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Suppose y is normally distributed with mean IX e IR n and covariance 02V, where o2 > 0 
and V> 0 is known. The n. s. conditions that a linear estimator Ay + a of 1~ be admissible 
in the class of all estimators of ~t which depend only on y are derived. In particular, the 
usual estimator 80(y) = y is admissible in this class. The results are applied to the normal 

linear model and the admissibilities of many well-known linear estimators are 
demonstrated. 
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1. Introduction 

Assume the n-dimensional (n arbitrary) random vector y has a normal distribution N(IX, 

o2V), where V is a known positive definite matrix whereas (IX, 02) e go = IR n x (0, oo) 
are unknown parameters. Consider the problem of estimating IX by d under the quadratic 

loss 

L (d, B, o 2) = (d - IX)' Q (d- Ix) (1.1) 

where Q is positive definite. Then the estimators ~y)  of I.t are evaluated by the risk 

R (8, It, o "2) = E(~, 02) L(5(y), It, 02) (1.2) 

If 81 and 82 are two estimators of IX, then 81 is said to be as good as 82, if 

R (81' ~' 02) -< R (82, It, 02) 
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for all (g, 02) ~ fa; and 51 is said to be better than 52, if in addition the inequality holds 

for at least one (~0' ~ e go. If ~ is a class of certain estimators of !1, then an estimator 

5(y) is said to be admissible for kt in 5,  if 5(y) a 3 and ~ contains no estimator which is 

better than 5(y). 

A fundamental result of admissibility of a (homogeneous) linear estimator in the class of 

all estimators of [~ was derived by Cohen (1966), for the case where the covadance o .2 V 

is known to be the indentity matrix I (and under the loss (1.1) with Q = I). For the more 

general case where V = I and 02 is unknown, as remarked in that paper, the similar 

results may be derived under some additional conditions as given in James and Stein 

(1961). In particular, the inadmissibility of the estimator 50(y) = y (when n > 3) was 

established by producing a dominating Stein-type procedure, 5(y, s) say, in which an 

extra random variable s which is independent of y has to be observed. See also James and 

Stein (1961) and Gleser (1986). However due to a result of Cheng (I982), if such kind of 

extra information is not available [e. g. in the case of only one observation] or if only the 

estimatiors which depend only on y are considered, then 50(y) = y is admissible. Thus a 

characterization of the admissible linear estimators in this class is of theoretical interest 

and practical importance and this is the main aim of the present paper. 

Throughout the paper we consider the admissibility in the class eS~ of all estimators of 

the form 5(y), where 5 are functions on IR n (and hence depend only on y). Thus when we 

say an estimator 5(y) is admissible, we mean that 8(y) is admissible in t ~  �9 In section 2 

the necessary and sufficient conditions that a linear estimator be admissible are derived. It 

is shown that the Cohen (1966)'s result is essentially true with only one exception of 

50(y ) = y. In section 3 the results obtained are applid to the normal linear model and the 

admissibility of many well-known (homogeneous) linear estimators is demonstrated. 

It should be mentioned that the problem of admissibility in the class of linear estimators 

has already been completely solved. The main results may be found in, e. g. Rao (1976), 

LaMotte (1982), Mathew, Rao and Sinha (1984), Baksalary and Markiewicz (1988) and 

Klonecki and Zontek (1988). Note that in this case the distributional assumption is not 

necessary as the risk (1.2) depends on the first and second moments only. 

If A is a matrix, then A', r(A) and ~(A) wilt stand for the transpose, the rank and the 

column space of A respectively; if A and B are two symmetric matrices, then A < B (A < 

B) will mean that B - A is positive (nonnegative) definite. 
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2. Admissible linear estimators in e/~r 

In this section we charaterize the set of all linear estimators of I~ in o~ .  It is well- known 

that if 8(yi is admissible for Ix under the loss (1.1) for some Qo > 0, then 8(y) is 

admissible for I~ under (1.1) for any Q >__ 0. (Shinozak 1975, Rao 1976, Lemma 3.1). Thus 

in the following we prove the results under (1.1) for Q = I. First we state the following 

interesting result which is a direct consequence of Cheng (1982, Theorem 1.2). 

Lemma 1: ff y has distribution N (It, o -2 I), then S0(y ) = y is admissible for p.. 

