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This paper proposes the second-order least squares estimation, which is an extension of the
ordinary least squares method, for censored regression models where the error term has a
general parametric distribution (not necessarily normal). The strong consistency and asymp-
totic normality of the estimator are derived under fairly general regularity conditions. We also
propose a computationally simpler estimator which is consistent and asymptotically normal
under the same regularity conditions. Finite sample behavior of the proposed estimators under
both correctly andmisspecifiedmodels are investigated throughMonte Carlo simulations. The
simulation results show that the proposed estimator using optimalweightingmatrix performs
very similar to the maximum likelihood estimator, and the estimator with the identity weight
is more robust against the misspecification.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Regression models with censored response variables arise frequently in econometrics, biostatistics, and many other areas.
In economics, such amodelwas first used by Tobin (1958) to analyze household expenditure on durable goods. Other econometric
applications of Tobit model include Heckman and MaCurdy (1986) and Killingsworth and Heckman (1986).

In the last decades, variousmethods have been introduced to estimate the parameters for various censored regressionmodels.
In particular, Amemiya (1973) and Wang (1998) investigated maximum likelihood and method of moment estimators when the
regression error distribution is normal, while Powell (1984, 1986) proposed the semiparametric estimators when the error
distribution is symmetric or satisfies certain quantile restrictions.

In practice, many variables of interests have asymmetric distributions, e.g., income and expenditures, insurance claim and
premiums, survival or failure times, etc. Regression with asymmetric error distributions has been considered by many authors,
e.g., Williams (1997), Austin et al. (2003), Marazzi and Yohai (2004), and Bianco et al. (2005). Most estimators considered belong
to a large family of the so-called M-estimators which maximize or minimize certain criteria.

Recently, Wang and Leblanc (2007) studied a second-order least squares (SLS) estimator for general nonlinear regression
models. They have shown that the SLS estimator is asymptotically more efficient than the ordinary least squares (OLS) estimator
when the error distribution has a nonzero third moment. However, the framework used in Wang and Leblanc (2007) does not
cover the censored regression model considered in the current paper. Hence our goal here is to generalize the SLS approach to
this important model.

In particular, we introduce the censoredmodel and the SLS estimator in Section 2. There we also show that the SLS estimators
are strongly consistent and asymptotically normally distributed under some general regularity conditions. The SLS estimator is
based on the first two conditional moments of the response variable given the predictor variables. In practice, it is not always
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straightforward to calculate the closed forms of thesemoments. In this case, the objective function will involvemultiple integrals
which is difficult to minimize. To overcome this numerical difficulty, in Section 3 we propose a simulation-based SLS estimator
and give its asymptotic properties. Further, in Section 4 we carry out substantial Monte Carlo simulations to study finite sample
behavior of the SLS estimators and compare them with the maximum likelihood estimator (MLE). Finally, Section 5 contains
conclusions, and theoretical assumptions and proofs are given in the Appendix.

2. SLS estimator

Consider the censored regression model

Y∗ = X′� + U, Y = max(Y∗, 0), (1)

where Y∗,Y ∈ R are latent and observed response variables, X ∈ Rp is a vector of observed predictors, and U is the random error
with density f (u;�) and satisfies E(U|X)=0 and E(U2|X) <∞. The unknown parameters are � ∈ � ⊂ Rp and � ∈ � ⊂ Rq. Although
we consider zero as the left censoring value, it can be easily replaced by any other constant.

FollowingWang and Leblanc (2007), we construct the SLS estimator based on the first two conditional moments of Y given X.
Under model (1), these two conditional moments are, respectively, given by

E(Y|X) =
∫

I(X′�0 + u)(X′�0 + u)f (u;�0) du, (2)

E(Y2|X) =
∫

I(X′�0 + u)(X′�0 + u)2f (u;�0) du, (3)

where I(u) = 1 for u>0 and I(u) = 0 for u�0. Let � = (�′,�′)′ denote the vector of model parameters and � = � × � ⊂ Rp+q the
parameter space. For every x ∈ Rp and � ∈ �, define

m1(x; �) =
∫

I(x′� + u)(x′� + u)f (u;�) du , (4)

m2(x; �) =
∫

I(x′� + u)(x′� + u)2f (u;�) du. (5)

Now suppose (Yi,X′
i)

′, i = 1, 2, . . . ,n is an i.i.d. random sample and let

�i(�) = (Yi − m1(Xi; �),Y
2
i − m2(Xi; �))

′.

