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Abstract We study a linear mixed effects model for longitudinal data, where the re-
sponse variable and covariates with fixed effects are subject to measurement error.
We propose a method of moment estimation that does not require any assumption on
the functional forms of the distributions of random effects and other random errors in
the model. For a classical measurement error model we apply the instrumental vari-
able approach to ensure identifiability of the parameters. Our methodology, without
instrumental variables, can be applied to Berkson measurement errors. Using simula-
tion studies, we investigate the finite sample performances of the estimators and show
the impact of measurement error on the covariates and the response on the estimation
procedure. The results show that our method performs quite satisfactory, especially
for the fixed effects with measurement error (even under misspecification of measure-
ment error model). This method is applied to a real data example of a large birth and
child cohort study.
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1 Introduction

It is widely recognized that both genetic and environmental factors influence almost
every complex trait, and also that these genetic risks result from a large number of
individually small effect sizes. Genetic factors are also likely to interact with envi-
ronmental factors. Studies of gene-environment interactions (GEIs) can improve the
accuracy and precision of the assessment of both genetic and environmental influ-
ences. There are many GEI studies using longitudinal data (e.g. [16, 26, 28, 34]) that
assume that all the environmental factors are measured accurately. Other studies such
as Burton et al. [13], Thomas [31], Marchand and Wilkens [24], and Wong et al. [39]
only acknowledge the presence of measurement error (ME) in the covariates and its
impact on GEI estimates, but they did not adjust for the bias that ME causes on the
estimators.

For the aforementioned reasons, the maximum likelihood [21] is still the most
common method of estimating GEI effects in longitudinal studies. This methodology
ignores ME and has restrictions on the distributional assumptions on model error
terms and random effects.

For independent observations, a comprehensive review of ME correction methods
is given in Fuller [17] and Carroll et al. [14]. In an early study, Tosteson et al. [32]
used repeated measures on the covariates X and a normality assumption on ME to
correct the bias of the estimators. There are several methodologies suggested to deal
with ME in linear and nonlinear models. Some authors study regression calibration
and simulation extrapolation [12, 37, 38] for generalized linear mixed effects models
with ME. These two methods are only approximately consistent. A similar problem
arises in the nonparametric method of Carroll and Wand [15]. A major difficulty
in applying these approaches is that the unobserved covariate has repeated measures
which are likely correlated. Likelihood-based methods have also been investigated by
Buonaccorsi [8] and Buonaccorsi et al. [12]. Generally, likelihood approaches suffer
from restrictive distributional assumptions on the random effects, ME, covariates with
ME and the model error term. Since random effects, error-prone covariates and ME
are unobservable, likelihood-based approaches might not be realistic. They are also
known to be sensitive to distributional assumptions and outliers, even in mixed effects
models without ME. Non- or semi-parametric approaches have also been considered,
for example, by Tsiatis and Davidian [33], who relax the normality assumption of the
random effects but not of the ME. Pan et al. [25] also considered an approach that
relaxes the distributional assumption on the underlying error-prone covariates but not
on the ME nor on the response.

ME on response has been considered in some studies [6, 18, 19]. Carroll et al.
[14] considered an unbiased response while others considered biased response and
corrected for the bias [9, 10].

Motivated by the Raine study, a large birth and child cohort in Australia, we pro-
pose a method of moments estimation for a linear mixed effects model (LMEM)
for longitudinal data with ME on covariates and response based on the conditional
moments of the response given the observed covariates. The proposed approach
does not require any parametric assumptions on the distributions of the covariates
with ME, random effects, and measurement errors, which are difficult to check in



Stat Biosci (2014) 6:1–18 3

practice. Wang [35] applied a methodology to a nonlinear homoscedastic regression
model with Berkson type measurement error only on the covariates and showed that
it is identifiable without extra information. Li [22] applied a similar method called
second-order least squares to the LMEM and to the nonlinear mixed effects model
without ME. In addition, Li and Wang [23] investigated various computational issues
related to the proposed estimator, such as redescending property and its robustness
against data contamination.

Classical ME models usually need extra information such as replicate data or in-
strumental variables in order to be identifiable. Abarin and Wang [2] suggested a
semi-parametric method for estimating parameters of generalized linear regression
models with the classical ME model. They considered a model for instrumental vari-
ables to deal with the identifiability issue. Following the ideas proposed by Abarin
and Wang [2], and Li and Wang [23], we propose an instrumental variable model for
a linear mixed effects model with ME on covariates and response. Here we show that,
using moment equations, we can estimate all the parameters of interest in the model.
Using simulation studies, we investigate the finite sample performances of the esti-
mators and show the impact of ME on the covariates and response on the estimation
procedure. We also apply this method to a real example from a large birth and child
cohort study in Australia (Raine).

This paper is organized as follows. In Sect. 2, we introduce the LMEM for a re-
sponse with ME and also classical ME models for the error-prone covariates. We also
present the method of moments estimators and show how instrumental variables can
be applied to the estimation procedure. In Sect. 3, we examine an alternative model
with a Berkson ME on covariates. We investigate the finite sample performances of
the proposed estimators in comparison with the naive MLE both for the Berkson and
for the classical ME models in Sect. 4. In this section, we also examine how the
method of moments estimators behaves when we have misspecification in the ME
model on covariates. The estimation approaches are illustrated in Sect. 5 with the
analysis of a data set from the Raine study. Finally, a summary and discussion are
provided in Sect. 6.

