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Recently, mixture distribution becomes more and more popular 
in many scientific fields. Statistical computation and analysis of mix- 
ture models, however, are extremely complex due to the large number 
of parameters involved. Both EM algorithms for likelihood inference 
and MCMC procedures for Bayesian analysis have various difficul- 
ties in dealing with mixtures with unknown number of components. 
In this paper, we propose a direct sampling approach to the com- 
putation of Bayesian finite mixture models with varying number of 
components. This approach requires only the knowledge of the den- 
sity function up to a multiplicative constant. It is easy to implement, 
numerically efficient and very practical in real applications. A simu- 
lation study shows that it performs quite satisfactorily on relatively 
high dimensional distributions. A well-known genetic data set is used 
to demonstrate the simplicity of this method and its power for the 
computation of high dimensional Bayesian mixture models. 
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1 I n t r o d u c t i o n  

Mixture distribution is widely used in many scientific fields. It pro- 
vides a flexible parametric model for data sets arising from multi- 
modal distributions. The use of mixture distribution in biological 
data analysis dates back at least to Pearson (1896). Statistical infer- 
ence of mixture models, however, is often difficult, because of their 
mathematical  and computational complexities. In likelihood analysis 
of mixture models, computat ion of maximum likelihood estimates is 
usually done by EM algorithms, which require the number of com- 
ponents K to be known. In the case where K is unknown, usually 
multiple models have to be estimated and certain model selection 
criterion has to be used. 

Bayesian approach makes mixture models even more flexible and 
practical by allowing the number of components K to be a random 
variable. The cost of this flexibility is however twofold: first, the 
number of parameters in the model to be estimated increases rapidly 
with the increase of the number of components; second, the usual 
Markov chain Monte Carlo (MCMC) algorithms are not designed 
for the parameter space of varying dimension and, in addition, they 
have traditional weakness in dealing with distributions with separated 
modes. For finite mixtures with varying K, Green (1995) proposed 
a reversible jump MCMC algorithm, whereas an alternative algo- 
r i thm using birth and death processes has been proposed by Stephens 
(2000). In practice, however, the implementation of the reversible 
jump MCMC algorithms is quite complicated and, consequently, this 
approach remains accessible only within a small group of experts. 
(Celeux, Hurn and Robert 2000, Brooks, Giudici and Roberts 2003 
and Brooks, Giudici and Philippe 2003). 

Recently, Fu and Wang (2002) developed a discretization-based 
sampling algorithm as a general and practical tool to easily draw a 
large sample from any given multivariate density. In this paper, we 
extend this algorithm to an adaptive procedure, which combines the 
sampling algorithm with a visualization component. We demonstrate 
that  this new procedure is particularly useful and practical for ana- 
lyzing mixtures with varying number of components. This algorithm 
requires only the knowledge of the density function up to a multiplica- 
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rive constant. Furthermore,  it is easy to implement and overcomes 
the usual difficulties of the MCMC algorithms. 

In Section 2, we motivate and define the Bayesian mixture model  
which is used in the analysis throughout  this paper. In Section 3, we 
introduce the new visualization-based sampling algorithm based on a 
random discretization method.  In Section 4, the algorithm is applied 
to a simulated data  set to access its performance. It is then applied 
to a genetic data  set in Section 5. Finally, conclusions and discussion 
are given in Section 6, whereas the proof  of the theorem is given in 
Appendix. 

2 Bayesian Hierarchical Model  

First, let us motivate the mixture model in a genetic set-up. The 
rapid development of genome projects in recent years poses an enor- 
mous demand for statistical methods  of genetic data  analysis. One 
type  of data  that  occurs often in genetics are data  from a populat ion 
which is composed of a finite number  of sub-populations.  

To illustrate, let us consider a simple case where a quanti tat ive 
inheritable character is determined by a single gene with two alleles, 
A and a, so that  each individual in the populat ion carries one of the 
three genotypes: AA, Aa or aa. There are two possible ways how 
these genotypes are physically expressed: if the allele A is dominant 
over a, then AA and Aa yield the same phenotype and hence only 
two phenotypes  can be observed; otherwise, one can observe three 
phenotypes pertaining to the three genotypes. Suppose, in a large 
population, alleles A and a occur with probabilities p and q = 1 - p 
respectively. Then in the dominance model, two phenotypes occur 
with probabilities p2 + 2pq and q2 respectively; whereas in the addi- 
tive model, three phenotypes occur with probabilities p2, 2pq and q2 
respectively. 