Then the SLS estimator for � is defined as

�̂n = argmin
�∈�

Qn(�),

where

Qn(�) =
n∑

i=1

�′
i(�)Wi�i(�) (6)

and Wi = W(Xi) is a 2 × 2 nonnegative definite matrix which may depend on Xi. The asymptotic properties of the SLS estimator
is given below where the assumptions and proofs are in the Appendix.

Theorem 1. As n → ∞,

1. under assumptions A1--A5, the SLS �̂n
a.s.→ �0;

2. under assumptions A1--A7,
√
n(�̂n − �0)

L→N(0,B−1AB−1), where

A = E

[
��′

1(�0)
��

W1�1(�0)�
′
1(�0)W1

��1(�0)
��′

]
(7)

and

B = E

[
��′

1(�0)
��

W1
��1(�0)

��′

]
. (8)



Author's personal copy

T. Abarin, L. Wang / Journal of Statistical Planning and Inference 139 (2009) 125 -- 135 127

The SLS estimator �̂n and its asymptotic covariance matrix depend on the weighting matrix W(X). As is shown in Wang and
Leblanc (2007) or Abarin and Wang (2006),

B−1AB−1�E

[
��′

1(�0)
��

V−1 ��1(�0)
��′

]−1

(9)

and the lower bound is attained forW = V−1 in A and B, where V = E[�1(�0)�
′
1(�0)|X].

In practice V depends on unknown parameter �0, and it must be estimated before the SLS �̂n using W = V−1 is computed.
This can be done using the following two-stage procedure. First, minimize Qn(�) using the identity matrix W(X) = I2 to obtain
the first-stage estimator �̂n. Secondly, estimate V using �̂n and then minimize Qn(�) again withW = V̂−1 to obtain the two-stage
estimator ˆ̂�n. Since V̂ is consistent for V, the asymptotic covariance matrix of ˆ̂�n is given by the lower bound in (9).

In the rest of this section we consider some examples, where explicit forms of the first two moments (2) and (3) can be
obtained. The third and fourth conditional moments for these examples can be calculated similarly but are not presented here
because they are quite tedious.

Example 1. First consider the model (1) where U has a normal distribution N(0,	2
u). This is a standard Tobit model. For this

model � = (�′,	2
u)

′, and the first two conditional moments are given by

E(Y|X) = X′�

(
X′�
	u

)
+ 	u�

(
X′�
	u

)

and

E(Y2|X) = [(X′�)2 + 	2
u]


(
X′�
	u

)
+ 	u(X′�)�

(
X′�
	u

)
,

where 
 and � are the standard normal distribution and density function, respectively.

Example 2. Now consider the model (1) where (U/	u)
√
k/(k − 2) has a t distribution t(k) with k >2. Then we have

E(Y|X) = (X′�)Fk
(
X′�
	u

)
+

	u
√
k�

(
k − 1
2

)

2
√

��
(
k
2

)
(
1 + (X′�)2

k	2
u

)−(k−1)/2

and

E(Y2|X) = [(X′�)2 + k	2
u]Fk

(
X′�
	u

)
+

	u(X′�)
√
k�

(
k − 1
2

)
√

��
(
k
2

)
(
1 + (X′�)2

k	2
u

)−(k−1)/2

+ k(k − 1)	2
u

k − 2
Fk−2

⎛
⎝
√
k − 2
k

X′�
	u

⎞
⎠ ,

where Fk is the distribution function of t(k).