2 Linear Mixed Effects Model with Measurement Error

Motivated by the Raine study, we define a linear mixed measurement error model for
the j th observation on the ith individual as

Yij = Aijβ + Bij νi + δij , i = 1, . . . , n, j = 1, . . . ,Ni, (1)

where Yij is the j th response for the ith observation, Aij = (1,X′
ij ,Z

′
ij ) is the design

matrix for fixed effects, Bij = (1,Z′
ij ) is the design matrix for random effects, Xij ∈

R
px is the vector of predictors with measurement error, Zij ∈ R

pz is the vector of
accurately measured covariates, β = (β0, β

′
x, β

′
z)

′ is the vector of fixed effects, and
δij s are mutually independent error terms (see Summary and Discussion for further
details regarding this assumption) with zero mean and equal variances σ 2

δ . Here we
used Z for both fixed effects and random effects without ME. Obviously, in practice,
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these two sets of variables might be different, as in the example in Sect. 5. This was
done to simplify the notations.

In model (1), νi = (ν0i , ν
′
zi)

′ are vectors of random effects, independent of ob-
served covariates, associated with an individual i, and have a general distribution
with mean 0 and covariance matrix Σν . Here, we could include an interaction term
between X and one or more variables in the design matrix B . It does not make any
difference in our methodology, so for simplicity, we work with model (1). Further,
suppose that Xij is unobservable. Instead, we observe Wij defined as

Wij = Xij + εij , (2)

where ε is a random measurement error with mean 0 (see Summary and Discussion
for further details regarding this assumption) and independent from X. This is called
a classical additive ME model [14], which is the most common model for ME on
covariates. This model allows random effects on the covariates that have no measure-
ment errors. We also suggest a classical measurement error for the response as

Sij = Yij + ξij , (3)

where ξ is a random measurement error with mean 0 and covariance matrix σ 2
ξ I .

This model also assumes that ξ is independent from Y . Moreover, we assume that
W is surrogate, meaning that given the true covariates, W does not provide any extra
information regarding the distribution of the response. As we mentioned earlier, this
model selection is motivated by our study on the Raine study. More details regarding
this model selection is provided in Sect. 5.

It is not obvious how to determine the parameters for which the naive estimators
are inconsistent unless we have more assumptions on the model. For example, Carroll
et al. [14] showed that if X is normally distributed, if a classical additive error model
holds, and if X and Z are independent, then the naive estimator will be consistent
only for the fixed and the random effects corresponding to Z. Unlike the impact of
ME on X, it is straightforward to see how ME affects the response under the classical
additive ME model in (3). Since this model assumes that Y and ξ are independent
and ξ has mean 0, the naive estimator that uses S instead of Y remains unbiased.
However, ignoring ME on Y and simply assuming that the error gets absorbed into
the model error is a myth. Even an unbiased ME on response increases the variability
of the fitted model [14].

Following Schennach [30], Abarin and Wang [2], and Wang and Hsiao [36], we
assume that an instrumental variable V ∈ R

q is available and related to X through

Xij = GVij + Uij , (4)

where G is a row full rank matrix of unknown parameters and U is independent from
V and ε, with mean 0 and variance–covariance matrix σ 2

u I . Further, all random er-
rors and random effects (δ, ε, ξ,U, ν) are mutually independent and have conditional
mean 0 given (V , Z). Since there is no assumption concerning the functional forms
of the distributions of X, δ, ε, and ξ , the model (1)–(3) is semi-parametric. Substitut-
ing (4) into (2) results in the linear regression equation

E(Wij |V ) = GVij . (5)
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In practice, one can estimate G consistently, either using an external independent
sample or a subset of the main sample, and estimate the other parameters using the
rest of the sample. We let Xi = (X′

i1,X
′
i2, . . . ,X

′
iNi

), and Wi,Vi analogously, so G

can be estimated by

Ĝ =
(

n∑
i=1

WiV
′
i

)(
n∑

i=1

ViV
′
i

)−1

. (6)

Based on Abarin and Wang [2] and Li and Wang [23], we can write three sets of
conditional moments as

E(Sij |V,Z) = Dijβ, (7)

E(SijSik|V,Z) = E(Sij |V,Z)E(Sik|V,Z) + BijΣνB
′
ik

+ σuijk
β ′

xβx + σδijk
+ σξijk

, (8)

and

E(SijWik|V,Z) = DijβGVik + σuijk
βx, (9)

where Dij = (1,V ′
ijG

′,Z′
ij ), and σuijk

= σ 2
u if j = k and 0 otherwise. Similarly,

σδijk
= σ 2

δ and σξijk
= σ 2

ξ if j = k and 0 otherwise. Schennach [30], Wang and Hsiao
[36] have shown that for a general model with independent cross-sectional data and
ME only on the covariates, the parameters can be identified using V and these mo-
ment equations, provided certain regularity conditions hold. As we can see in the
second conditional moment, σδijk

and σξijk
appear together and therefore are not iden-

tifiable. In practice, we can estimate σξijk
using an external independent sample or a

validation subsample. Although in practice σ 2
ξ and σ 2

u are not usually the parameters

of interest, estimating σ 2
ξ guarantees a consistent estimator for σ 2

δ . In this case, after

estimating σ 2
ξ , σ 2

δ can be estimated by subtracting σ̂ 2
ξ from the total variability of δ

and ξ .
In this model, the observed vector of variables is (S,Z,W,V ). Our interest is to

estimate γ = (β ′,vec(Σν)
′, σ 2

δ , σ 2
u )′.