In practice, an observation Y consists of the phenotype p plus a 
random measurement error, which, e.g., follows a distr ibution with 
mean zero and variance ~2, so that Y ~ f(y]#,~2). Therefore all 

observations in a given data set can be considered as an i.i.d, random 

sample from a finite mixture of sub-population distributions 

K 

j=l 

where the phenotype probabilities wj > 0 and ~ wj = I. Whereas 
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Figure 1: Histogram of SLC activities, with 30 number of bins. 

in the dominance model the number of components is K = 2, in the 
additive model it is K = 3. 

As an example, let us consider a da ta  set studied by Dudley et 
al (1991), which consists of measurements  of red blood cell sodium- 
li thium counter t ransport  (SLC) activities of 190 individuals from six 
large English kindreds. It is believed that  the SLC is correlated with 
blood pressure and hence may be an important  cause of hypertension. 
The histogram of this da ta  set (multiplied by 10) is shown in Figure 
1. The question is that  which one of the two competing models is 
more likely to have generated the data. Therefore the main interest 
here is to infer the value of K. 

In the following, we introduce the Bayesian mixture model which 
will be used to analyze the SLC data  in Figure 1. Suppose data  
yi, i = 1, 2, ..., N are an i.i.d, random sample from a finite normal 
mixture, so that  the likelihood function is given by 

N N K [ ( y i _ ~ K j ) 2 1  
1-I f (yi]#K' a~K' wK' K) = I I  E ~WKj exp 

L 
(2.1) 

where w E = (WK1, WK2, ..., WKK) and pK = (#K1, #K2, ..., PKK). 
Here we assume equal variances for all components for model simplic- 
ity and also for practical convenience (see, e.g., Tit terington,  Smith 
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and Makov 1985, p.83). As explained before, the number  of compo- 
nents K is unknown and is t reated as a parameter.  Since all other 
parameters  in the likelihood depend on K,  the hierarchical s t ructure 
is a natural  choice for prior distributions. Furthermore,  it is assumed 
that ,  given K, random variables #K, a~: and w E are conditionally 
independent.  Thus, the full posterior distribution has the form 

N 
1-I f(YiI K'°2K' wK'K)P (t KIK) p ( 2KIK) p (wKIK) p(K)" (2.2) 
i=1 

Before we formulate our prior distributions, it is necessary to men- 
tion the so-called labelling problem in mixture models. In fact, it is 
easy to see that  the likelihood function (2.1) is invariant upon permu- 
tations of its components. Consequently, if the prior distributions are 
again symmetric,  then the posterior distribution will have the same 
property, which leads to unidentifiability of the parameters.  This is 
a well-known phenomenon in mixture modelling (e.g. Celeux, Hurn 
and Robert  2000, and Stephens 2000). One possible solution to this 
problem is to restrict one set of parameters.  In this paper, we choose 
to restrict the means to be ordered as #K1 < #K2 < "'" < #KK for 
any given K. 

In particular, we choose the ordered normal prior distributions 
for the location parameters  as 

K 1 [ ([.tKj -- /tO) 2 ] 
p(pKIK) = K! H o_~£l~_2exp , (2.3) 

j : l  V/27rO'2 2~02 J '  

~K1 < PtK2 < "'" < ~KK. 

In the literature, inverse-gamma or inverse-x 2 are usually used as 
priors for variance parameters.  Here we choose the inverse-gamma 
distribution for a~c, which has density 

P(°-2K[K)- F(c~) (Cr2)--a--1 e--~/a~ '02 > 0 .  (2.4) 

Likewise, a common choice for the prior for weights w K is the Dirich- 
let distribution with parameter  % which has density 

p(wKiK ) F(Kv)  ~-1 (2.5) 
F(V) H 1--  E W K j  -- WKj , 

j=l  j=l 
K-1 

O< E WKj < I. 
j=l 
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For the number of components K,  the prior is a discrete distribu- 
tion over the set {1, 2, ..., Kmax}, where the hyper-parameter  Kmax 
is given a priori. In the case where no other information besides an 
upper  bound is available, a uniform distribution can be used, so that  
p(K) = 1/Kmax. 