Proof: ff 80(y ) were not admissible, then there existed an estimator 8(y) ~ r/q', such that 

R (5, IX, 0 2) -< R (5 0, •, o 2) 

for all (/~, 02) ~ ~a with inequality for at least one (B0, ~2). Clearly 8(y) # S0(y ) over a 

set of positive Lebesque measure. Then there exist D ~ IR n, d > 0 and e > 0, such that x 

IR n and IIx - ~d II _< d imply (fi(x) - x)' (8(x) - x) _> e ,  where II x II = max I x. I. Hence for 
l<j_<n J 

any 0 < o'2 < 1, 

E(~, 2 )  (8(y) - y)'(8(y) - y) > 

> 

On the other hand, 

e ~ exp [ .  (x - "o)'(x - "o)] 2o 2 dx 
x -  ,_< d o  

n m i n  exp (-x'x/2) > 0 
Ilxll_<d 

E(~,a2) (8(y) - y )'(8(y) - y) 

This is a contradiction. [7 

_< 2 R (5, ~, 02) + 2R (60, ~, 02) 

< 4 n o  "2 ~ 0 , a s  o2---~ 0 

Next theorem shows that, except for S0(y) = y, Cohen (1966)'s conditions are necessary 

and sufficient for admissibility. By ,~P we denote the subset of ~ which contains all 

linear estimators Ay + a of ~t. 

Theorem 1: If y has distribution N (IX, o"21) and A ~ I, then the necessary and sufficient 

conditions that Ay be admissible for IX are that A is symmetric, all eigenvalues of A are 

between 0 and 1, and at most two of them equal 1. 



158 

Proof :  Suppose Ay  is inadmissible. Then there exists an est imator 8(y) e c/~', such that 

E (~5(y) - l~)'(~(y) - ~t) < E (Ay - l~)'(Ay - 11) (2.1) 

for all (p., o 2) e fo and the inequality holds for some (~t 0, cry0). Consider a random vector 

z which has distribution N (~, I). Then from (2.1). 

E (108 (r - a))' (l 0 8(O0z ) - a)) g E (Az- ag)'(Az- ",)) 

for all a) e IR n and the inequality holds for a) 0 = ~t 0/G O . Thus by Cohen (1966, Thcorrn 

2.1), A cannot satisfy all conditions of the theorem. 

Convcrsley, if Ay is admissible, then it is admissible in ~ . By Rao (1976, Theorem 

3.3), A is symmetric and has all cigcnvalucs between 0 and 1. Thus wc nccd only to show 

that A has at most two cigcnvalucs which equal 1. To this end let P be the orthogonal 

matrix such that 

P 'A  P = diag (d 1 . . . . .  dn) = D 

where 1 > d 1 > . . .  > d > 0. Since Py has distribution N(Pkt, t3 2 I), APy  is admissible for n 
P~t and hence P ' A P y  = Dy is admissible for P'P~t = kt. Now we show that if  d l=  d 2 . . . .  

= d r = 1 for  r > 3, then we may construct an estimator in e ~  which is better than Dy. 

As A ~ I , r < n - 1. Let z and a) be the vectors of  the first r elements of  y and ~t 

respectively, and define 

n 1 n 
s= ~ ( Y i - ~  =r~+lY i-)2, i f r < n - 2  

j=r+l " i 
2 

= Y n '  i f r = n - 1  

2Zn_r2 respectively. Then z and s are independent and have distributions N (~), , , I j  and G 
Define 

8(5') = ( u ' ,  dr+lYr+ 1 . . . . .  dnYn)' 
where 

u=(1-  (r-2)s 
(n - r + 2 ) z ' z  ) z 

Then we have 

E (~(y) - p.) '(8(y) - I~)- E ( A y -  ~t) '(Ay - p.) 

= E ( u -  ~ ) ' (u  - ~) - ro2 < 0 
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for  all a) e IR r and 0 -2 > 0 ,  because u is a well-known Stein-type est imator  for a), see 

James and Stein (1961). [7 

Now we consider the more  general case N (It, 0 .2 V) with V > 0 and the linear estimators 

Ay + a. First we need the following lemma. 

L e m m a  2: Ay  + a is admissible for tx if  and only if a e ~R (A - 13 and Ay is admissible for 

IX. 