Define ρi(γ ) to be (Sij − E(Sij |V,Z),1 ≤ j ≤ Ni,Sij Sik − E(SijSik|V,Z),

SijWij − E(SijWij | V,Z),1 ≤ j ≤ k ≤ Ni)
′. Then the method of moments esti-

mator (MME) for γ is defined as

γ̂MME = arg min
γ∈Γ

Qn(γ ) = arg min
γ∈Γ

n∑
i=1

ρ′
i (γ )Hiρi(γ ), (10)

where Hi is a nonnegative definite matrix which may depend on V and Z.
We should also mention that adding interaction terms between X and one or more

variables in the design matrix B does not affect our estimation procedure. Wang et
al. [32] showed that the naive estimator of the coefficients corresponding to the vari-
able with ME for Gaussian data and a classic ME model are asymptotically biased.
Since the naive estimator of the coefficients corresponding to the variable with ME is
biased, intuitively we can assume that the estimator of the interaction term with it is
also biased.
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Theorem 2.1 Under some regularity conditions, γ̂MME is strongly consistent and√
n(γ̂MME − γ0)

L→ N(0, κ−1CτC′κ−1) as n → ∞, where γ0 is the true value for γ .
Here,

C =
[
I,E

(
∂ρ′(γ0)

∂γ
H

∂ρ(γ0)

∂ψ ′

)(
EV V ′ ⊗ I

)−1
]
,

τ =
(

τ11 τ12
τ ′

12 τ22

)
,

τ11 = E

[
∂ρ′(γ0)

∂γ
Hρ(γ0)ρ

′(γ0)H
∂ρ(γ0)

∂γ ′

]
,

τ12 = E

[
∂ρ′(γ0)

∂γ
Hρ(γ0)

(
(W − GV )′ ⊗ V ′)],

τ22 = E
[
V V ′ ⊗ (W − GV )(W − GV )′

]
,

and

κ = E

[
∂ρ′(γ0)

∂γ
H

∂ρ(γ0)

∂γ ′

]
. (11)

Proof Proofs can be found in the Supplementary Materials. �

We notice that estimating G creates extra variation in the final estimator. If G was
known, τ would be reduced to

τ = E

[
∂ρ′(γ0)

∂γ
Hρ(γ0)ρ

′(γ0)H
∂ρ(γ0)

∂γ ′

]
. (12)

The theorem actually shows that MME gets closer to the true value of the param-
eter, when the sample size increases. Therefore, the finite sample bias of this method
decreases with an increase in the sample size. This is not the case with the naive
estimator, however, which does not decrease with an increase in the sample size.

The above asymptotic covariance matrix depends on the weighting matrix Hi . It is
of interest to choose an appropriate matrix Hi to obtain the most efficient estimator.
It can be shown [4] that the most efficient choice of weight is Hi = F−1

i , where
Fi = E(ρiρ

′
i |V,Z), which leads to the covariance matrix

E

[
∂ρ′

i (γ0)

∂γ
F−1

i

∂ρi(γ0)

∂γ ′

]−1

. (13)

In practice, Fi is a function of unknown parameters and must be estimated. This
can be done using the following procedure. First, minimize Qn(γ ) with the iden-
tity matrix to obtain the first-stage estimator γ̂

(1)
MME. Then, estimate Fi by F̂i =

1
n

∑n
i=1 ρi(γ̂

(1)
MME)ρ′

i (γ̂
(1)
MME) or, alternatively, by a nonparametric estimator and then

minimize Qn(γ ) again with Hi = F̂−1
i to obtain the second-stage estimator γ̂

(2)
MME.
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Since F̂i is consistent for Fi , the asymptotic covariance of γ̂
(2)
MME is given by (13).

Consequently γ̂
(2)
MME is asymptotically more efficient than the first-stage estimator

γ̂
(1)
MME. The iteration process continues until convergence. As can be seen, Fi is the

same for all the individuals. While there might be other ways of computing the
weighting matrix, ours is probably the most convenient one. There are other methods
to compute the weighting matrices for each individual. In practice, matrix Fi might
be singular or near singular. To ease computational difficulties, it is more practical
to use a diagonal form of (13). In theory, this matrix is not as efficient as the opti-
mum weighting matrix; however, it has been shown in the numerical studies by Li
and Wang [23] that the efficiency loss is considerably small.