It is worthwhile to emphasize that  the approach of this paper  is 
different from the traditional mixture analysis, in which the model  is 
est imated for a given number of components  K.  In contrast, here K 
is t reated as an ordinary unknown parameter.  For any given value 
of K = k, 1 <_ k < Kmax, the unknown parameters  pertaining to 

k are #k = (#kl,#k2,...,#kk), w k = (Wkl,Wk2,...,Wk(k-1)) and a~. 
Therefore, the joint posterior distr ibution is the distr ibution of all 
parameters  

K,#I  [ ~ 2 , . . . , l ~ K m a x , w l  w 2  ' w K m a x  2 2 2 
' "" ,  ~ 0.1,0"2, "", 0.t~amx" 

The posterior distr ibution of K is obtained as the marginal distribu- 
tion of this joint posterior distribution. Therefore, in this framework, 
the inference for K is a natural  part  of the posterior analysis, so that  
no particular choice of model selection criterion is needed. 

To complete our model  specification, we use the following strategy 
to determine the values of hyper parameters.  First, for the prior 
distr ibution of location parameters  we follow Richardson and Green 
(1997) and Stephens (2000) and set #0 = My and 0"~ = Ry 2, where 
My and Ry denote the midrange and range of the data  respectively. 
For the inverse-gamma prior, we set a = 2 to impose a soft lower 
bound  to keep 0"2 from being too close to zero. The determinat ion 
of the value of ~ is based on the following intuition. The variance 
a~c has the largest value when there is only one component  (K = 1). 
Since the data  is assumed to be random sample of size 200 from 
a normal distribution, it is reasonable to assume .Ry = 60"1. On 
the other hand, the mean value of the inverse-gamma distr ibution is 
given by f l / ( o e -  1). It is therefore reasonable to set fi = (Ry/6) 2, 
or the smallest integer above this value. In the Dirichlet prior, we 
set 7 = 1, so that  the weights w K are uniformly distr ibuted over the 
corresponding simplex. Finally, the maximum number of components  
is set to Kmax = 4. Wi th  this set-up, it is easy to see that  the 
posterior density (2.2) has dimension d = 21. Furthermore,  since this 
density has a complicated form, its analysis will rely on a sample 
of a reasonably large size. As we explained in Section 1, how to 
draw a large sample from this high-dimensional posterior density is 
a challenging task. 
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The above strategy for assigning values of hyper-parameters  is 
similar to the ones used by some other authors in the recent litera- 
ture, e.g., Richardson and Green (1997) and Stephens (2000). Note 
that  the choice of hyper-parameters  may have an effect on the poste- 
riot distribution. Such an effect can be examined through sensitivity 
analysis. More detailed discussions are given in the above articles. 

3 The Sampling Procedure  

In this section, we introduce a procedure which will be used to esti- 
mate  the Bayesian mixture model (2.2). This procedure is based on 
the discretization-based sampling algorithm of Fu and Wang (2002). 
In this paper, we extend that  algorithm by adding a visualization 
and an adaptive component.  This method is based on the following 
consideration. 

In general, direct sampling from a high-dimensional distribution 
is usually associated with two difficulties. First, an accurate sample 
is based on the accurate evaluation of the density function over the 
sample space. Given the current computer  capacity, however, it is 
usually impossible to generate enough grid points at once in the entire 
sample space, in order to obtain a good approximation of the density 
function. Consequently, the sampling needs to concentrate on the 
"significant region" of the distribution and ignore the rest part  of 
the sample space. For example, to draw a sample of a reasonably 
large size from a one-dimensional s tandard normal distribution, the 
interval [-10, 10] may be a significant region, and the part  of 
outside this interval may be negligible. The second difficulty is that ,  
in high-dimensional case, it is hard to visualize the s tructure of the 
density, let alone to locate the significant region of it. 

