterion is 
comparatively more computationally intensive than the 
first criterion, the second criterion will be applied only 
when the first criterion is satisfied.  Therefore, the two 
criteria defined by Eqs. 7 and 8 are applied sequentially, 
shown as Preliminary convergence and Final 
convergence in Figure 1. 

NUMERICAL EXAMPLES 

Two numerical examples are taken from the literature for 
testing the proposed method.  

 

EXAMPLE 1 

Example 1 (Zou et al. 2002) has a performance function 
3
2

3
121 ),( xxxxf += .  Its limit state function 

is 18),( 3
2

3
121 −+= xxxxg . The distribution of random 

variables is )5,9.9(~),5,10(~ 21 NxNx . 

Since there are random processes involved in the 
proposed method, 10 independent test runs have been 
carried out and their results are listed in Table 1 
with 2.0;1.0 21 == εε . The JPDF values of obtained 
MPP are listed in the second and fourth column; their 
coordinates are in the neighboring column, respectively.  
The 6th column lists the number of total iterations, which 
indicates the potential for parallel computation.  The total 
number of performance function evaluations is in the 7th 
column.  The 8th column lists the number of misjudged 
points (failure or success) by the kriging model as 
checked against the real performance function, for a total 
of 10,000 MC sample points.  As one can see from Table 
1, the kriging model accurately predicts the failure points 
with no misjudgment except for the second test run.  The 
last column lists the probability of failure, fP , calculated 

from the kriging model prediction.  One can see from the 
10 test runs, the results obtained are quite consistent 
with small variations.  It is to be noted that for both 
Examples 1 and 2, all of the kriging model predictions for 
10,000 MC sample points are validated by calling the 
expensive function.  Therefore the obtained fP  values in 

both Examples 1 and 2 can be considered as if 
computed from the expensive performance function. 

 

 

 

 

 

 

 

 

 

Figure 2 Distribution of the evaluated points in the design 
space for Example 1. 

The obtained results are compared with the best results 
from the literature in Table 2 (Zou et al. 2002).   As one 
can see for the same magnitude of accuracy, the 
proposed method only needs a very small fraction of the 
total number of function evaluations. 

Analytical Limit State 

Success Region 

Failure Region 
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Figure 3 MCS results on the kriging model with 10,000 
samples for Example 1. 

All of the evaluated expensive points are plotted in 
Figure 2 with respect to the analytical limit state.  One 
can see that many points are generated near the limit 
state in the failure region, as expected. Figure 3 
illustrated the MCS points on the kriging model with 
respect to the analytical limit state. As one can see that 
all the predicted failure points are indeed in the real 
failure region, indicating a zero misjudgment situation.  

EXAMPLE 2 

Example 2 (Zou et al. 2003) is formulated from a tuned 
vibration absorber (TVA) system.  The amplitude of the 
system is the performance function described as below: 

211221212121

2

2
21

][4])()()(1[

|)
1

(1|
),(

2
211

2
2

2
1211 ββββββββ ς

βββ
−++−−−

−
=

R
f    (9) 

Where R is the mass ratio of the absorber to the original 
system, ς  is the damping ratio of the original system, 

and 1β  and 2β  are the ratios of the natural frequency of 
the original system and vibration absorber with respect to 
the excitation frequency, respectively.  In this work, R 
and ς are treated as deterministic variables with R=0.01 

and ς =0.01; only 1β  and 2β  are random variables with 
a distribution )025.0,1(~1 Nβ  and )025.0,1(~2 Nβ . 
The objective of the design problem is to reduce the risk 
of the amplitude being larger than a certain value, under 
the uncertainties of the parameters.  The limit state 
function for this example is 

),(0.28),( 2121 ββββ fg −=      (10) 

This problem involves multiple failure regions and was 
deemed “extremely difficult to solve with existing 
methods” except for the MC method (Zou et al. 2003).  

 

 

 

 

 

 

 

 

Figure 4 Distribution of the evaluated points in the design 
space for Example 2. 

 
Test results are listed in Table 3 with 1.0;1.0 21 == εε , 
which is organized in the same manner as Table 1.  The 
major difference is in the 8th column. These exists two 
situations of misjudgment.  One is that the point is in fact 
successful but misjudged as failure, and the other is that 
the point is in fact failure but misjudged as success.  A 
negative sign is used to indicate the former situation; and 
a positive sign is used for the latter.    For example for 
the 2nd test run, there are 7 misjudged points.  Among 
these 7 points, 4 points are mistakenly judged as failure 
points while in fact they are in the success region, and 3 
points are mistakenly judged as successful.  One can 
see that for the 4th and 9th test runs, the number of 
misjudged points is large.  By plotting the evaluated 
points, it is found that the method converges either 
before both failure regions are identified or before the 
profiles of the regions are completely captured.  Roughly 
from the test results, there is about one fifth of the 
chance that the method will miss one of the failure 
regions.  This issue raises concerns.  On the other hand, 
the proposed method found both failure regions in 8 out 
of 10 runs.  The median estimated Pf  is very close to the 
result obtained by MCS, as shown in Table 4. 