3 Berkson Measurement Error Models for Covariates

A Berkson ME model [5] for Xij is defined as

Xij = Wij + ωij , (14)

where ω is a random measurement error with mean 0 and variance–covariance matrix
σ 2

ωI independent from W . Here we assume that the true covariate has more variability
than the observed covariate. Although (14) might look similar to (2), they are actually
very different. “Basically, if the covariate with ME is necessarily measured uniquely
to an individual, and especially if that measurement can be replicated, the ME model
is classical. On the other hand, if all individuals in a small group are given the same
value of the covariate with ME, but the true covariate is particular to an individual,
then the ME model is Berkson” [14]. Moreover, in (14), W and ω are independent,
which results in var(X) > var(W), while for a classical ME model, var(W) > var(X).

Substituting (3) and (14) into (1), we have

Sij = Cijβ + Bij νi + δij + ω′
ij βx + ξij , i = 1, . . . , n, j = 1, . . . ,Ni, (15)

where Cij = (1,W ′
ij ,Z

′
ij ). Comparing the parameters in (1) to those in (15), we can

see that the naive estimators (which ignore ME) of fixed effects and the variance
components of Σν are consistent. The only variance component for which the naive
estimator is inconsistent is σ 2

δ . Since the error in (15) is δij + ω′
ij βx + ξij , the naive

estimator is consistent for σ 2
δ + σ 2

ωβ ′
xβx + σ 2

ξ instead of σ 2
δ . Even if we estimate σ 2

ξ

using either an external sample or a subset of the main sample in advance, σ 2
δ is still

not identifiable. This estimator is crucial for predicting the response using the true
covariates. More specifically, in testing hypotheses, the presence of ME on some of
the covariates overestimates σ 2

δ potentially causing “false negative” results. Similarly,
all random errors and random effects (δ, ω, ξ , ν) are mutually independent and have
conditional mean 0 given (X, Z). To illustrate how an interaction term between X

and Z can affect the estimation procedure, for now, we assume that our model is

Yij = β0 + βxXij + βzZij + βzxXijZij + Bij νi + δij ,

i = 1, . . . , n, j = 1, . . . ,Ni. (16)
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Substituting (3) and (14) into (16), we have

Sij = β0 + βxWij + βzZij + βzxWijZij + Bij νi

+ δij + βxωij + βzxωijZij + ξij , i = 1, . . . , n, j = 1, . . . ,Ni.

This shows that the naive estimator of the effect on the interaction term is unbiased
and that adding an interaction term in the model only increases the variability of δ.
This also shows that the interaction term does not affect MME either since we treat
the interaction term as a new effect.

Now we show that using only the first two moment equations, we can estimate all
the parameters of interest. Following the methodology of Wang [35] under the model
assumptions, the conditional mean of the observed response Sij given observed vari-
ables is given by

E(Sij |W,Z) = Cijβ, (17)

and the moments of Sij given W and Z are

E(SijSik|W,Z) = E(Sij |W,Z)E(Sik|W,Z) + BijΣνB
′
ik

+ σωijk
β ′

xβx + σδijk
+ σξijk

, (18)

where σωijk
= σ 2

ω if j = k, and 0 otherwise. For this case, we define ρi(γ ) to be
(Sij − E(Sij |W,Z),1 ≤ j ≤ Ni,Sij Sik − E(SijSik|W,Z),1 ≤ j ≤ k ≤ Ni)

′, and the
method of moments estimator (MME) for γ is defined as

γ̂MME = arg min
γ∈Γ

Qn(γ ) = arg min
γ∈Γ

n∑
i=1

ρ′
i (γ )Hiρi(γ ), (19)

where Hi is a nonnegative definite matrix which may depend on W and Z. Here
again, we need to have additional information on σξijk

in order to have a consistent
estimate for σδijk

. Similar to the classic model for X, it can be shown that γ̂MME

is strongly consistent and asymptotically normally distributed with mean 0 and the
covariance matrix given by A−1BA−1 as n → ∞, where γ0 is the true value for γ .
Here,

B = E

[
∂ρ′(γ0)

∂γ
Hρ(γ0)ρ

′(γ0)H
∂ρ(γ0)

∂γ ′

]
,

and

A = E

[
∂ρ′(γ0)

∂γ
H

∂ρ(γ0)

∂γ ′

]
. (20)

The proofs of these two properties of MME can be found in the Supplementary
Materials.
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4 Simulation Studies

In this section, we carry out simulation studies with different scenarios to show the
impact of ME on covariates only, or on both covariates and the response, using the
method of moments and naive maximum likelihood estimators. We are also interested
in examining the impact of the sample size on the estimators and their finite sample
behavior. We examined these issues under both classical and Berkson ME models.
Moreover, we investigated the sensitivity of MME under misspecification of the ME
model.

4.1 The Set Up

We considered the following simple LMEM with two different sample sizes n = 100
and n = 300:

Yij = β0 + β1Xij + ν0i + δij , j = 1, . . . ,4. (21)

The random intercept ν0i was generated from a normal distribution with mean 0
and variance 0.25, and δij was generated from a standard normal distribution. The
parameters of interest are β0 = 8, β1 = 2, σ 2

ν0
= 0.25, and σ 2

δ = 1.