The proposed procedure a t tempts  to mitigate these difficulties. 
Suppose we are given a d-dimensional density function f(x) up to a 
multiplicative constant and our goal is to generate a random sample of 
size m from this density. To simplify notation, let us consider the case 
where f(x) is continuous. The discrete or mixed type distributions 
can be handled similarly. Then  the proposed procedure consists of 
the following steps. 

1. Setting the in i t i a l  c o m p a c t  cover :  We first determine an 
initial compact set Co(f) C ~ d  which contains the significant region 
of f(x). If f(x) has a bounded support  S(f), then we can take 
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Co(f)  = S ( f ) .  If f ( x )  has an unbounded support,  then we can take 
Co(f)  = S ( f )  g3[a,b] d, where - e c  < a < b < cc are chosen, so 
that  Co(f)  covers the significant region of f ( x ) .  In practice, choosing 
a, b is intuitive and straightforward. In fact, one may start  with a 
reasonable guess of the interval based on the properties of the given 
density function. This point will be illustrated through the examples 
given later. 

2. Discretization: First a discrete set Sn( f )  = { x j  E Co( f ) , j  = 
1,2 .... ,n} is generated. The sequence may be deterministic (such 
as low discrepancy sequence) or stochastic (such as independent  and 
uniformly distributed random numbers).  Then, the points in Sn( f )  
are reordered such that  f ( x i )  > f ( x j ) ,  i f /  < j .  Third, for a given 
integer k E zW, part i t ion Sn( f )  into k contours Ei = {xj : (i - 1)/ < 
j < il}, i = 1, 2, ..., k, where I = n / k  which is assumed to be an integer 
without loss of generality. 

E k the part i t ion { i}i=l as 
Finally, define a discrete distribution on 

where 

Pk(i) -- k ,i = 1,2, . . . ,k,  
Ej=I  

1 
= 7 f(xj). 

xj ~ Ei 

This distribution approximates the "contourized" f (x). 

3. S a m p l i n g :  First, randomly sample m subsets with replacement 
E k from { i}i=l according to probabilities {Pk(i)}~_ 1. Denote by rni 

k the number  of occurrence of Ei in the m draws, where }-~-i=l rni = 
m. Then  for each 1 < i < k, randomly sample rni points with 
replacement from the contour El. In other words, each point in Ei 
has the equal probability to be drawn. All points thus drawn form 
the desired sample of size m, 

4. Visualizing and updating the significant region: First, 
using the sample generated in Step 3 to produce histograms for all 
dimensions respectively, which represent the marginal distributions of 
f (x). These marginal histograms allow us to visualize the significant 
region and the negligible region of the sample space of f (x). Let C1 (f)  
be the significant region thus identified. If Cl ( f )  = Co(f) ,  then stop 
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the procedure and accept the sample from Step 3. Otherwise, replace 
Co ( f )  with 6'1 ( f )  and go back to Step 2. 

It is worthwhile to note that  the key of the above procedure is the 
interaction between visualization and sampling, which provides an 
effective way to locate the significant region within the sample space. 
The whole procedure is therefore efficient and fast. For all of our 
numerical examples in this paper, including the simulated and real 
data  sets, the significant region can be located after three or four 
iterations. 

The contourization in Step 2 serves two purposes. First, usually 
the size of discretization n is very large. If one takes k = n, then 
in the subsequent sampling one has to inverse a discrete distribution 
with rt steps, which is intractable because the computing time will 
be extremely long. Second, through contourization the original dis- 
tr ibution is t ransformed into a monotone discrete distribution, and 
the significant region is automatical ly located. The sequence of con- 
tours describes and characterizes the distribution f (x )  on ~ and 
also provides a basis for simple random sampling. Furthermore,  the 
contours carry the information about the shape and locations of the 
distribution in high dimension, which can only be visualized for d = 2 
or 3. 

As a by-product,  contourization also enables us to find the ap- 
proximate mode of f (x ) ,  because the first contour E1 contains points 
corresponding to the highest values of f(x) on Sn(f). This is ira- 
portant  and practical in real applications. For example, if f(x) is a 
likelihood function defined on a parameter  space S(f), then the points 
in the first contour E1 can be viewed as the approximate maximum 
likelihood estimates when n and k are large. If f(x) is a posterior 
density function, then the points in E1 approximate posterior modes. 