Proof :  If  Ay  + a is admissible. Then it is admissible in ~ . The condition a e ~R (A - I) 

follows f rom Rao (1976, Corrolary 3.2). Let  a = Ab - b, b e IR n, then Ay  + a = A (y + b) 

- b a n d  

E (Ay + a - IX)'(Ay + a - IX) = E (A(y + b) - (~ + b) ) ' (A(y  + b) - (it + b)) 

That Ay is admissible for IX if and only if A(y + b) - b is admissible for IX is easily seen 

f rom the fact that the parameter  space ~ ,  the estimator space ~ and the relation 

"better than" among ~ are invariant under the transformations T : IX ~ IX + b ,  8(y) 

8(y +b)-b. 

Theorem 2: If y has distribution N (IX, o ~ V) with V > 0 known, then the necessary and 

sufficient conditions that Ay + a be admissible for IX are 

(i) a e  9 ~ ( A - D  

(ii) AV = V A '  

(iii) A V A '  _< AV 

(iv) r ( A - I ) > n - 2  or A = I .  

Proof :  By L e m m a  2 the n. s. conditions are (i) and that Ay is admissible for I x. The  later 

is in turn equivalent to that V-]/2AV 1/2 (V-1/2y) is admissible for V-1/2IX . (Rao 1976, 

Theorem 3.1) [Note that in that theorem the result (b) is true if S has full row rank; and 

(c) is true if S has full column rank.] Now V-1/2y has distribu- tion N (V-1/2IX, o'2I), by 

L e m m a  1 and Theorem 1, it is necessary and sufficient that either v-lf2AV1]2 = I, which 

is equivalent to A = I; or V'I/2AV1/'2 = V1/2A'V-1/2, which is equivalent to (ii), 

(V-1/2AV1/2)(V'I/2AVII2)'  < V'I/2AV1/2, which is equivalent to (iii), and V'I/'2AV1/2 
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has at most  two eigenvalues which equal 1, which is equivalent to n - 2 < r (V'I/2AV1/2 - 

I ) = r ( A - I ) .  

3. Admissibility in the normal linear model 

In this section we consider the linear model  in which y is normally distributed with mean 

Ey  = XI~ and covariance 0 2 V, where X ~ IR n x p and V > 0 are known matrices, whereas 

~ IR p and 02 > 0 are unknown parameters.  It is also assumed that r(X) = p < n. 

Note that the estimators of  13 are different from that of  ~t in last section in the sense that 

they are now the mappings from IR n to IR p rather than from IR n to IR n. But we will still 

use the notions c ~  and ~ to denote the corresponding classes of  estimators. These 

can be easily distinguished f rom the context. Let  the usual least squares estimator be 

denoted by bLs = ( X ' V - 1 X ) ' I x ' v ' l y .  

Theorem 3: Let  A ~ IR p x n and a ~ IR p. Then Ay + a is admissible for ~ if and only if 

(i) a ~  ~ ( A X - I )  

(ii) X A V  = V A ' X '  

Off) X A V A ' X '  ,; X A V  

(iv) r (AX - I) > p - 2 or AX = I with n = p 

Proof :  I f  Ay  + a is admissible, then it is admissible in , ~  and (i) - (iii) follow from 

Baksalary and Markiewicz (1988, Corrolary 4). To  show (iv), we observe by (ii), 

A = ( X ' V - I x ) ' I x ' A ' X ' V  "1 

= A X ( X , V ' I x ) ' I x ' v  "1 

and hence Ay  + a = AXbLs+ a is admissible for 13 in the class of  all est imators of  I] 

which are functions of  bLS. Note that bLS has distribution N (13, 0 2 ( X ' V - I x ) ' I ) .  

By  Theorem 2 it is necessary that either r(AX - I) >_ p - 2 or AX = I. The  later together 

with (i) imply Ay  + a = bLs. It is well-known that bLS is admissible only if  n = p, as 

otherwise the residual s = (3' - XbLs) ' (y  - XbLs) is available to construct a Stein-type 

est imator in t a g  which is better than bLS (Berger 1976, Judge and Bock  1978, Chapter 
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10). 

Conversely, the sufficiency of the case AX = I and n = p follows from Theorem 2 and the 

fact that z = Ay = X-ly has distribution N (~, c 2 X ' I v ( x ' I )  ') and the estimator class 

6 ~  is invariant under the transformation T: 5(y) --~ 8(x ' ly) .  For the other case, note that 

AX and XA have the same nonzero eigenvalues and hence, r (AX - I) _> p - 2 is 

equivalent to r (XA - I) __ n - 2 .  Then XA satisfies the conditions of Theorem 2 and hence 

XAy is admissible for X~, which implies that Ay is admissible for ~ (Rao 1976,Theorm 

3.1). [See the note in the proof of Theorem 2.] By a similar argument of Lemma 2, (i) 

implies that Ay + a is admissible for [3. [7 

Next theorem gives the results of admissibility of the estimators of X~. 