4.2 Case One—Classical ME

The instrumental variable, U , and ε, were all generated from a standard normal dis-
tribution. Then we generated the unobserved X through an instrumental model that
describes the relationship between X and V according to

Xi = 1.2 + 0.4 · Vi + Ui, (22)

where U is independent from V and ε. The values of 1.2 and 0.4 are only arbitrary
and assumed to be known. We could therefore generate W according to the following
calorical ME model:

Wi = Xi + εi .

Here, we assume one observation for every individual.

4.3 Case Two—Berkson ME

We generated the unobserved X according to

Xi = Wi + ωi,

where W and ω are independent and have standard normal distributions.
For both cases, error-prone response was generated according to model (3), where

ξij has a standard normal distribution. In order to be able to estimate σ 2
δ when we

have ME on response, we treated σ 2
ξ as known.

The reason for generating all the variables from normal distributions is to make a
fair comparison with the naive MLE. We could examine other distributions because
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MME works well for them. However, since there are no standard functions available
for the naive MLE for those distributions, we avoided them. In fact, MME shows
superiority to MLE in a misspecified censored model without ME [3]. So, we would
expect to see that it performs better than MLE in this model as well.

4.4 Case Three—Misspecified ME

To examine the sensitivity of the MME when we have misspecification in the ME
model on covariates, we assumed that the ME model for X is classical when it was
actually Berkson. A classical ME is the most frequently used model, so most likely
to be chosen by default when one does not know the details of the design of a study.
In order to ensure that all the relationships between the variables are satisfied, we
generated U and ω independently from a standard normal distribution and then gen-
erated W and V from a bivariate normal distribution with mean vector (0.2,0)′ and
variances of 3.96 and 1.4, respectively. The covariance between the two variables
can be easily calculated based on (22) and the classical ME for X. In the last step, we
generated X from a Berkson model. All values are only arbitrary.

For each of the sample sizes, R = 1000 Monte Carlo replicates were simulated and
the Monte-Carlo mean estimates and root mean squared errors (RMSE) of the esti-
mators were computed. All computations were done in R, and ML (naive) estimates
were obtained from the lmer package. The MME was computed using fully esti-
mated optimal weight. To determine how well the methods perform, we present the
bias and RMSE of the estimators. To eliminate some potential nonlinear numerical
optimization problems in the determination of the starting points, the true parame-
ter values were used as starting values for the minimization and the optimal weight
calculation for the MME method. For faster results, it is better to have a consistent
estimator as a starting point for MME. In practice, although it is not consistent, the
naive estimator can be used.

4.5 Results

Tables 1–5 summarize the results of the simulations.

4.5.1 Case One—Classical ME

Table 1 shows the results for a classical model when we have ME on X only. Ta-
ble 2 shows the results for a classical model when we have ME on both X and Y . As

Table 1 Bias (RMSE) of the MLE and MME estimators based on 1000 Monte-Carlo simulations for the
classical ME model with ME on X

True value n = 100 n = 300 CP

MLE MME MLE MME

β0 = 8 0.1031(0.1499) 0.0060(0.0921) 0.1003(0.1197) −0.0001(0.0631) 94.8 %

β1 = 2 −0.5068(0.5093) −0.0406(0.0669) −0.5050(0.5059) −0.0176(0.0436) 95.0 %

σ 2
ν0

= 0.25 0.0078(0.1786) 0.0079(0.3487) −0.0021(0.1113) 0.0063(0.2250) 56.8 %

σ 2
δ = 1 2.9808(2.9963) 0.0121(0.4393) 2.9961(3.0019) 0.0240(0.3018) 37.9 %
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Table 2 Bias (RMSE) of the MLE and MME estimators based on 1000 Monte-Carlo simulations for the
classical ME model with ME on both X and Y

True value n = 100 n = 300 CP

MLE MME MLE MME

β0 = 8 0.0952(0.1534) 0.0024(0.1036) 0.0996(0.1214) −0.0001(0.0690) 93.9 %

β1 = 2 −0.5035(0.5066) −0.0441(0.0759) −0.5044(0.5055) −0.0213(0.0511) 94.9 %

σ 2
ν0

= 0.25 0.0221(0.2166) 0.0352(0.4088) 0.0003(0.1323) 0.0194(0.2536) 45.6 %

σ 2
δ = 1 3.9773(3.9960) −0.0605(0.5110) 3.9874(3.9943) 0.0031(0.3433) 39.6 %

Table 3 Bias (RMSE) of the MLE and MME estimators based on 1000 Monte-Carlo simulations for the
Berkson ME model with ME on X

True value n = 100 n = 300 CP

MLE MME MLE MME

β0 = 8 0.0021(0.1587) 0.0009(0.1526) −0.0006(0.0904) −0.0062(0.0952) 95.1 %

β1 = 2 0.0004(0.0801) −0.0322(0.0782) −0.0007(0.0456) −0.0103(0.0487) 95.0 %

σ 2
ν0

= 1.96 0.0077(0.3510) −0.0942(0.4650) 0.0123(0.1994) −0.0197(0.2684) 45.6 %

σ 2
δ = 1 0.9996(1.013) −0.0795(0.2950) 1.0052(1.0095) −0.0289(0.1760) 39.6 %

Table 4 Bias (RMSE) of the MLE and MME estimators based on 1000 Monte-Carlo simulations for the
Berkson ME model with ME on both X and Y