In practice, sometimes the function f(x) has a complicated form 
and in this case, it is possible that  the initial compact cover Co(f) 
is not large enough to cover the significant region of f(x). This is 
not as dramatic  as it looks like, because in such case the marginal 
histograms produced in Step 4 will be cut off, so that  C l ( f )  will be 
set larger than Co ( f )  correspondingly. 

From the construction, it is easy to see that  the sample drawn 
according to this procedure is i.i.d, and has a distribution which 
approximates f(x), when n and k are large. This feature is formally 
stated below, the proof of which is given in the Appendix. 
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T h e o r e m  1 Suppose density function f (x )  is continuous on a com- 
pact support S ( f )  C ~d and satisfies #{x  E S ( f )  : f ( x )  = c} = 0 
for any constant c C (0, c~), where # is the Lebesgue measure. Let 
(~, A, P) be the underlying probability space of f ( x )  and let X be the 
random variable generated according to the Step 1-5 of the algorithm. 
If  Co(f) D S ( f ) ,  then for every Borel set A on S ( f ) ,  as n --+ :xD and 
k -+ (x~ , 

P ( X  • d iSh( f ) )  a.s.) JA f (x)#(dx) .  

Next we use two examples to illustrate the algorithm. 

E x a m p l e  1 First let us consider a two dimensional distribution with 
density, up to a normalizing constant, 

f ( x )  -= [Xl(1 - x2)]5[x2(1 - Xl)]3[1 - Xl(1 - x2) - x2(1 - Xl)] 37, 

0 < Xl,X~ < 1. (3.1) 

This distribution has compact support S( f )  = [0, 1] 2 and two sepa- 
rated modes. The density and its contour plot are displayed in Figure 
2. 

Now let us draw a sample of size m = 5000 using the above proce- 
dure. First, since f ( x )  has a compact support,  we set Co(f) = [0, 1] 2. 
Then, we simulate n = 2 × 10 6 uniform random points from [0, 1] 2 t o  

form the discrete sample space Sn(f) ,  and divide Sn( f )  into k = 104 
contours, such that  each contour contains l = 200 points. Finally, 
m = 5000 sample points are drawn from these contours according to 
Step 3. To visualize the distribution f (x ) ,  we plot the two marginal 
histograms of this sample in Figure 3, together with the scatter plot, 
contour plot and histogram of the sample. The two marginal his- 
tograms show that  the boundaries of the significant region have al- 
ready reached the boundaries of Co(f) = [0, 1] 2, indicating that  no 
adjustment  of Co(f) is needed. So, we stop the procedure and accept 
this sample. 

E x a m p l e  2 Now let us consider a mixture of three bivariate normal 
distributions 

f ( x l , x2 )  = 0.3f i (x: ,x2)  +0.3 f2(x i ,x2)  + 0.4f3(Xl,X2), (3.2) 

where f l ,  f2, f3 are normal densities that  are located at means ~t I = 

(0, 0), #2 = (0, 6) and #3 = (6, 0) respectively. Whereas f l  and f2 
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Figure 2: The density (3.1) in Example 1 and its contour plot. 
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Figure 3: A sample of size rn = 5000 from the distribution (3.1) in 
Example 1. 
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Figure 4: A sample of size m = 5000 from the bivariate normal 
mixture in Example 2. 

have common variances (0.5, 0.5) and zero correlation, f3 has vari- 
ances (0.4, 0.4) and zero correlation as well. 

This distribution has unbounded support S(f) = ~2 .  From the 
property of normal distribution, however, it is easy to see that  interval 
[ -6,  12] 2 is large enough to cover the significant region of f ( a ) ,  so that  
we choose this interval to be the initial compact cover Co(f). From 
this interval n = 2 × 106 uniform points are simulated to form Sn(f), 
which is then divided into k = 104 contours. Then  a sample of size 
m = 5000 is drawn from these contours. Figure 4 shows the two 
marginal histograms of this sample, together with its scatter plot, 
contour plot and histogram. From the two marginal histograms, we 
see clearly that  the significant region can be reduced to, e.g., [-4,  8] 2 . 
We can therefore reduce the initial interval to Cl(f) = [-4,  8] 2 and 
repeat Steps 2 and 3 to gain efficiency. Since in this simple case the 
final sample gives the similar graphs as those in Figure 4, we will not 
show it again. 