Example 3. Now consider the model (1) where U
√
2k/	u + k has a chi-square distribution 2(k), k >1. Then we have

E(Y|X) = (X′� + k	u) − (1 − I(X′�))
[
(X′�)Fk

(−X′�
	u

)
+ k	uFk+2

(−X′�
	u

)]

and

E(Y2|X) = (X′� + k	u)2 + 2k	2
u − (1 − I(X′�))

[
(X′�)2Fk

(−X′�
	u

)

+ 2k	u(X′�)Fk+2

(−X′�
	

)
+ 	2

uk(k + 2)Fk+4

(−X′�
	u

)]
,

where Fk is the distribution function of 2(k).

In Section 4, the above three models and the corresponding moments will be used in our Monte Carlo simulation studies.
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3. Simulation-based estimator

The numerical computation of the SLS estimator of the last section can be done using standard numerical procedures when
closed forms of the first two conditional moments are available. However, sometimes explicit forms of the integrals in (4) and
(5) may be difficult or impossible to derive. In this case numerical minimization of Qn(�) will be troublesome, especially when
the dimension of parameters p + q is greater than two or three. To overcome this computational difficulty, in this section we
consider a simulation-based approach in which the integrals are simulated by Monte Carlo methods. First note that by a change
of variables the integrals in (4) and (5) can be written as

m1(x; �) =
∫

I(u)uf (u − x′�;�) du, (10)

m2(x; �) =
∫

I(u)u2f (u − x′�;�) du. (11)

The simulation-based estimator (SBE) can be constructed in the following way. First, choose a known density g(t) with support
in [0,+∞), and generate an i.i.d. random sample {tij, j=1, 2, . . . , 2S, i=1, 2, . . . ,n} from g(t). Then approximatem1(x; �) andm2(x; �)
by the Monte Carlo simulators

m1,1(xi; �) = 1
S

S∑
j=1

tijf (tij − x′
i�;�)

g(tij)
, m1,2(xi; �) = 1

S

2S∑
j=S+1

tijf (tij − x′
i�;�)

g(tij)
,

m2,1(xi; �) = 1
S

S∑
j=1

t2ij f (tij − x′
i�;�)

g(tij)
, m2,2(xi; �) = 1

S

2S∑
j=S+1

t2ij f (tij − x′
i�;�)

g(tij)
.

Hence, a simulated version of the objective function Qn(�) can be defined as

Qn,S(�) =
n∑

i=1

�′
i,1(�)Wi�i,2(�), (12)

where

�i,1(�) = (Yi − m1,1(Xi; �),Y
2
i − m2,1(Xi; �))

′,

�i,2(�) = (Yi − m1,2(Xi; �).Y
2
i − m2,2(Xi; �))

′.

Since, �i,1(�) and �i,2(�) are conditionally independent given Yi,Xi, Qn,S(�) is an unbiased simulator for Qn(�). Finally, the SBE for
� can be defined by

�̂n,S = argmin
�∈�

Qn,S(�).

For the SBE, we have the following results.

Theorem 2. Suppose that Supp[g(t)] ⊇ [0,+∞) ∩ Supp[f (u − x′�;�)] for all � ∈ � and x ∈ Rp. Then as n → ∞,

1. under assumptions A1--A5, �̂n,S
a.s.→ �0;

2. under assumptions A1--A5 and A7--A8,
√
n(�̂n,S − �0)

L→N(0,B−1ASB
−1), where

2AS = E

[
��′

1,1(�0)

��
W1�1,2(�0)�

′
1,2(�0)W1

��1,1(�0)
��′

]

+ E

[
��′

1,1(�0)

��
W1�1,2(�0)�

′
1,1(�0)W1

��1,2(�0)
��′

]
. (13)

The proof for Theorem 2 is analogous to Theorem 3 in Wang (2004) and is therefore omitted. In general, the SBE �̂n,S is
less efficient than the SLS �̂n, due to the simulation approximation of �i(�) by �i,1(�) and �i,2(�). Wang (2004) showed that
the efficiency loss caused by simulation has a magnitude of O(1/S). Therefore, the larger the simulation size S, the smaller the
efficiency loss. Note also that the above asymptotic results do not require the simulation size S tends to infinity.
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4. Simulation studies

In this section we study finite sample behavior of the SLS estimator with both identity and optimal weighting matrices,
and compare them with the MLE. We conducted substantial simulation studies using a variety of configurations with respect
to sample size, degree of censoring, and error distribution. However, for the sake of saving space, we present here a subset of
representative results.