True value n = 100 n = 300 CP

MLE MME MLE MME

β0 = 8 0.0062(0.1595) −0.0169(0.1595) −0.0013(0.0939) −0.0107(0.0977) 94.3 %

β1 = 2 0.0023(0.0962) −0.0295(0.0959) −0.0012(0.0555) −0.0080(0.0585) 95.2 %

σ 2
ν0

= 1.96 0.0155(0.3973) 0.0180(0.5260) 0.0050(0.2243) 0.0088(0.2881) 35.9 %

σ 2
δ = 1 1.9948(2.0098) −0.1580(0.4084) 2.0024(2.0072) −0.0485(0.2199) 45.0 %

Table 5 Bias (RMSE) of the
MME estimators based on 1000
Monte-Carlo iterations for a
misspecified ME model with
ME on X, n = 100

True value Bias RMSE

β0 = 8 −0.0552 0.1740

β1 = 2 −0.0238 0.0851

σ 2
ν0

= 1.96 0.3993 0.8383

σ 2
δ = 1 2.5306 2.6248

expected, the naive estimator for all the parameters (except σ 2
ν0

) is more biased than
MME. We also notice that the bias in MLE is persistent even when we increase the
sample size to 300 while the bias in MME decreases. MLE has a smaller bias than
MME in estimating σ 2

ν0
. Theoretically, MLE of σ 2

ν0
is unbiased [32]. This is not very
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surprising, since MLE is using the strength of the full information on the distribution
of X, δ and ν0. Both estimators have smaller bias on σ 2

ν0
when the sample size in-

creases. The large bias in the naive variance estimator of δ shows an overestimation
of the variability of the model error term. This bias increases even more when MLE
ignores the ME on both X and Y .

4.5.2 Case Two—Berkson ME

Tables 3 and 4 summarize the results for the Berkson case with either ME on X only
(Table 3) or ME on both X and Y (Table 4). Although MME shows a larger finite
sample bias in estimating β0, β1 and σ 2

ν0
, as we theoretically demonstrated, MLE has

a much larger bias in estimating σ 2
δ . The finite sample bias in MME reduces with in-

creasing n, but this is not the case for MLE. This bias increases to a very large amount
when we have ME on both X and Y . This indicates the large impact of ignoring ME
on both covariate and response for the naive estimator. As for the classical model, the
finite sample bias in MME is due to the minimum use of information regarding the
distribution of the variables in the models. As previously stated, an additive classical
ME is the most common model for ME on variables. As suggested from the results of
the simulations, in this case, MME can provide much more reliable estimators for all
the parameters of the model than the naive ML estimator especially when the sample
size is large enough.

In Tables 1–4, we also added the coverage probabilities (CP) of the MM estimators
for n = 300. The results show that the average coverage probability for the fixed
effects is about 95 %. The coverage probability of the variance of the random effect
varies between 35.9 % and 56.8 %.

4.5.3 Case Three—Misspecified ME

Table 5 shows that under the misspecified ME model for X, MME still provides
quite satisfying estimators for fixed effects, even for a relatively small sample size.
Although the estimators for the variance of the random effect σ 2

ν0
and the model error

term σ 2
δ are biased, the results are encouraging because fixed effects are often of

more interest. Considering that MME does not use any distributional assumptions on
any of the random variables in the model, it still provides satisfactory estimators for
most of the parameters of interest in real applications. The large biases in σ 2

ν0
and σ 2

δ

can be explained by two factors. First, var(W) > var(X) implied by the classical ME
model is a wrong assumption (under the misspecified ME), when the true Berkson
ME model requires that var(W) < var(X). More generally, the ME model is a part of
the full model, so if the ME model is misspecified, then the full model is misspecified.
Second, V has a weaker correlation with X than W . So the estimates based on V are
usually less accurate than those based on W .

Comparing Tables 3 and 5, one might find that MLE is a better estimator in the case
of misspecification. MLE does not need the ME model and, for the Berkson model,
it provides unbiased estimators for both random and fixed effects (see Sect. 3 and
Buonaccorsi and Lin [11]), so it can be a better choice. If we know the distributions
of all the variables in the model and the ME model is Berkson, but we do not know
its specification, then the MLE could be a better option. Generally, however, ignoring
ME leads to biased estimators even if we know the distributions of the variables.
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5 Application—Raine: A Birth and Child Cohort Study

The Western Australian birth and child (Raine) cohort is an ongoing health research
study in which pregnant women were recruited between 16 and 18 weeks gestation
and their children followed from birth to 13 years. The LMEM was used to model
the children’s BMI growth trajectories in this study as a function of the gene FTO (fat
mass- and obesity-associated) and, more particularly, the single-nucleotide polymor-
phism (SNP) rs9939609 in this gene following from the work of Abarin et al. [1]. The
purpose of our study is to test for an interaction between this SNP and duration of
breast feeding (BF) accounting for possible ME on BMI and BF. We studied a sample
of 1096 children who were followed from birth to 13 years. The following model is
considered for BMI at time j = 0,1,2,3,8,10,13 for an individual i:

BMI =
{

aInf
0 + aInf

1 (Age − 1.5) + αInf
2 (Age − 1.5)2 + Xβ + ε if Age < 1.5

aCh
0 + aCh

1 (Age − 1.5) + αCh
2 (Age − 1.5)2 + Xβ + ε if Age ≥ 1.5

where X is a vector of fixed effects including the FTO SNP (coded with two dummy
variables for the heterozygotes (TA) and homozygotes of the rare allele (AA)), BF,
the interaction between the SNP and BF, the interaction between BF and age, and the
interaction between the SNP and age. In the equation, Inf is used for Age < 1.5 as an
infant, and Ch is used for Age ≥ 1.5 as a child. The coefficients aInf

1 , aCh
1 represent the

mean acceleration/deceleration of BMI during infancy and childhood, and the index 0
stands for a random intercept and 1 for a random slope. In order to enforce continuity
between the two time windows, we rewrite the model which enforces continuity at
the breakpoint 1.5 as

Y = a0 + a1(Age − 1.5) + I [Age < 1.5]αInf
2 (Age − 1.5)2

+ I [Age ≥ 1.5]αCh
2 (Age − 1.5)2 + Xβ + ε, (23)

where I is an indicator function.
Since the BMI growth trajectories are not identical across individuals, we also

included the random intercept ν0 and random slop ν1 in the model. These two ran-
dom effects are assumed to follow a bivariate normal distribution with mean 0 and
variance–covariance matrix

Σν =
(

σ 2
ν0

σν01

σν01 σ 2
ν1

)
.

Since the average body mass index and age of puberty differs between boys and
girls, we fitted separate models for males and females. We should mention that our
data set was unbalanced, that is, we had unequal numbers of observations of each
time point. More information regarding the Raine study and also the justification for
this model selection can be found in Abarin et al. [1].

In most longitudinal research studies, when BMI at a certain age is collected, the
variable of interest for BMI is actually the long term average value of BMI for the
person in that year. The reason why the true and observed BMI differ is that weight
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has daily as well as seasonal variation. Moreover, since BMI only takes into consid-
eration overall weight and height, it can cause an overestimation or underestimation
of the true BMI.

Some epidemiological studies showed that self-reported information on duration
of exclusive breast feeding tends to be biased [7, 29]. The main reason is that gener-
ally the duration of breast feeding is mixed with other kind of milks and solids which
can mask the real impact of “exclusive” breast feeding (EXBF). In the modeling of
BMI growth trajectories, our interest is therefore to propose a ME model for the du-
ration of breast feeding (BF) considering EXBF as close to the true value. We select a
classical model for the ME of BF as it seems there is more variability in the observed
(BF) than the true value (EXBF) [29]. Another motivation is that BF measurements
can be replicated. In some studies, such as measures of radiation exposure, replicates
are not available. We considered BF as time invariant because it is observed once
for every individual. The instrumental variable V that we use for the study is the
minimum value of the age that women stopped breast feeding and the age at which
mothers started to feed their babies with other kind of milks. Our study on the Raine
data shows that V is related to BF according to

E(BF|V ) = 0.08 + 0.88V,

where U is independent from V and ε.
For the ME in the response, a classical model seems reasonable because, according

to Carroll et al. [14], BMI is measured uniquely for an individual and it can also be
replicated. All computations were done in R and the naive ML estimates are obtained
from the lmer package. Since we had no prior information or validation data, we
could not estimate σ 2

ξ , so σ 2
δ is not identifiable either. The parameters σ 2

ε and σ 2
u

were not of interest (nuisance), so we did not report any of these estimates in the
tables of the results.

As we mentioned earlier, to estimate the working matrix for our unbalanced data,
we divided our individuals into groups that had the same number of observations.
Then we used the diagonal matrix form of the weighting matrix to compute H . Ta-
bles 6 and 7 show the estimates of parameters using both the naive MLE and the
method of moment estimations as well as the standard errors of the estimates.

It appears that for most of the fixed effects related to age, the MME approach
produces values close to the naive MLE approach. Wang et al. [32] showed that the
naive estimator of the intercept for Gaussian data is asymptotically biased. Therefore,
we can conclude that we have better estimators of the intercept in MME than the
naive estimator. The rest of the effects seem to be quite different between these two
approaches. Carroll et al. [14] showed that the naive estimator of the effect on the
accurately measured covariate that is dependent on the error-prone covariate is biased.
Thus, in all the interaction terms between BF and other covariates, we expect to have
more accurate results in MME. It also appears that the naive MLE mostly yields
smaller standard errors. With respect to the estimation of variabilities of the random
effects, both approaches yield to similar results. Moreover, theoretically, we do not
expect to have much difference between the naive estimator and MME.
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Table 6 Estimates of fixed
effects and the standard errors
for MME and the naive
MLE—Males