Using the technique mentioned before, the approximate mode of 
the density is found to be (6.0033, 0.0058). It is interesting to note 
that  the overall mode (6, O) of distribution (3.2) cannot be recovered 
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from the two marginal histograms in Figure 4. This is an impor- 
tant point, because in Bayesian li terature many authors use marginM 
distributions to draw their conclusions about  a particular set of pa- 
rameters. In our opinion, when the modes of the joint distr ibution 
and the marginal distributions are different, conclusions should be 
drawn according to the joint posterior distribution. However, such 
an analysis is difficult using the usual Markov chain Monte Carlo al- 
gorithms, because they don't  provide an est imate for the mode of the 
joint posterior distribution. 

4 A S i m u l a t e d  D a t a  Set  

In this section, we apply the sampling procedure of Section 3 to a sim- 
ulated da ta  set to access its performance. In particular, we simulate 
a random sample of N = 200 observations using the additive model  
(K  = 3) of Section 1 with probabil i ty p = 0.8, so that  wl = 0.64, 
w2 = 0.32 and w3 = 0.04. The three components  are normal densi- 
ties with common variance (~2 = 1 and locations #1 = 3, #2 = 6 and 
#3 = 9 respectively. The simulated sample is shown in Figure 5. 

0.35: 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

I 
0 10 

Figure 5: Histogram of the simulated data  of N = 200. 

Now we use the Bayesian hierarchical model described in Section 
2 to infer these parameters,  in particular the value of K,  for which 
the discrete uniform prior is used. Using the strategy described in 
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Table 1: Prior and posterior distributions for K,  simulated data. 

K 1 2 3 4 
Prior  0.25 0.25 0.25 0.25 
Posterior 0.0085 0.0137 0.6396 0.3382 

Table 2: True values, posterior means and s tandard deviations of # K  

and w K for K = 3, simulated data. 

True 
Mean 
Std. Dev. 

#K 

3 6 9 

2.9797 5.8666 9.6498 
0.1417 0.2179 0.6173 

W K 

0.64 0.32 0.04 
0.5972 0.3646 0.0382 
0.0495 0.0482 0.0188 

Section 2, the hyper-parameters  for this da ta  set are 

#0 = 5.653, (702 -- 119.666, 

a -= 2 , ~  = 4 , 7  = 1, Kmax  = 4. 

We start  the procedure with a initial C o ( f ) .  After three iterations 
the compact  cover C1 (f)  for the parameters  is determined to be K E 
(1 : 4), pK E [0,12] K, cr~( E [0.1,5] and w K E [0,1] K. From these 
intervals we first simulate n = 4 x 106 uniform base points to form 
the discrete sample space S n ( f ) .  In this example we take the number  
of contours k = n, so that  each contour contains a single point. From 
theses contours a sample of size m = 104 is drawn according to Step 
3 of the sampling algorithm. 

The est imated marginal posterior distr ibution of K is given in 
Table 1, which clearly indicates that  K = 3 has the highest prob- 
ability value. The posterior means and s tandard deviations of the 
components  of pK and w N for K = 3 are given in Table 2, whereas 
the marginal posterior distributions of these parameters  are displayed 
through the corresponding marginal histograms in Figure 6. 

The posterior mean for cr 2 is found to be ~ = 1.0360 with a 
s tandard deviation of 0.2099. Its posterior distr ibution is shown in 
Figure 7. The predictive density with K = 3 is computed using the 
drawn sample and it is shown in Figure 8. In comparison to most 
simulation studies in the literature, theses results are quite accurate. 
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Figure 6: Marginal histograms of the components of #K,  w K for K = 
3, simulated data. 

