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1. I n t r o d u c t i o n  

We consider nonlinear errors-in-variables models of the form 

E ( y  I x) = 9 ( x ; 8 ~  

and 

(1.1) 

z = x + e, (1.2) 

where the K • 1 vector of explanatory variables x are unobservable and 
only their proxies z are observed. The measurement errors e are assumed 
to be independent of x and are independently, identically distributed with 
mean 0 and covaxiance matrix V. The p x 1 vector of parameters 6 o are 
assumed to lie in the interior of a convex compact set 0 C R p, with 
Rp denoting a p-dimensional Euclidean space. We assume that  g(x; 8) is 
nonlinear in x and is differentiable with respect to x and 8. Let u denote 
the difference between the observed y and its conditional expectation 
(1.1), then 

= 0 u (1.3) 

and u is assumed to be independent of e. 
When variables axe subject to measurement errors, it was shown by Y. 

Amemiya (1985) and Hsiao (1989) t h a  the mere existence of instruments 
that  are correlated with the latent variables, x, but are uncorrelated with 
the errors e is not sufficient to identify nor will it provide a consistent 
est imator of 80 if g(x; 8) is nonlinear in x variables. To obtain consis- 
tent  estimators of 8 ~ Amemiya and Fuller (1988), Stefanski and Carroll 
(1985), Wolter and Fuller (1982a, b) etc. have relied on the assumption 
of increasing sample size and decreasing error variances. Alternatively, 
a structural errors-in-vaxiables approach which assumes a known condi- 
tional distribution of x given z (or conditional distribution of e given 
z), f (x I z; 5 ~ can be used, where 5 ~ denotes the q x 1 vector of pa- 
rameters. Combining f (x i z; 5 ~ with the conditional distribution of y 
given x, f (y I x; ~0), where ~o is the parameter vector including 8 ~ as a 
subvector, we can derive the conditional distribution of y given z, 

f(y,z;,~~176 f f (y lx; ,~~176 , (1.4) 

or the expected value of y given z, 

= a ( z ; 7 ~  
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where 7 o = (0 ~ 6~ I. Under fairly general conditions, it can be shown 
that the maximum likelihood estimator (MLE) that maximizes the condi- 
tional likelihood function (1.4) or the minimum distance estimator (MDE) 
that minimizes some distance measure of [y - G (z; 7)] is consistent and 
asymptotically normally distributed (e.g. Hsiao (1989, 1991)). However, 
to implement the MLE or MDE, not only the error distribution needs to 
be known a priori ,  also computationally it can be unwieldy because of 
the need to take multiple integrations. Therefore, Carroll and Stefanski 
(1990), Stefanski (1985), Whittemore and Keller (1988), etc. have sug- 
gested alternative computationally simpler bias adjusted or approximate 
maximum likelihood estimators which do not need to take multiple in- 
tegrations and only require the knowledge of the first two moments of 
measurement errors given the observed covariates. That is, 

E (+ I z) = = ca(z)  + o(c), (1.5) 

E I z) : a ( z )  : oh(z)  + o(c), 

are assumed known or estimable, and 

(1.6) 

(1.7) 

where c is a positive scalar that reflects the magnitude of the variance of 
e relative to that of z, 5 and ~ are independent of c. They demonstrate 
that the bias of their bias adjusted or approximate MLE estimators is 
of order o (c). In this paper we shall also assume (1.5)- (1.7) and pro- 
pose alternative approximate MDE or MLE, which is straightforward to 
implement and appears to perform better. 

There are many practical situations where assumptions (1.5) and (1.6) 
are applicable, in particular in situations when replicated measurements 
are available. Some of these situations were described by Berkson (1950), 
Carroll and Stefanski (1990), Whittemore and Keller (1988), etc. Appli- 
cations of some special nonlinear errors-in-variables models in medicine 
and epidemiology may be found in Rosner, Willett and Spiegelman (1989) 
and Tosteson, Stefanski and Schafer (1989). A survey of approaches to 
estimation is given by Carroll (1989). 

In section 2 we introduce the alternative approximation to MDE or 
MLE and discuss how this method may be implemented. In section 3 we 
provide some examples that evaluate the bias of various approximate esti- 
mators analytically and discuss how these methods may be implemented. 
In section 4 we provide some Monte Carlo evaluations. Condusions are 
in section 5. 
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2. Approximate Nonlinear Least Squares Estimator 

Suppose the conditional distribution of x given z f(x I z;/~0) is known. 
Then one can compute the conditional mean of y given z 

G 

It was shown by Hsiao (1989) that under fairly general conditions the non- 
linear least squares estimator (NLS) that minimizes ~ = 1  [yi - G (zi; 7)] 2 
is consistent and asymptotically normally distributed. However, the com- 
putation of the nonlinear least squares estimator involves multiple inte- 
grations in the form of (2.1) at each iterative step, which can be quite 
complicated. Moreover, the approach is sensitive to the specification of 
f (x I z; ~0) (Shafer (1987)). Thus, various computationally feasible pro- 
cedures that avoid multiple integrations have been proposed to obtain 
bias adjusted or approximate MLE or NLS (e.g. Carroll and Stefan- 
ski (1990), Stefanski (1985), Whittemore and Keller (1988)) for the case 
when measurement error variances are small relative to the variance of 
observables z. 1 In this paper we propose another method of obtaining 
approximate NLS which is easy to derive and simple to implement and 
does not require the knowledge of f(x ] z; ~0). The estimator also appears 
to possess good properties even when the measurement error variance is 
not small. 