In particular, we simulate the three models in Examples 1--3 with � = (�0,�1)
′ and � = 	2

u. For each model, we consider the
amount of censoring of 31% and 60%, respectively. The covariate X has a normal distribution. For each model, 1000 Monte Carlo
repetitions are carried out for each of the sample sizes n = 50, 70, 100, 200, 300, 500. We computed the Monte Carlo means of
the SLS estimator using the identity weight (SLSIDEN) and the optimal weight (SLSOPT), together with their root mean squared
errors (RMSE).

The simulation results for all sample sizes are summarized in Figs. 1 and 2. In particular, Fig. 1 contains the estimates of the
model with normal errors, 60% censoring, and the true parameter values �0 = −6, �1 = 1.5 and 	2

u = 16. Fig. 2 compares the
RMSE of the estimators of 	2

u for the three models with 60% censoring. Both graphs show that the SLSOPT and MLE perform very
similarly. Further, Fig. 1 shows that all three estimators achieve their large-sample properties with moderate sample sizes, even
for a relatively high amount of censoring. Fig. 2 shows that the SLSIDEN clearly has smaller RMSE than the other two estimators
in all models.

Nextwepresentmore detailed numerical results for the sample size n=200. In particular, Tables 1 and2present the simulation
results for the models with normal, t, and 2 error distributions and 31% and 60% censoring, respectively. Moreover, we report
95% confidence intervals for the parameters as well.

Again, these results show that in general the SLS with optimal weight (SLSOPT) performs very closely to the MLE. This
pattern holds for both amount of censoring. Generally, the bias of the estimators increases as the error distribution changes from
symmetric to asymmetric. In the case of 2 error distribution, MLE shows more bias in both �0 and �1. Comparing Tables 1
and 2 reveals that as the proportion of censored observation declines, the RMSE of the estimators decreases. This is because of
decrease in the variance of the estimators. It is also apparent that the 95% confidence intervals for �1 are generally shorter than
the confidence intervals for �0 and 	2

u. As usual, estimating 	2
u with a similar accuracy or precision as regression coefficients

would need more Monte Carlo iterations.
We also examine the behavior of the estimators under misspecified distributions. In particular, we calculate the estimators

assuming the normal random errors, while the data are generated using t or 2 distributions. In each case, the error term U is
normalized to have zero mean and variance 	2

u. The simulated mean estimates, the RMSE and the biases for the sample size
n = 200 and 31% censoring are presented in Table 3. As we can see from Table 3 that, under misspecification, both the MLE and
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Fig. 1. Monte Carlo estimates of the normal model with 60% censoring and various sample sizes. The true parameter values are �0 = −6, �1 = 1.5 and 	2
u = 16.



Author's personal copy

130 T. Abarin, L. Wang / Journal of Statistical Planning and Inference 139 (2009) 125 -- 135

0.67

0.77

N
or

m
al

50 70 100 200 300 500
Sample Size

MLE
SLSOPT
SLSIDEN

0.67

0.77t

50 70 100 200 300 500
Sample Size

MLE
SLSOPT
SLSIDEN

0.72

0.77

0.82

C
hi

50 70 100 200 300 500
Sample Size

MLE
SLSOPT
SLSIDEN

Fig. 2. RMSE of the estimators of 	2
u in three models with 60% censoring and various sample sizes.