As shown in Table 4, the results are compared with the 
best results in literature.  It is found that the multi-modal 
AIS method needs a large number of function 
evaluations and it missed one of the failure regions. The 
recent IRS-based MC method also requires about double 
the amount of function evaluations than the proposed 
method for a similar accuracy.  Also both the proposed 
method and the IRS-based MC method have achieved a 
very high accuracy of less than 1% to the value obtained 
by MCS. 

Analytical Limit State 

Success Region 

Failure Region 

Failure Regions 

Success Region 
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Figure 5 MCS results on the kriging model with 10,000 

samples for Example 2. 

Similar to Example 1, Figure 4 plots all the evaluated 
points.  It is clear that more points are on or near the limit 
state.  Figure 5 illustrates the MCS results on the kriging 
model with one outlier as shown in the figure as 
“misjudged point”. 

DISCUSSIONS 

For reliability assessment of expensive performance 
functions, the importance sampling (IS) is probably the 
most efficient method thus far (Au and Beck 1999; Zou 
et al. 2002; Schuëller et al. 2003).  There are two types 
of IS methods.  One is the IS on design points and the 
other is IS on kernel sampling density (Schuëller et al. 
2003).  

IS on the design point is to move the center of sampling 
to a point on the limit state, which is usually the 
conventional MPP. This method was promoted by (Du 
and Chen 2000).  The method, however, bears a few 
problems: 

1. In general, the search for design points occupies a 
considerable portion of the total computational effort. 

2. If there are multiple MPPs, the search for multiple 
design points requires more sophisticated algorithms 
for the optimization problem.  Moreover, since it is 
not known a priori, multiple points search has to be 
carried out for every problem. 

3. The application of design points to IS becomes more 
difficult or inefficient  in situations such as noisy limit 
state functions, relatively flat PDFs along or in the 
neighborhood of the limit state surfaces, and highly 
concave/convex  limit state surfaces.  When such 
situations are not properly handled in IS, the 
estimate can have a large variance or even become 
practically biased (Au and Beck 1999) . 

 

The IS on kernel sampling density is to use sample 
points to construct a kernel density estimator of the 
optimal IS density. The main drawback is that the points 
used to construct the kernel sampling density are 
simulated by the basic Monte Carlo procedure, so the 
probability of having samples generated in the failure 
region is equal to the failure probability, which is usually 
small in practical applications.  The simulation of points 
lying in the failure region thus requires a very large 
number of samples and so the method is 
computationally expensive. The version of IS on kernel 
density in (Au and Beck 1999) was considered the most 
efficient approach of this category by (Schuëller et al. 
2003). 

Comparatively, the proposed method has a few 
distinctive features: 

1. The sampling process is straightforward.  Compared 
to the IS method, the proposed sampling strategy is 
simple and easy to understand by practitioners.  
Furthermore, this strategy is not restricted to any 
parametric family of densities as in the case of 
conventional IS methods. 

2. The MPP is re-defined in this work as the point in the 
failure region that has the largest JPDF value in the 
original design space.  

3. There is no need to perform transformation in order 
to calculate the MPP.  Since the method works 
always in its original design space, no transformation 
and thus approximation of the variable distribution is 
needed. This eliminates the possible error in 
calculating the MPP in the transformed normal 
space. 

4. There is no need to identify the MPP first.  The 
proposed method identifies MPP along with other 
points on and close to the limit state. 

5. This method only focuses on an accurate kriging 
model near the limit state rather than globally, 
therefore the cost of metamodeling building is 
reduced. 

6. The proposed method does not call any MCS 
process directly on the expensive performance 
function. 

 
Also it is noted that the proposed method bears certain 
limitations.  As shown from Example 2, the proposed 
method may miss some of the failure regions when 
multiple failure regions are present.  This could be 
remedied by having more initial sample points or 
tightening the convergence criteria by reducing 

3,1, �=iiε  values.  It could be argued that the chance 
of missing a failure region for the proposed method 
would not be higher than the IS method on design points.  
It is because for the proposed method, as long as there 
is one evaluated point in the failure region, its sampling 
guidance function value would be high and more sample 
points would be generated around it.  Therefore, as long 
as there is one evaluated point in a failure region, more 
sample points will be generated immediately in the 
region.  For global optimization methods on black-box 

Failure Regions 

Success Region 

Misjudged Point 
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functions, if there lacks of information in the 
neighborhood of a global optimum, this optimum will 
likely be missed regardless of which algorithm is used.   
Thus when using global optimization methods to search 
for all the MPPs, the situation of missing a MPP is 
qualitatively similar to missing a failure region in the 
proposed method.  For IS, if one MPP is missed, it will 
miss a failure region.  Such a situation happens as 
shown in Table 4 (Zou et al. 2003).  Another challenge 
for the proposed method is for high dimension problems 
since it employs the kriging metamodel.  As the number 
of sample points increases with dimensions, the cost of 
building a kriging model will increase.  As the final Pf is 
estimated from the kriging model, the possibility of 
misjudgment might increase as well.  The “curse of 
dimensionality”, however, is a challenge to almost all 
existing numerical methods. 