There are two approaches to derive the approximate NLS. One ap- 
proach is to take a Taylor series expansion of the NLS around c = 0 
(e.g. Whittemore and Keller (1988)). The other approach is to obtain 
an approximation of G(z; 7), say A(z; 7), then solve for the approximate 
NLS by minimizing ~ = 1  [Yi- A (zi; 7)] 2 (Carroll and Stefanski (1990), 
Rudemo, Ruppert and Streibig (1989)). In this paper, we shall follow the 
latter approach. 

There are many ways to obtain the approximation of E(y I z). Chesher 
(1991) has suggested an approximation of the conditional density of y 
given z, f ( y l z ) ,  which has approximation error o(c)and avoids the com- 
putation of multiple integrations. The approximation of the conditional 
mean of y given z can then be obtained by using this approximate density 
function. Here we suggest an alternative approximation that is straight- 
forward to derive and the approximation error is also of o(c). 

Let r which may also depend on c, be a predictor of unobserved 

1 Strictly speaking, the procedures they propose are for obtaining approximate max- 
imum likelihood estimator. However, they can be easily adapted to the present setting. 
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x. Taking a Taylor series expansion of g(x; O) around r we have 

g(x;6) g r z),6 + 0g(r �9 r z ( (  ) - - - ~ - ,  - (  - ( ) )  

+1 z r '~162 ~ z 5( - ( ) )  ~ ( - r  
+~(~,r 

(2.2) 

Then G (z; 7) can be approximated by taking expectation of (2.2) without 
the fourth term on the right hand side of the equality, conditional on z: 

A(z;7) = g ( r 1 6 2  
0 X  ! x 

+~tr OxOx' E[(x-r162 . 
(2.3) 

The approximation error is given by E[e(x,r z]. For instance, if 
r = z, then 

0g(z; 1 [ 0 ~ 6 ) a ( z )  ] A(z;7)=g(z;8) OxS)a(z)+~tr (2.4) 

and the order of approximation error E[e(x , r  ] is o(c) under 
(1.5)-(1.7), given that the third derivative of the function g(x; O) with 
respect to x is bounded. Note that (2.4) does not require the knowledge 
of f ( x  I z). It only needs the knowledge of E(x  I z) and Coy (x I z). So 
is our proposed approximation formula (2.7) below. Therefore, without 
causing confusion, we shall use A (z; 6) to denote A (z; 7) conditioning on 
a(z) and fl(z) and use G (z; O) to denote G (z; 7) conditioning on ~f. 

Following the standard nonlinear least squares framework, we assume 
that 

A.1 (yi, z~)' are independently, identically distributed (i.i.d.) and Ey 2 < 
CO. 

A.2 A(z; O) is continuous in 8 and E sup0eo IA (z; 6)12 < oc. 

A.3 Q(8) = E [G (z;6 ~ - A(z;6)] 2 attains the unique minimum at an 
interior point 8 E O. 

Let Sn(6) = ~ = 1  [Yi - A(zi; O)] 2 and 8A be the solution to min0eo Sn(6). 

T h e o r e m  2.1. Under assumptions A.1 - A.3, the approximate NLS for 
model (I.1)- (1.2), ~A, converges in probability to 8. 
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Proof :  Denote Gi(/9) = G(zi;/9) and Ai(/9) = A(zi;/9). Then we can write 

!sn(/9) 
n 

_ _ A ~ [y~_ C~(@)]2 

?Z i=1 

+ - [Yi- Gi(/9~ [Gi(/9 ~ - Ai(/9)] 
?Z i=1 

+ - [Gi(/9 ~ - Ai(/9)] 2 
?Z i=1 

(2.~) 

By A.1 and the Kolmogorov law of large numbers, the first term on the 
right-hand side of (2.5) converges in probability to the constant 
E [Var(yi [ zi)]. Under A.1 and A.2, the second term converges to 0 in 
probability uniformly in/9 E O by Theorem 4.2.1 of T. Amemiya (1985). 
Similarly, the third term on the right-hand side of (2.5) converges to Q(/9) 
in probability uniformly in/9 E 0. The result then follows from A.3 and 
Theorem 4.1.1 of T. Amemiya (1985). 