Table 1
Simulation results of three models with sample size n = 200 and 31% censoring

Error Normal t(5) 2(4)

�0 = −1.5
SLSIDEN −1.4860 −1.4483 −1.4806
RMSE 0.7428 0.7754 0.8069
95% C.I. (−1.532, −1.440) (−1.496, −1.400) (−1.531, −1.431)

MLE −1.5097 −1.5188 −1.5695
RMSE 0.4614 0.4298 0.4814
95% C.I. (−1.538, −1.481) (−1.545, −1.492) (−1.599, −1.540)

SLSOPT −1.5016 −1.5155 −1.5472
RMSE 0.4749 0.4959 0.5770
95% C.I. (−1.531, −1.472) (−1.546, −1.485) (−1.583, −1.512)

�1 = 1.5
SLSIDEN 1.4924 1.4869 1.4947
RMSE 0.1632 0.1538 0.1829
95% C.I. (1.482, 1.503) (1.477, 1.496) (1.483, 1.506)

MLE 1.4999 1.5026 1.5219
RMSE 0.1091 0.0948 0.0923
95% C.I. (1.493,1.507) (1.497,1.508) (1.516,1.527)

SLSOPT 1.4988 1.5021 1.5092
RMSE 0.1106 0.1103 0.1161
95% C.I. (1.492, 1.506) (1.495, 1.509) (1.502, 1.516)

	2
u = 16

SLSIDEN 15.9419 15.9363 15.9210
RMSE 0.6625 0.6878 0.7301
95% C.I. (15.901,15.983) (15.894,15.979) (15.876,15.966)

MLE 15.9249 15.9388 15.9287
RMSE 0.7835 0.7879 0.7549
95% C.I. (15.877, 15.973) (15.890, 15.987) (15.882, 15.975)
SLSOPT 15.9075 15.8561 15.9408
RMSE 0.7830 0.7968 0.7995
95% C.I. (15.859, 15.956) (15.807, 15.905) (15.891, 15.990)
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Table 2
Simulation results of three models with sample size n = 200 and 60% censoring

Error Normal t(5) 2(4)

�0 = −6
SLSIDEN −5.9127 −5.9714 −5.9146
RMSE 0.8471 0.8548 0.8592
95% C.I. (−5.965, −5.860) (−6.024, −5.918) (−5.968, −5.862)

MLE −6.0113 −6.0388 −6.1176
RMSE 0.5910 0.6093 0.6660
95% C.I. (−6.048, −5.975) (−6.077, −6.001) (−6.158, −6.077)

SLSOPT −6.0279 −6.0418 −6.0361
RMSE 0.6102 0.6775 0.6992
95% C.I. (−6.066, −5.990) (−6.084, −6.000) (−6.079, −5.993)

�1 = 1.5
SLSIDEN 1.4785 1.4957 1.4752
RMSE 0.2024 0.1796 0.2136
95% C.I. (1.466, 1.491) (1.485, 1.507) (1.462, 1.488)

MLE 1.5028 1.5051 1.5287
RMSE 0.1325 0.1180 0.1086
95% C.I. (1.495, 1.511) (1.498, 1.512) (1.522, 1.535)

SLSOPT 1.5059 1.5064 1.5073
RMSE 0.1346 0.1288 0.1271
95% C.I. (1.498, 1.514) (1.498, 1.514) (1.499, 1.515)

	2
u = 16

SLSIDEN 15.9563 15.9154 16.0025
RMSE 0.7177 0.7166 0.7605
95% C.I. (15.912, 16.001) (15.871, 15.960) (15.955, 16.050)
MLE 15.8526 15.8927 15.9100
RMSE 0.8185 0.8070 0.7935
95% C.I. (15.803, 15.903) (15.843, 15.942) (15.861, 15.959)

SLSOPT 15.8393 15.8426 15.9053
RMSE 0.8120 0.7959 0.8141
95% C.I. (15.790, 15.889) (15.794, 15.891) (15.855, 15.955)

Table 3
Simulation results for misspecified models with sample size n = 200 and 31% censoring

Error t(5) 2(4)

Mean RMSE Bias Mean RMSE Bias

�0 = −1.5
SLSIDEN −1.7644 0.7664 0.2644 −1.3148 0.8223 0.1852
MLE −1.7792 0.5409 0.2792 −1.8527 0.6024 0.3527
SLSOPT −1.9290 0.6285 0.4290 −2.0917 0.7539 0.5917