Theorem 4: Let A ~ IR n x n, a ~ IR n. Then Ay + a is admissible for X~ if and only if 

(i) a ~ 9 ~ ( A X - X )  

(ii) ~ (VA') c 5R (X) 

(iii) AV = VA' 

(iv) AVA' < AV 

(v) r ( A - I ) > n - 2  or A = I  

Proof:  Again the necessity of  (i) - (iv) follows from Baksalary and Markiewicz (1988, 

Corrolary 3). To show (v), let (by ii and iii) AV = VA'= XB, B e IR p x n. Then A = 

XBV -1 and Ay = XBV-ly is admissible for X~, which implies that BV-ly is admissible 

for ~. By Theorem 3, it is necessary that either r (BV'IX - I) > p - 2 or BV-1X = I with n 

= p, which is easily seen to be equivalent to (v). 

The sufficiency of (i) - (v) follows immediately from Theorem 2 and a similar argument 

of Lemma 2. ['] 

In the remaining part of this paper we apply the previous results to demonstrate the 

admissibility of some well-known (homogeneous) linear estimators. These estimators 

have the following general form: 

b(A) = UAU'bLs = UAD-1U'X'V' ly 
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where A = diag (a I . . . . ,  ap), 0 _< a.j < 1 , j = 1, . .  . ,  p , and U is the orthogonal matrix 

such that 

U ' X ' V ' I x u  = diag (d 1 . . . . .  dp) = D 

and d 1 _> d 2 _>.. .  > d > 0. Let us see some examples: 
P 

(1) The ridge estimator (Hoerl and Kennard 1970): 

bR(K ) = (X 'V ' IX + U K U ' ) ' I x ' v - l y  

= b (13(13 + K) - l )  

where K = diag (k I . . . . .  kp), kj > 0, j = 1 . . . . .  p and at least one kj > 0. 

(2) The principal components estimator (Kendall 1957, Johnson, Reimer and Rothrock 

1972): 

bpc(q) = bLs - (X 'V- Ix ) - IUq[Uq ' (X 'V ' Ix ) ' IUq] ' Iu '  q bLs 

: ,(ioq Oo), 
where 0 < q < p and Uq is the matrix of  last p - q columns of U. 

(3) Linear Bayes estimator (Rao 1976): 

= UWU'X ' (V  + X U W U ' X ' ) ' I y  bB(W) 

= bON(D -I + Vr -1) 
where W > 0. 

(4) The iteration estimator (Trenkler 1978): 

m 

bi(m, ~) = t ~ (I - x X ' V ' I x ~  X ' V ' l y  
j=0 

= b (I - (I - "tD) re+l) 

1 where 0 < x < d l  1 and m = 0, . . . . .  
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(5) The shrinkage least squares estimator (Mayer and Wilke 1973): 

bs(~) = ~ bLS 
= b(ctI) 

where 0 < o~ < 1. 

Now we examine the conditons in Theorem 3 for any b(A) =UAD-1U'X 'V- ly .  It is easily 

seen that (i) - (iii) are always satisfied by the definition of  A whereas (iv) becomes either 

r ( U A D - 1 U ' X ' V ' I x  - I) = r (AD-1U'X'V-1XU - I) = r (A - I) _> p - 2 or A = I with n = p. 

Further these conditions ars easily examined for all estimators (1) - (5). Thus we have the 

following results. 

Co r ro l a ry  1: Let A = diag (a I . . . . .  ap), 0 < aj < 1, j = 1 . . . . .  p. 

(1) UAUbLs is admissible for 13 if and only if r (A - I) _> p - 2 or A = I with n = p. 

(2) bLs is admissible for  [3 if and only if p < 2 or n = p. 

(3) bR(K) is admissible for 13 if and only i f r  (K) > p - 2. 

(4) hpc(q ) is admissible for 13 if and only if q < 2. 

(5) All bB(W), bi(m, x) and bs(O 0 are admissible for ~. 
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List of symbols which are not typewritten 

1. e)~ r : the class of  all estimators of  the form 8(y), where 8 are functions on IR n. 

2. ~(' : the subclass of  e ~  which contains all linear estimators. 