In general 0 is different from the true parameter/7 ~ The difference 
_/90 gives the asymptotic bias of 0A. It is well-known that the naive 

estimator ~(0) that ignores the measurement error issue has the bias of 
order O(c). For the approximate NLS,/TA, we have the following general 
result: 

Theorem 2.2. In addition to A.1 - A.3, we assume 

A.4 A(z; /9) is continuously differentiable with respect to/9 and 

E supoeo IlOa(z;/9)/0/9112 < ~ .  

A.5 B(/9 ) = (1/2) O2Q ( /9 ) I o/9o/9' is nonsingular for all/9 on a straight line 
between 0 ~ and/9. 

Then plim 0A =/7 = /90 + B(/9 , ) - IH,  where/9* lies between/90 and O, 
n.- .+ o o  

and 

H : E [(G (z;/9 ~ - A (z;/9~ OA 0/9(z;/9~ 

Therefore, i f  Q (/90) = E [G (z;/9 ~ - A (z;/9~ 2 = o(c), then plimOA = 
IZ.-.-~ O 0  

/90 + o(c). 

Proof :  By A.5 and a Taylor expansion of 0Q(/9)10/9 around/7 ~ we have 

= e ~ - r ~,~,,~. ~ / . a  ,~,,<, ) / - '  OQ (co) 
L oooo, j oo 
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where 0* lies between 0 ~ and 0". By definition, A.2 and A.4, OQ/00 [oo= 
- 2 H .  The second part of the theorem follows from the Cauchy-Schwarz 
inequality. 1:3 

Furthermore, following the proofs of Hsiao (1989) or T. Amemiya 
(1985), we can establish the following result. 

T h e o r e m  2.3. Suppose A.1 - A.5 and 

A.6 A(z; 0) has continuous second order derivative with respect to 0 and 

Esup [y- A(z;O)] ~176 
oee 0000' < ~" 

Then 
- o )  , 

where 

(z;0)0  (z;0) ( z ; o O )  _ (z;0)] 
B = E 00 00' 

and 

(2.6) 

0008' 

C =  E { [ V a r ( y l z ) - t - ( G ( z ; 8 ~  
00 001 " 

The approximate least squares estimator is obtained by minimizing 
Sn(O). Since, as Theorem 2.2 has demonstrated, the bias of the approxi- 
mate NLS, in general, is of the same order as the order of approximation 
error E [G (z;0 ~ - A (z; 0~ 2, a less biased and simple to compute esti- 
mator can be derived by finding a good, simple approximation of E(y I z). 

Because the bias of the approximate NLS in general is of the same 
order as the order of the approximation error E [e (x, r 0) I z], it would 
be desirable if one can choose r such that the approximation error is mini- 
mized. Unfortunately, an optimal predictor r even if it exists, depends 
on E(y [ z), hence brings up the same computational difficulty as the 
NLS. However, a good choice of r appears to be the conditional mean 

of x given z, E(x [ z), since it is the solution of m i n c e  (Ix - r " 
for h = 1,2,3, . . .  as long as the conditional distribution of x given z is 
symmetric around its mean. 
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Motivated by the above intuition, we let r = #i = E(xi I zi) and 
f~ (z i) = fti = Cov(xi lz i) ,  and propose 

) 
A(z i ;O)=g(#i ;o)+l tr~  OxOx' '] (2.7) 

as an approximation of G(zi; 0). Equation (2.7), just like (2.4), does not 
require the knowledge of f (x  I z), but does require the knowledge of 
E(x [ z) and Cov (x I z). For this approximation, it is straightforward to 
show by Cauchy-Schwarz inequality that assumption A.2 is implied by 

E l l a ( z ) l l  2 < oo (2.8) 

and 

Esupg(#(z);O) 2 <(x), Esup 02g(#(z);O) 2 
oeo oeo 0 xOx~ < 0o; (2.9) 

assumption A.4 is implied by (2.8) and 

Esup  Og(#(z);O) 2 
o~o O0 

< 0% E sup 
0EO 

o3g(.(z);O) r 
OxjOxkOOz 

OO, 

whereas assumption A.6 follows from (2.8) - (2.9) and 

V j,  k, l; 

(2.10) 

Esup  02g(#(z);O) r i)4g(#(z)}~) 12 
o~o 0000 ~ < 0o, EsuP0~o OxjOxkOOtOSm < 0o, Vj, k,l ,m. 

(2.11) 
It is easier to check conditions (2.8)- (2.11) than A.2, A.4 and A.6 because 
these conditions are directly expressed in terms of the function g(x; 0). 
In the rest of this paper we denote 0A as the approximate NLS of 0 ~ 
corresponding to A(zi; 0) in (2.7). Thus we have the following result. 

T h e o r e m  2.4. Suppose A1, A3, Ab, (2.8)- (2.11) hold and that g (x; 0 ~ 
has a bounded third order derivative with respect to x. Then all results 
of Theorems 2.1 - 2.3 hold for the estimator OA corresponding to A(zi; O) 
in (2.7). 