�1 = 1.5
SLSIDEN 1.5153 0.1583 0.0153 1.4671 0.2041 0.0329
MLE 1.5560 0.1204 0.0560 1.5430 0.1309 0.0430
SLSOPT 1.5748 0.1447 0.0748 1.5582 0.1377 0.0582

	2
u = 16

SLSIDEN 15.7071 0.6819 0.2929 16.1360 0.6900 0.1360
MLE 15.2305 0.9006 0.7695 16.6462 0.8713 0.6462
SLSOPT 15.3186 0.8878 0.6814 16.7860 0.8889 0.7860

the SLSOPT have relatively high biases. In contrast to previous simulation results, in this case the SLSIDEN performs dramatically
better in terms of bias for all the parameters and RMSE for 	2

u. This is due to the fact that in SLSIDEN, the weighting matrix does
not depend on the parameters which are poorly estimated because of misspecification. Although SLSIDEN is not as efficient as
MLE and SLSOPT in the correct specification cases, it shows more robustness in misspecified cases.

5. Conclusions

This paper proposes the second-order least squares estimators for the censored regression models where the error term has a
general parametric distribution. The asymptotic properties of the proposed estimators are derived. The finite sample properties
of the estimators with two different weighting matrices are studied and compared with the maximum likelihood estimator over
a range of error distributions and censoring degrees. We also compared the efficiency of the estimators with the MLE, in both
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correctly specified and misspecified error distributions. The results show that the proposed estimator with optimal weighting
matrix performs very similar to the MLE, and the estimator with the identity weight is more robust against the misspecification.
From a practical point of view, numerical computation of the proposed estimators is always feasible.
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Appendix A. Assumptions

In order to prove the consistency and the asymptotic normality of the SLS �̂n, we assume the following regularity conditions,
where � denotes the Lebesgue measure and ‖ · ‖ denotes the Euclidean norm.

A1. f (u;�) is continuous in � ∈ � for �-almost all u.

A2. The parameter space � ⊂ Rp+q is compact.

A3. The weightW(X) is nonnegative definite with probability one and satisfies E‖W(X)‖(Y4 + ‖X‖4 + 1) <∞.

A4. E‖W(X)‖ ∫ (u4 + 1)sup� f (u,�) du<∞.

A5. E[�(�) − �(�0)]
′W(X)[�(�) − �(�0)] = 0 if and only if � = �0.

A6. There exists an open subset �0 ∈ �0 ⊂ � in which f (u;�) is twice continuously differentiable with respect to �, for �-almost
all u. Furthermore, there exists positive function �(u), such that the first two partial derivatives of f (u;�) with respect to � are
bounded by �(u), and E‖W(X)‖ ∫ (u4 + 1)�2(u) du<∞.

A7. The matrix

B = E
[
��′(�0)

��
W(X)

��(�0)
��′

]

is nonsingular, where

��′(�0)
��

= −
(

�m1(x; �0)
��

,
�m2(x; �0)

��

)
.

In the above, assumptions A1--A4 ensure that the objective function Qn(�) is continuous and uniformly converges in �.
Additionally, assumption A5 means that the objective function Qn(�) for large n attains a unique minimum at the true parameter
value �0. Assumption A7 is necessary for the existence of the variance of the SLS �̂n. Finally, assumption A6 guarantees uniform
convergence of the second derivative of Qn(�). This assumption and the Dominated Convergence Theorem together imply that
the first derivatives �m1(X; �)/�� and �m2(X; �)/�� exist and their elements are, respectively, given by

�m1(x; �)
��

=
∫ ∞

−x′�
(x′� + u)

�f (u;�)
��

du,

�m1(x; �)
��

= x
∫ ∞

−x′�
f (u;�) du

and

�m2(x; �)
��

=
∫ ∞

−x′�
(x′� + u)2

�f (u;�)
��

du,

�m2(x; �)
��

= 2x
∫ ∞

−x′�
(x′� + u)f (u;�) du.