Naive SE MME SE

Intercept 16.61 0.14 16.92 0.36

I (Age < 1.5)TRUE 0.30 0.28 −0.1 0.42

(Age − 1.5) (< 1.5) −2.80 0.95 −3.71 0.94

(Age − 1.5)2(< 1.5) −3.51 0.51 −3.99 0.50

(Age − 1.5) (≥ 1.5) −0.31 0.03 −0.36 0.05

(Age − 1.5)2(≥ 1.5) 0.05 0.001 0.06 0.004

BF −0.02 0.01 −0.04 0.001

TA −0.04 0.16 −0.21 0.19

AA 0.02 0.24 −0.37 0.64

(Age − 1.5):BF −0.003 0.002 −0.005 0.009

BF:TA 0.002 0.01 0.02 0.02

BF:AA 0.005 0.02 0.04 0.10

(Age − 1.5):TA 0.12 0.03 0.12 0.01

(Age − 1.5):AA 0.10 0.04 0.11 0.01

σν0 0.89 – 0.71 0.29

σν1 0.30 – 0.31 0.002

σν01 0.27 – 0.25 0.1

Table 7 Estimates of fixed
effects and the standard errors
for MME and the naive
MLE—Females

Naive SE MME SE

Intercept 15.75 0.14 16.29 0.59

I (Age < 1.5)TRUE 0.67 0.29 0.41 0.26

(Age − 1.5) (< 1.5) −1.11 0.99 −1.42 0.30

(Age − 1.5)2(< 1.5) −2.34 0.54 −2.54 0.18

(Age − 1.5) (≥ 1.5) −0.21 0.03 −0.31 0.09

(Age − 1.5)2(≥ 1.5) 0.05 0.001 0.06 0.005

BF 0.01 0.01 −0.02 0.09

TA 0.41 0.17 0.12 0.42

AA 0.005 0.24 0.10 0.45

(Age − 1.5):BF −0.001 0.002 0.002 0.003

BF:TA −0.02 0.01 0.01 0.11

BF:AA 0.002 0.02 −0.02 0.16

(Age − 1.5):TA 0.01 0.03 0.01 0.01

(Age − 1.5):AA −0.01 0.04 −0.03 0.01

σν0 0.93 – 0.98 0.32

σν1 0.30 – 0.29 0.05

σν01 0.21 – 0.2 0.09
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6 Summary and Discussion

We defined a linear mixed effects model with measurement error on the fixed covari-
ates and on the response for longitudinal data. We also proposed a semi-parametric
methodology that does not rely on any assumption concerning the functional forms
of the distributions of covariates, random effects, response and measurement errors.
Using moment equations, we showed that all the parameters of the model can be
estimated. We also applied our methodology to both classical and Berkson ME on
covariates. Using simulation studies and an example motivated by a large birth and
child cohort study from Australia (Raine), we investigated the finite sample perfor-
mances of the estimators and showed the impact of measurement error on the co-
variates, and response on the estimation procedure. The results of both studies show
that our procedure performs quite satisfactory especially for the fixed effects with
measurement error (even when we have misspecification on the ME model). To the
authors’ knowledge, no other study has applied a semi-parametric method for longitu-
dinal data with measurement error that does not need replicates or is computationally
feasible. There are some methods that need replicates in order to estimate the model
parameters, however, those for longitudinal data can be quite expensive. The method
we proposed here is novel and needs only instrumental variables. It is, therefore, less
restrictive than using replicates and it can be applied in many areas of study and
research, including gene-environmental interaction studies. As we mentioned in the
introduction, ME is usually ignored in these studies. We showed in our application to
the Raine data that ignoring ME can cause some serious statistical problems. More
specifically, we showed that the fixed environmental effects with ME (including the
gene-environmental interaction) can be under/over estimated with large bias if we
apply only the naive estimator. It is also noteworthy that if we study associations be-
tween genes and complex diseases, the naive estimator can cause false negatives in
testing hypotheses.

Regarding the model assumptions in Sect. 2, we considered that δij and also ξij

are mutually independent with constant variances. The first one leads to a “compound
symmetric” error covariance matrix. Our methodology can be applied to a more gen-
eral covariance matrix structure, however, since this structure was tested and found
suitable for our analysis of the Raine data which we also used in this paper. Since
BMI is measured independently for different individuals and different time points, it
is reasonable to assume that the ME on BMI is independent between individuals as
well as between observations, a common assumption in ME literature.

A typical Berkson or classical ME model has a random error term with mean 0.
Such an assumption for the duration of breast feeding may not be realistic as the
measurement error may not have mean 0. The ME in the covariate in the Raine data
seems to come from inaccurate measurement of the duration of exclusive breast feed-
ing. Moreover, women who fed their babies with other liquids or solids (at the same
time as breast feeding), tend to overestimate the duration. In this case, since we do not
expect the same amount of underestimation, the measurement error might not have
a zero mean. In the past decade, there have been studies on flexible ME [20, 27],
however, all these focused on the modeling of different variables of interest (mostly
energy or calory intake) in food frequency questionnaires. To the authors’ knowledge,
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there are no studies on the modeling of duration of breast feeding. Further studies are
also needed to find a better model for ME on duration of breast feeding. In the future,
we are interested in studying more flexible forms of ME models, as well as methods
for ME on categorical variables. The latter topic is important in genetic association
studies between complex diseases and genotypes when there is a significant genotyp-
ing error.
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