R e m a r k  2.1. The approximation of E(y[z)  by (2.4) or (2.7)is usually 
simple to implement because the function g(x; 0) is often specified in 
simple closed form. All we need to do is to calculate its first and/or 
second order partial derivatives. Equation (2.4) uses z and (2.7) uses 
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E(x I z) to predict x. Equation (2.4) is used by Carroll and Stefanski 
(1990), Whittemore and Keller (1988), etc. However, E(x Iz)is a better 
predictor of x than z. When c is small, there is little difference between 
using E(x I z) or z to predict the unobserved covariates x. When c is 
large, the difference can be significant. Thus, even though ~A may have 
the same order of bias as other approximate estimators, it is likely to 
be more robust relative to the magnitude of measurement error variance 
than those estimators that rely on z to predict x. 

R e m a r k  2.2. If a (z) and ~ (z) are unknown, there are many ways to 
obtain their approximations. For instance, Carroll and Stefanski (1990) 
gives the general form of (1.5) and (1.6) in their Lemma A.1 for the case 
when the joint density of z and x and the first two conditional moments 
of e given z are three times differentiable with respect to c. Under the 
assumption of independence between x and e, they become 

and 

E(el  z ) =  - V  Ol~162 ~ +o(c) (2.12) 
Oz 

Cov(e I z) = V + o(c), (2.13) 

where V is the covariance matrix of e and fx (z) is the density function 
of x evaluated at z. In Whittemore and Keller (1988) conditional mean 
and variance of measurement errors (1.5) and (1.6) are assumed known. 
In the case they are unknown, but the validation data are available (e.g., 
Carroll and Stefanski (1990), Lee and Sepanski (1995)), they can be es- 
timated directly. If no validation data are available, but there are re- 
peated measurements, (say r replications for each i = 1,2, ..., n), we can 
obtain an estimate of Y by ~'~n=l ~ = 1  (Zit - -  -2i)(Zit - -  -2 i )  ! / n  (r - 1) and 
Cov(z) by ~ = l  ~ = 1  ( z i t - - 2 ) ( z i t - - 2 ) ' / ( n r -  1), where -2{ = ~ = l  z{t/r 
and -2 = ~?=1-2{/n. When x and e are normally distributed, using the 
well-known conditional mean and conditional variance formulae, we can 
again estimate (1.5) and (1.6) directly. In the case that x and e are 
not normally distributed but if the distribution of x is known and the 
first two conditional moments of e given z are three times differentiable 
with respect to c, one can use (2.12) and (2.13) to approximate E (e ] z) 
and Cov (e I z). The approximation errors for #{ and Di are of orders 

O _  . ( r  -1/2) and O ((nr) -1) respectively. Under the additional assump- 

tions that Og (x; 8)/Ox and 02g (x; 8)/OxOx' are uniformly bounded, sub- 
stituting fi{ and ~{ for #i and ~{ in (2.4) or (2.7) introduce an approx- 

imation error of O (r-1/2~. Using Lemma 1 of Whittemore and Keller \ / 
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(1988) and Theorem 2.2, it can be shown that the bias of ~A remains to 

be o(c) as long as Ilft i-#ill  = o(c), ~ - ~ i  = o(c) and Og(x;8)/Ox, 

02g (x; 8)/OxOx' are uniformly bounded. Furthermore ~A converges to ~" 
in probability. However, the asymptotic variance-covariance matrix will 
be different. Suppose that the conditional mean and variance-covariance 
matrix of x given z depends on the q • 1 parameter 5 ~ and ~,~ is a consis- 
tent estimator of 5 ~ then the asymptotic covariance matrix of V/~(~A - ~) 
is equal to (Hsiao 1989) 

where 

and 

0: o 
s .  : ~ m  E ~n ~O-~" 

R e m a r k  2.3. The proposed approach can be easily adapted to obtain 
an approximate maximum likelihood estimator (MLE). Let f (Y l  x; ~o) 
denote the conditional density of y given x. Then the conditional density 
of y given z can be approximated by 

i [o~:(y, I.,,~)a(z,)] d(y i ,# i ; )~ ,c )=f (y i l# i ;A)+~ tr [ ~xx0~ "J"  

An approximate MLE of )~ can be defined as a solution of the approximate 
score equations: 

n 1 OA(yi, #i, ; ~, c) K-" 
O. 