With the modified expression (10) and (11), assumption A6 can be substituted by the following assumption.
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A8. There exist an open subset �0 ∈ �0 ⊂ �, in which f (u − x′�;�) is twice continuously differentiable with respect to � and u.
Furthermore, there exists positive function �(u, x), such that the first two partial derivatives of f (u− x′�;�) with respect to � and
� are bounded by �(u, x), and E‖W(X)‖ ∫ (u4 + 1)�2(u,X) du<∞.

Note that Qn,S(�) is continuous in, and differentiable with respect to, �, as long as function f (u − x′�;�) has these properties.
In particular, the first derivative of �i,1(�) becomes

��′
i,1(�)

��
= −

(�m1,1(xi; �)
��

,
�m2,1(xi; �)

��

)
,

where �m1,1(xi; �)/�� is the column vector with elements

�m1,1(xi; �)
��

= 1
S

S∑
j=1

tij
g(tij)

�f (tij − x′
i�;�)

��
,

�m1,1(xi; �)
��

= 1
S

S∑
j=1

tij
g(tij)

�f (tij − x′
i�;�)

��
,

and �m2,1(xi; �)/�� is the column vector with elements

�m2,1(xi; �)
��

= 1
S

S∑
j=1

t2ij
g(tij)

�f (tij − x′
i�;�)

��
,

�m2,1(xi; �)
��

= 1
S

S∑
j=1

t2ij
g(tij)

�f (tij − x′
i�;�)

��
.

The derivatives �m1,2(xi; �)/�� and �m2,2(xi; �)/�� can be given similarly.

Appendix B. Proof of Theorem 1.1

First, assumption A1 and the Dominated Convergence Theorem imply that m1(X; �), m2(X; �) and therefore Qn(�) are contin-
uous in � ∈ �. Let Q(�) = E�′

1(�)W1�1(�). Since by Hölder's inequality and assumptions A2--A4

E‖W1‖ sup
�

[Y1 − m1(X1; �)]
2�2E‖W1‖Y21 + 2E‖W1‖ sup

�
m2

1(X1; �)

� 2E‖W1‖Y21 + 2E‖W1‖
∫

sup
�×�

(X′
1� + u)2f (u;�) du

< ∞

and

E‖W1‖ sup
�

[Y21 − m2(X1; �)]
2�2E‖W1‖Y41 + 2E‖W1‖ sup

�
m2

2(X1; �)

� 2E‖W1‖Y41 + 2E‖W1‖
∫

sup
�×�

(X′
1� + u)4f (u;�) du

< ∞,

we have

E sup
�

‖�′
1(�)W1�1(�)‖�E‖W1‖ sup

�
‖�1(�)‖2

� E‖W1‖ sup
�

[Y1 − m1(X1; �)]
2 + E‖W1‖sup�[Y21 − m2(X1; �)]

2

< ∞. (14)

It follows from Jennrich (1969, Theorem 2) that (1/n)Qn(�) converges almost surely to Q(�) uniformly in � ∈ �. Further, since

E[�′
1(�0)W1(�1(�) − �1(�0))] = E[E(�′

1(�0)|X1)W1(�1(�) − �1(�0))] = 0,
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we have

Q(�) = Q(�0) + E[(�1(�) − �1(�0))
′W1(�1(�) − �1(�0))].

It follows that Q(�)�Q(�0) and, by assumption A5, equality holds if and only if � = �0. Thus all conditions of Amemiya (1973,

Lemma 3) hold and, therefore, �̂n
a.s.→ �0 follows.