Finally, using this algorithm, the approximate maximum likelihood 
estimate for K is found to be K = 3, which is also where the joint 
posterior mode is located with respect to the coordinate K in the 
parameter space. Overall, the proposed procedure correctly recovered 
the number of components in the simulated data set, and produced 
acceptable estimates for other parameters. 

5 G e n e t i c  D a t a  

In this section we apply the sampling algorithm of Section 3 to the 
genetic data set which is described in Section 2 and is shown in Figure 
1. This data set has been analyzed before by Roeder (1994) using 
a graphical technique and by Chen et al (2001) using a modified 
likelihood ratio test. Both these authors concluded that the most 
probable number of components in the normal mixture model is K = 
3. 

Now we use Bayesian method to analyze this data set. Following 
the previous authors, we assume that data N (Yi)i=l are an i.i.d, sample 
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Figure 8: Predictive density wi th  K = 3, s imulated data. 
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from a finite mixture of normal distributions with common variance, 
so that  the likelihood function is given by (2.1). Again, the prior 
distributions are given by (2.3) - (2.5). Since we are mainly interested 
in comparing K = 2 and K = 3, we use a more informative prior for 
K than a uniform prior, as is given in Table 3. 

Again, the hyper-parameters  are determined according to the 
strategy described in Section 2. For this data  set, they are 

#0 = 3.48, a~ = 30.25, 

o~ = 2 ,~  = 1,V = 1 , K m a x  = 4. 

We first start  the algorithm with a initial compact  cover Co (f)  and 
then, after four iterations, reduce it to the following compact  cover 
C l ( f ) :  K • (1 : 4), #K E [0,7] K, cr~C • [0.1,1] and w K • [0,1] K. 

Then n = 4 × 106 uniform base points are simulated to form S n ( f ) .  

Again, k = n contours are used and a sample of size m = 104 is 
drawn. 

The est imated marginal posterior distribution for the number  of 
components  K is given in Table 3. The highest probabil i ty is located 
at K = 3, favoring the additive model  over the dominance model  for 
which K = 2. The approximate mode of the joint posterior distribu- 
tion is located at K = 3, support ing the additive model  as well. It is 
interesting to note that  K = 4 also receives significantly high proba- 
bility value, which may indicate a polygenic disease in the sample. 

Table 3: Prior and posterior distributions for K,  SLC data. 

K 1 2 3 4 
Prior 0.2 0.3 0.3 0.2 
Posterior 0.0001 0.2377 0.4664 0.2958 

Since both  additive and dominance model are of interest, we 
present the marginal posterior distributions of locations #K and weights 
w K for bo th  K = 2 and K = 3. They are shown respectively in Fig- 
ures 9 and 10. The marginal posterior distributions for variances a22 
and a32 are shown in Figure 11. 

The posterior means and s tandard deviations of #K and w K for 
bo th  K = 2 and K = 3 are reported in Table 4. The estimates for the 
corresponding variances (with s tandard deviations) are respectively 



648 

P'I 
6 

5 

4 

3 

2 

1 

0 
2 2.2 2.4 2.6 2.8 

w 1 
12 

10 

8 

6 

4 

2 

0 
0.7 0.8 0.9 

2 

1.5 

1 

0.5 

g2 

o/ 
3.5 4 4.5 5 5.5 

ii 

4i 
i 

21 
i 

0.1 

w 2 

0.2 013 0.4 

Figure 9: Marginal histograms of the components of # K  w K for K = 
2, SLC data. 
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K = 3, SLC data. 
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Table 4: Posterior means and s tandard deviations of #K and w K for 
K = 2 and K = 3, SLC data. 

#K 

W K 

K =  2 
2.3793 4.4926 
0.0785 0.2848 
0.8731 0.1269 
0.0409 0.0409 

K =  3 
2.2442 3.6258 5.4560 
0.1153 0.4502 0.5822 
0.7400 0.2121 0.0480 
0.1452 0.1298 0.0366 

~22 = 0.5181(0.0768) and ~32 = 0.3985(0.0808). These results imply 
15 = 0.6438 for K = 2 and ifi = 0.8602 for K = 3. 