.iZ~l A(yi,#~;~,c) Oh 

R e m a r k  2.4. Similarly, the approach can be adapted to obtain maxi- 
mum quasi-likelihood estimator (MQLE). The MQLE as defined by Car- 
roll and Stefanski (1990) is the solution of the equation 

n Q,~(8) : ~ y~ - Gi(O) OG~(8) 
~:1 ~ 08 = o. 

where 

~(0)  = yar(y~ L z~) 
= Var(ui)+E[g2(xi;8) lz i ]  - {E[g (x i ;8 )  lzi]} 2. 
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The Gi(O) = E[g(xi;O) l zi] can be approximated by (2.7). Using a Taylor 
expansion of g2(xi;O) for xi around #i = E(xilzi), E[g2(xi;O) lzi] may 
be approximated by 

g2(#i; O) + tr{ai [ (#[g" i; O) 02g(#i;~O) 

Hence, a2(O) may be approximated by 

[ Og(#i;O) Og(#i;O)] 1 
52(0) = Var(ui)-t- tr •i Ox Ox' - 

2 O:g(~; o) 

and an approximate MQLE, OAQL, may be defined as the solution to 

n y~- A~(0)0A~(0) 
i=1 ~2 00 -- 0. 

Under the additional assumption that 

[ a,(0 ~ - A,(0) 0A,(0)] 
E[ -~7 N j=0  

has a unique solution at an interior point O* E O, 

%/~ (OAQ L --0") d N ( 0 , / ) - l c ~ / ) - l )  , 

where 

= E (0,) oo oo, 

and 

~(0-*) ~0-V j '  

d = E  
2 

00 00 r 

3. S o m e  S p e c i a l  C a s e s  

There are a number of bias-adjusted or approximate estimators suggested 
in the literature. Carroll and Stefanski (1990) have provided three other 
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approximations to G(z; ~). The first one is to use (2.4), which can be 
rewritten in terms of c as 

Al(z;O)=g(z;O)-c  Ox' a(z) q--~tr 0 )~(z) . (3.1) 

The second approximation is 

As(z; 8) = g (z - cS(z); ~). (3.2) 

The third approximation is a modification of As(z; 8), 

A3(z; O)= g(z -c~(z ) ;8 ) ,  (3.3) 

where fl(z) is given by 

Ox' Ox ox 'O)5 ( z ) -2  tr Og(z;O) 

In addition, Stefanski (1985) has proposed a bias adjusted estimator that 
corrects the bias of the naive estimator, 

~ c=o 
~ = ~ ( 0 )  2 0cs ' 

where ~(c) denotes the ML E or MD E and ~(0) denotes the naive estimator 
that treats z as if it were x. Whittemore and Keller (1988) have proposed 
an approximate MLE or MDE estimator, 

0~(c) c=0 ~ = ~ ( 0 ) + c ~  . 

All these estimators have bias of order o(c) except for the estimator that 
uses (3.2) which is O(c) because (3.2) differs from G(z; ~) by O(c). 

It is difficult to compare the exact bias of various estimators in its 
general form. In the following we consider some special models for which 
more concrete results concerning the bias of these estimators can be de- 
rived. To facilitate comparison, we shall assume that the conditional 
mean and covariance of measurement errors e given z are known, i.e., 
E(~ I z) = ~(z) and E(~ '  I z) = ~(z).  
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3.1. L inea r  Mode l  

First we consider the linear model g(x; 0) = x'O. Then G(zi; 0) = #~0. 
Since now Og(x; O)/Ox = 0 and 02g(x; O)/OxOx'= 0, the approximation 
(2.7) is A(zi; 0) = #~0 = G(zi; 0). So is the approximation (2.4). There- 
fore, both 0A and the Carroll and Stefanski (1990) estimator 0c based 
on (2.4) are consistent. 2 However, the naive estimator 0(0), the Stefan- 
ski (1985) estimator 0s and the Whittemore and Keller (1988) estimator 
~w are in general inconsistent. To see this, consider the example that 
g(x;0) = 9% with x ~ N(a,  1! and e ~ N(0, c). A straightforward calcu- 
lation shows that 0(0), 0s and 8~ have asymptotic bias -cOO/(1 + c + a2), 
-c20~ + c + a2) 2 and 2c2a20~ + c + a2) 2 respectively. The Whit- 

temore and Keller (1988) estimator, 0w, is consistent only when Ex = 
a - - - - 0 .  

3.2. P o l y n o m i a l  Regress ion  Mode l  

Consider the model 

P 
g(x;  o) = o y  -1 = 

j----1 

w h e r e  x E R ,  x ~-- ( 1 , x ,  x 2 , . . . , x p - 1 )  ! a n d  0 --  ( 0 1 , 0 2 , . . . , O p )  t. T o  a v o i d  

the trivial case we assume p >__ 3. Then 

P 

c(z,;o) : (xi-  l z,) 
j----1 

and the approximation (2.7) is 

A(zi;O)= + 2 ) 0, 

( 2 p-l) ! fi!2) where fii = 1 ,# i ,# i , . . . , / z i  and = 02fii/O#~. Now since 

OA(zi;O) 1~ ~!2) 
O0 - ~i  + 2 "*' 

and 
02A (z~; 0) 

0000' 
- 0 ,  

2Here we assume tha t  c~(z) and ~ (z )  are known. If one were to use o(c) approxi-  
ma t ion  (3.1) - (3.3), then the Carrol l  and Stefanski es t imator  will have an a sympto t i c  
bias (1 - c)c28~ + c)(1 - c) 2 + a2]. 