Appendix C. Proof of Theorem 1.2

By assumption A6 the first derivative �Qn(�)/�� exists and has a first-order Taylor expansion in a neighborhood �0 ⊂ � of �0.
Since �Qn(�̂n)/�� = 0 and �̂n

a.s.→ �0, for sufficiently large n we have

0 = �Qn(�0)
��

+ �2Qn(�̃n)
����′ (�̂n − �0), (15)

where ‖�̃n − �0‖�‖�̂n − �0‖. The first derivative of Qn(�) in (15) is given by

�Qn(�)
��

= 2
n∑

i=1

��′
i(�)
��

Wi�i(�),

where

��′
i(�)
��

= −
(

�m1(Xi; �)
��

,
�m2(Xi; �)

��

)

and the first derivatives ofm1(Xi; �) andm2(Xi; �) with respect to � are given after assumption A7. Therefore, by the Central Limit
Theorem we have

1√
n

�Qn(�0)
��

L→N(0, 4A), (16)

where

A = E

[
��′

1(�0)
��

W1�1(�0)�
′
1(�0)W1

��1(�0)
��′

]
.

The second derivative of Qn(�) in (15) is given by

�2Qn(�)
����′ = 2

n∑
i=1

[
��′

i(�)
��

Wi
��i(�)
��′ + (�′

i(�)Wi ⊗ Ip+q)
�vec(��′

i(�)/��)
��′

]
,

where

�vec(��′
i(�)/��)

��′ = −
(

�2m1(X; �)
����′ ,

�2m2(X; �)
����′

)′
.

The elements in �2m1(x; �)/����′ are

�2m1(x; �)
����′ =

∫ ∞

−x′�
(x′� + u)

�2f (u;�)
����′ du,

�2m1(x; �)
����′ = x

∫ ∞

−x′�
�f (u;�)

��′ du,

�2m1(x; �)
����′ = xx′f (−x′�;�),

and the elements in �2m2(x; �)/����′ are

�2m2(x; �)
����′ =

∫ ∞

−x′�
(x′� + u)2

�2f (u;�)
����′ du,
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�2m2(x; �)
����′ = 2x

∫ ∞

−x′�
(x′� + u)

�f (u;�)
��′ du,

�2m2(x; �)
����′ = 2xx′

∫ ∞

−x′�
f (u;�) du.

Analogous to the proof of Theorem 1.1, in the following we verify by assumption A6 and Jennrich (1969, Theorem 2) that
(1/n)�2Qn(�)/����′ converges almost surely to �2Q(�)/����′ uniformly in � ∈ �0. First, assumption A6 implies

E sup
�

∥∥∥∥∥��′
1(�)
��

W1
��1(�)

��′

∥∥∥∥∥ <∞

and

E sup
�

∥∥∥∥∥(�′
1(�)W1 ⊗ Ip+q)

�vec(��′
1(�)/��)

��′

∥∥∥∥∥
�
√
2(p + q)E‖W1‖sup�‖�1(�)‖

∥∥∥∥∥�vec(��′
1(�)/��)

��′

∥∥∥∥∥
�
√
2(p + q)

⎛
⎝E‖W1‖ sup

�
‖�1(�)‖2E‖W1‖ sup

�

∥∥∥∥∥�vec(��′
1(�)/��)

��′

∥∥∥∥∥
2
⎞
⎠
1/2

<∞,

where the last inequality holds, because

E

(
‖W1‖ sup

�

∥∥∥∥∥�vec(��′
1(�)/��)

��′

∥∥∥∥∥
)2

<∞

and, by (14), E‖W1‖sup�‖�1(�)‖2 <∞. Therefore by Amemiya (1973, Lemma 4) we have

1
n

�2Qn(�̃n)
����′

a.s.→ 2E

[
��′

1(�0)
��

W1
��1(�0)

��′ + (�′
1(�0)W1 ⊗ Ip+q)

�vec(��′
1(�0)/��)

��′

]

= 2B, (17)

where the second equality holds, because

E

[
(�′

1(�0)W1 ⊗ Ip+q)
�vec(��′

1(�0)/��)
��′

]
= E

[
(E(�′

1(�0)|X1)W1 ⊗ Ip+q)
�vec(��′

1(�0)/��)
��′

]

= 0.

It follows then from (15)--(17), assumption A7 and the Slutsky Theorem, that
√
n(�̂n − �0)

L→N(0,B−1AB−1).
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