The predictive densities for K = 2 and K = 3 are also com- 
puted using the drawn sample and they are shown in Figure 12. 
Finally, the approximate maximum likelihood estimates are found 
to be: /~ = 3, &32 = 0.3274, fin = (2.2332,3.7180,5.7869) and 
~K = (0.7643,0.2048,0.0309). These estimates are similar to the 
results of Roeder (1994) and Chen et al (2001). 

6 C o n c l u s i o n s  a n d  D i s c u s s i o n  

We applied a direct sampling approach to Bayesian computat ion of 
finite mixtures of unknown number  of components.  It turns out that  
this algorithm works very well in drawing a sample of size 104 from 
a twenty-one dimensional posterior distribution. In particular, the 
number of components is correctly identified in all numerical  studies. 
This algorithm is very easy to implement. It also provides estimates 
for the modes of the joint and marginal posterior distributions, which 
is useful and practical in real applications. The key component of 
this algorithm is the interaction between visualization and sampling, 
which provides an effective way to quickly locate the significant region 
of the given density function. 

We applied this method to a genetic da ta  set of SLC activities. 
The posterior distribution of the number  of components indicates 
that  the additive model is more probable than  the dominance model, 
which reconfirms the previous conclusions in the literature. An in- 
teresting finding is the significantly high posterior probability of four 
components mixture. Whether  this is a real indication of a polygenic 
disease in the sample, or just  a statistical evidence, is an interesting 
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question remained to be explored. 
Given the wide application of mixture models and difficulties of 

EM and MCMC procedures, a practical and efficient computat ional  
algorithm is desirable. This paper  is an a t tempt  in this direction. 
Many theoretical issues and properties of the proposed algorithm re- 
main to be investigated, which is an objective of our future research. 
Computer  programs for the computat ion of the numerical results in 
this paper and for general Bayesian mixture models are available 
upon request. 

A P r o o f  o f  T h e o r e m  1 

First, by Theorem 1 of Fu and Wang (2002), for any given k G ~ ,  
there exist constants in fx~s( f ) f (x)  = co < Cl < . . .  < ck-1 < ck = 

supxcs(f) f (x ) ,  such that  subsets / ) i  = {x E S( f )  : ci-1 < f (x)  < ci}, 

i = 1, 2, ..., k form a part i t ion of S( f )  and satisfy #(Ei)  = #(S ( f ) ) / k .  
It follows that  for any Boreal set A on S ( f ) ,  as k -+ co, 

k 

E ~ # ( A  N Ei) --+ /A f ( x )p (dx ) ,  (A.1) 
i----1 

where p is the Lebesgue measure and 

f(x),(dx). 

Now given any k and a Boreal set A on S ( f ) ,  we have 

P ( X  C AISn(f)) 
k 

= ~ P ( X  e A n E i l S ~ ( f ) )  (A.2) 
i=1 

k 

= E P ( X  e E i lSn ( f ) )P(X  e A n E i l E i ) .  
i = 1  

By construction, 

P ( X  E EilSn(f)) - k " 
Ej=: fj 

Since the base points Sn(f)  = {xj} are independent  and uniformly 
distributed on S( f ) ,  by the strong law of large numbers we have, as 
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n -+ c~ and hence 1 = n /k  -+ c~, 

il 1 £ 
fi = 7 ~ f (x j )  a.s. 

j=(i-1)l+l t~(/)i) 
f (x)#(dx)  = fi 

and 

k 

Z h  = _k s(xj) 
n 

j = l  j = l  

a.s. k f s  f ( x ) # ( d x ) -  
) # (S( f ) )  ($) 

k 

u(s(f))" 

It follows that 

P(X C Ei[SN(f)) a.s. /fi. f(x)p(dx). 
i 

Again, by the strong law of large numbers, 

P ( X  E A N EilEi) - #*(An El) a.8.> #(An El) 
u*(E~) U(Ei) 

where #* is the Lebesgue counting measure. It follows from (A.2) 
that, as n --+ oo, 

k 
P(x ~ AISn(S)) o s~ ~ .(A n ~) £ 

• : -~(Ei-) ~ f(x)tz(dx). 

The theorem follows then from (A.1). 
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