]4 

we have 

0, p<_3 
G (zi; 8) - A (z{; 8) = p-1 j~3 8jq'l k=3 ~ \k/(J'~12J-kEi [(Xi- #i)k ] Zi] , p > 3. 

This implies immediately the following results. 

Coro l l a ry  3.1. Under the conditions of Theorem 2.1, the estimator ~A 
is consistent if  

(1) p <_ 3; or 
(2) p = 4 and E = 0. 

The results in Corollary 3.1 are quite natural because the approxi- 
mation A(z{; 8) is based on a second order Taylor expansion. It is easily 
seen that the accuracy of the approximation will increase along with the 
order of the Taylor expansion. Indeed, the results of Corollary 3.1 may 
be made more general as follows. 

Coro l l a ry  3.2. Suppose the first two moments #{ ~ O, Di ~ O. Then 
under the conditions of Theorem 2.1, 

(1) The estimator ~A is consistent if and only if  A(zi,8) is based on a 
( p -  1)-th order Taylor expansion; 

(2) I f  p is even and the conditional distribution f ( x  [ z) is symmetric, 
then 8A is consistent if and only if A(z{; 8) is based on a ( p -  2)-th order 
Taylor expansion. 

Finally we note that even under the conditions of Corollary 3.1 or 
3.2 the other estimators are still inconsistent. To see this, we consider 
again a univariate model g(x; 8) = 8x 2 with x ,,~ N(0, 1) and e ,,~ N(0, c). 
Then the asymptotic biases of the estimators ~(0), 8c, ~s and ~w are 
- (5c  + 3c2)8~ +c)  2, (11c2 - 8c 3 -  12c4)8~ 13c 2 +8c 3 + 12c4), 
- (7c  2 + 3c3)8~ + c) 3 and (7c 2 + c3)8~ + c) 3 respectively. Another 
example for the model g(x; 8) = 8x 3 shows similar results. 

The results of Corollary 3.1 and 3.2 are useful in view of the fact that 
every smooth (or piecewise smooth) function can be approximated by a 
polynomial function with arbitrarily given precision. 

3.3. Exponential Model 

Now let us consider the model 

9 ( x , e )  = exp ( - x ' e ) .  
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For this model we have 

G(zi,8) = E[exp(-x~8) l zd 
= exp(-z~e)E[exp(e~8)lzd. 

Under certain conditions, e.g., all moments E(II IIJ I z) o (cJ) , j 
1, 2, ..., we have by a Taylor expansion 

G (zi, 8 ) =  exp ( -z~8)[ i  +E(e{8[zi)+E1 ! ((s I zi)+'" "] 
= exp(-z~8) +8'c~(zil+~Oa(z08+o(c)]. 

Since now 

and 

it is easy to calculate 

Og(z. o) 
Ox 

- exp(-x~8) 8 

02g(xi, 8) 
OxOx' - exp (-x~8) 88', 

A (zi, 8) = exp ( -# :8 ) [1  + �89 

exp(-z~8)exp[8'E(e~ I zi)] [1 + 

exp (-z~8) [1 + 8'a (z,) + o(c)] [1 + 

exp (-z~8)[1 + 8 'a (z  0 + �89 + o(c)] 
which differs from G(zi,8) by o(c). Analogously from (3.1)and (3.2)we 
have 

Al (zi,8) = exp(-z~8) [ll + CS'5(zi) + , 
= exp(-z~S) 

and 
A2(zi,8) = exp(-z~8)exp[cS'~(zi)] 

= exp(-z~8)[1 +8'o~(zi)+o(c)]. 

Thus, A1 (zi, 8) has an approximation error of o(c), whereas A2 (zi, 8) has 

4. A M o n t e  C a r l o  S t u d y  

In this section we provide numerical evaluation of the performance of 
various approximate estimators. We consider three models. The first 
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model is a polynomial model of the form y = 0x 4 + u. The second model 
is an exponential model of the form y = exp(Sx) + u. The third model 
assumes that the conditional density of y given x is )~(x)exp(-)~(x)y), 
hence E(y [ x) = )~(x) -1 and Var(y I x) = ~(x) -2. We assume that 
x is unobservable, only its proxy z = x § e is observed. In conformity 
with previous Monte Carlo studies in the literature (e.g., Whittemore and 
Keller (1988)), we assume that the conditional mean and variance of e 
given z are known and let c take various values, in order to examine the 
performances and sensitivity of various bias adjusted and approximate 
estimators. 