CONCLUSION 

This work developed a simple discriminative sampling 
method integrated with metamodeling in achieving a 
more efficient reliability assessment.  Its effectiveness 
and efficiency are demonstrated through tests.  The test 
results also represent the state-of-the-art for reliability 
assessment of expensive performance functions.  The 
proposed method is found very accurate for problems of 
single failure region.  It also has a high success rate for 
problems of multiple failure regions.  Future research will 
develop more reliable methods for problems of multiple 
failure regions, as well as reliability assessment for high 
dimensional problems. 
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Table 1 Results for 10 test runs for Example 1. 

Evaluated 
MPP 

Model MPP Test No. 

JPDF 
(x 10-4) 

X JPDF 
(x 10-4) 

X 

# of 
Iter. 

# of 
Func. 
Eval. 

# of Mis-
judgment 
(in 10,000 

points) 

Pf 
(x 10-4) 

1 5.2270 2.0927 
1.9969 

5.0889 2.1309 
1.8748 

14 40 0 57 

2 5.1576 2.2568 
1.7945 

5.2273 2.1401 
1.9497 

15 44 1 51 

3 5.0334 2.0373 
1.9332 

5.2730 2.0919 
2.0255 

8 27 0 60 

4 4.9937 2.1150 
1.8317 

5.2273 2.1401 
1.9497 

11 35 0 65 

5 5.3247 1.9865 
2.1640 

5.1715 2.0145 
2.0416 

13 40 0 55 

6 5.3260 2.1318 
2.0171 

5.2251 2.0683 
2.0200 

42 97 0 61 

7 5.2885 2.0867 
2.0399 

5.2539 1.9563 
2.1521 

37 86 0 47 

8 5.2885 2.0867 
2.0399 

5.1971 2.0425 
2.0290 

13 39 0 56 

9 5.2274 2.0927 
1.9969 

4.8688 1.9733 
1.8932 

19 49 0 58 

10 5.3247 1.9865 
2.1640 

4.9256 1.7980 
2.1100 

17 44 0 60 

Median 5.2580  5.2111  14.5 42 0 57.5 
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Table 2 Result comparison with the best results in literature for Example 1. 

Pf, MCS=0.00566 with 120,000 MCS samples (Zou et al. 2002) 
 Pf (Pf -Pf, MCS)/Pf, MCS # of Func. Eval. 

Multi-modal AIS 
(Zou et al. 2002) 

0.00575 1.6% 680 
(including 120 eval. to 

search the MPP) 
Proposed Method 0.00575 1.6% 42 

 

Table 3 Results for 10 test runs for Example 2. 

Evaluated 
MPP 

Model MPP Test 
No. 

JPDF X JPDF X 

# of 
Iter. 

# of 
Func. 
Eval. 

# of Mis-
judgment 
(in 10,000 

points) 

Pf 

1 14.8448 0.9630 
0.9532 

14.8516 0.9624 
0.9537 

89 192 0 0.0108 

2 14.8464 0.9630 
0.9533 

14.8334 0.9627 
0.9535 

49 113 7 
(-4 +3) 

0.0093 

3 14.8255 0.9625 
0.9537 

14.7928 0.9638 
0.9526 

87 193 4 
(-2 +2) 

0.0104 

4 14.7554 0.9637 
0.9527 

14.6623 0.9630 
0.9531 

36 87 51 
(-2 +49) 

0.0053 
(missed) 

5 14.8469 0.9622 
0.9539 

14.8157 0.9619 
0.9541 

192 409 13 
(-1  +12) 

0.0126 

6 14.8316 0.9630 
0.9533 

14.7700 0.9617 
0.9547 

52 119 17 
(-5  +12) 

0.0098 

7 14.7984 0.9637 
0.9527 

14.7435 0.9645 
0.9521 

34 81 10 
(-5  +5) 

0.0096 

8 14.7449 0.9617 
0.9542 

14.7581 0.9635 
0.9528 

17 51 25 
(-2  +23) 

0.0103 

9 14.8281 0.9624 
0.9537 

14.7286 0.9613 
0.9545 

19 49 44 
(-2  +42) 

0.0073 
(missed) 

10 14.8250 0.9629 
0.9533 

14.7840 0.9638 
0.9526 

40 96 11 
(-5  +6) 

0.0097 

Median 14.8286  14.7770  45 105 12 0.00975 
 

Table 4 Result comparison with the best results in literature for Example 2. 

Pf, MCS=0.0097 with 30,000 MCS samples (Zou et al. 2003) 
 Pf (Pf-Pf, MCS)/Pf, MCS # of Func. Eval. 

Multi-modal AIS 
(Zou et al. 2003) 

0.00407 58% 840 

IRS-Based MC 
(Zou et al. 2003) 

0.00963 0.72% 206 

Proposed Method 0.00975 0.52% 105 
 