We generate e from N(0, c*). For the polynomial model, we let 0 = 
5, u be generated from N(0, 1), x be generated from N(3, 1). For the 
second and third model, we generate x from N(0.5, 1). The second model 
assumes 0 = - 1  and u ,,~ N(0,1).  The third model assumes A(x) = 
exp(x), hence Vax(y I x) = exp(-2x).  We consider c* = .1, .25, .5, .75 
and 1. In other words, we are examining the performance and sensitivity 
of various bias adjusted or approximate estimators when the order of the 
variance of measurement error in relation to the variance of observable 
is c = c*/(1-t-c*). Five hundred replications are conducted for sample 
size n = 50, 100 and 500 respectively. We compare the bias, standard 
deviation (SD) and root mean squared errors (RMSE) of the approximate 
NLS, ~A, the Whittemore and Keller (1988) estimator, ~ ,  the Stefanski 
(1985) estimator, ~s, the Carroll and Stefanski (1990) estimator, ~c (which 
uses ( 3.1 ) to approximate G(z; 0)), the naive estimator ~(0) and the Gleser 
(1989) estimator, ~e, that treats z or E(x I z) as if it were x respectively 
and apply the standard least squares method. The first four estimators 
have bias of order o(c). The last two estimators have bias of order O(c). 
The results for the polynomial model and two variants of exponential 
model are summarized in Tables 1, 2 and 3 respectively. 

As one can see from these Tables, the naive procedure of using z in 
place of x, ~(0), or substituting the missing x by the conditional mean 
of x given z, ~ ,  yields estimators which axe severely biased and have 
large RMSE even when the measurement error variance c* is small. All 
the adjusted estimators have more or less similar magnitude of bias and 
RMSE when c* is small, say c* = 0.1. When c* is of moderate magni- 
tude (0.25 < c* < 0.5), the proposed estimator, ~A, and the Whittemore 
and Keller (1988) estimator, ~ ,  are the best. Both the Stefanski (1985) 
estimator, Os, and the Carroll and Stefanski (1990) estimator, ~c, are sen- 
sitive to the magnitude of the variance of measurement errors c*. When 
c* becomes large (c* > 0.75), the proposed estimator dominates other 
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approximate estimators in terms of bias and RMSE. Furthermore, the 
performance of OA improves when sample size increases. 

5. C o n c l u s i o n s  

In this paper we propose an alternative approximate least squares or max- 
imum likelihood estimators for nonlinear errors-in-variables models. The 
approximation formula is simple to derive and easy to compute. It only 
requires the knowledge of first two moments of measurement errors given 
measured covariates. There is no need for the knowledge of the condi- 
tional distribution of the measurement errors given measured covariates. 
The specific examples and Monte Carlo studies demonstrate that the per- 
formance of this approximate estimator is quite good and robust to the 
magnitude of the variance of measurement errors to the variance of mea- 
sured covariates while the performance of other approximate estimators 
are sensitive to this magnitude. 
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T a b l e  1. T h e  P e r f o r m a n c e  o f  V a r i o u s E s t i m a t o r s f o r  t he  M o d e l  

y=5x4+u, u, ,~N(0,1)  

8(0) 

n = 50, c* = 0.1 
Bias -0.49 0.00 0.00 0.05 0.11 -0.03 

SD 0.42 0.44 0.49 0.44 0.45 0.43 

RMSE 0.65 0.44 0.49 0.44 0.46 0.43 

n = 50, c* = 0.25 
Bias -1.07 0.14 -0.06 0.50 0.30 -0.04 
SD 0.58 0.65 0.81 0.69 0.68 0.62 

RMSE 1.22 0.67 0.81 0.85 0.74 0.62 

n = 50, c* = 0.5 
Bias -1.79 0.46 -0.29 1.53 0.58 -0.03 

SD 0.66 0.89 1.14 1.35 0.89 0.77 

RMSE 1.91 1.01 1.18 2.04 1.06 0.77 

n = 50, c* = 0.75 

Bias -2.32 0.80 -0.58 -3.67 0.82 -0.01 
SD 0.68 1.09 1.35 2.78 1.02 0.85 
RMSE 2.41 1.35 1.47 4.61 1.31 0.85 

n = 50, c* = 1.0 
Bias -2.71 1.09 -0.88 -6.06 1.02 0.00 
SD 0.66 1.27 1.48 1.20 1.11 0.89 

RMSE 2.79 1.67 1.73 6.18 1.51 0.89 

n - 1 0 0 ,  c* = 0.1 

Bias -0.48 0.03 0.00 0.07 0.14 -0.01 
SD 0.32 0.34 0.38 0.34 0.35 0.33 
RMSE 0.58 0.34 0.38 0.35 0.37 0.33 

n = 100, c* = 0.25 
Bias -1.08 0.17 -0.10 0.54 0.33 -0.01 
SD 0.44 0.50 0.61 0.53 0.52 0.48 
RMSE 1.16 0.53 0.62 0.76 0.61 0.48 
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T a b l e  1. C o n t i n u e d  

n = 100, c* = 0.5 

Bias -1.82 0.50 -0.39 1.54 0.60 -0.01 

SD 0.50 0.68 0.85 0.88 0.68 0.59 
RMSE 1.89 0.84 0.94 1.78 0.90 0.59 

n = 100, c* = 0.75 

Bias -2.37 0.82 -0.74 -4.23 0.82 -0.01 

SD 0.50 0.83 0.98 2.19 0.77 0.64 

RMSE 2.42 1.17 1.23 4.77 1.13 0.64 

n = 100, c* = 1.0 

Bias -2.77 1.10 -1.08 -6.22 1.01 0.00 

SD 0.48 0.97 1.05 0.77 0.83 0.66 
RMSE 2.82 1.46 1.51 6.27 1.31 0.66 

n = 500, c* = 0.1 

Bias -0.49 0.05 -0.02 0.09 0.15 
SD 0.15 0.15 0.18 0.15 0.16 

I~MSE 0.51 0.16 0.18 0.18 0.22 

0.01 
0.15 

0.15 

n = 500, c* = 0.25 

Bias -1.10 0.20 -0.16 0.58 0.34 

SD 0.21 0.23 0.30 0.24 0.24 
RMSE 1.12 0.31 0.34 0.63 0.42 

0.01 

0.22 
0.22 

n = 500, c* = 0.50 
Bias -1.87 0.54 -0.52 1.56 0.61 

SD 0.24 0.31 0.41 0.48 0.31 
RMSE 1.88 0.62 0.66 1.63 0.68 

0.01 
0.26 
0.26 

n - 500, c* = 0.75 

Bias -2.43 0.87 -0.93 -4.86 0.84 

SD 0.24 0.38 0.48 1.06 0.34 
RMSE 2.44 0.95 1.04 4.97 0.91 

0.01 
0.28 
0.28 

n = 500, c* = 1.0 

Bias -2.85 1.13 -1.32 -6.24 1.03 
SD 0.23 0.45 0.51 0.29 0.37 
RMSE 2.86 1.22 1.41 6.25 1.09 

0.02 
0.29 
0.29 
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T a b l e  2. T h e  P e r f o r m a n c e  o f  Var ious  E s t i m a t o r s  for  t h e  M o d e l  

y = exp ( -x )  + u, u ,,~ N(0,1)  

n = 50, c* = 0.1 

Bias 0.06 0.00 -0.01 -0.03 -0.01 0.01 

SD 0.06 0.06 0.07 0.07 0.07 0.06 

RMSE 0.09 0.06 0.08 0.07 0.07 0.06 

n = 50, c* = 0.25 
Bias 0.13 -0.01 -0.02 -0.26 -0.03 0.01 

SD 0.09 0.09 0.13 0.34 0.10 0.09 

RMSE 0.16 0.09 0.13 0.42 0.11 0.09 

n = 50, c* = 0.5 
Bias 0.22 -0.04 -0.01 0.08 -0.07 0.01 

SD 0.10 0.12 0.18 0.64 0.13 0.11 

RMSE 0.25 0.13 0.18 0.64 0.15 0.11 

n = 50, c* = 0.75 

Bias 0.29 -0.09 0.02 0.60 -0.10 0.01 
SD 0.11 0.14 0.22 0.25 0.16 0.12 
RMSE 0.31 0.17 0.22 0.65 0.18 0.13 

n = 5 0 ,  c * = 1 . 0  
Bias 0.35 -0.14 0.05 0.83 -0.13 0.01 
SD 0.11 0.16 0.24 0.10 0.17 0.13 

RMSE 0.36 0.21 0.25 0.83 0.21 0.13 

n = 100, c* = 0.1 
Bias 0.06 0.00 -0.01 -0.04 -0.02 0.00 

SD 0.05 0.05 0.06 0.06 0.06 0.05 
RMSE 0.08 0.05 0.06 0.07 0.06 0.05 

n = 100, c* = 0.25 
Bias 0.13 -0.01 -0.01 -0.25 -0.04 0.00 
SD 0.07 0.08 0.10 0.21 0.08 0.08 
RMSE 0.15 0.08 0.10 0.33 0.09 0.08 



T a b l e  2. C o n t i n u e d  
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n = 100, c* = 0.5 

Bias 0.22 -0.05 0.01 0.23 -0.07 0.00 

SD 0.08 0.10 0.14 0.37 0.11 0.10 
RMSE 0.24 0.11 0.14 0.44 0.13 0.10 

n = 100, c* -- 0.75 

Bias 0.29 -0.10 0.04 0.65 -0.10 0.00 

SD 0.09 0.12 0.17 0.11 0.13 0.10 

RMSE 0.31 0.15 0.17 0.66 0.17 0.10 

n - 100, c* = 1.0 
Bias 0.35 -0.15 0.08 0.85 -0.13 0.00 

SD 0.09 0.13 0.18 0.06 0.14 0.11 
RMSE 0.36 0.20 0.20 0.85 0.19 0.11 

n = 500, c* - 0.1 

Bias 0.06 0.00 0.00 -0.04 -0.02 0.00 

SD 0.03 0.03 0.03 0.03 0.03 0.03 

RMSE 0.06 0.03 0.03 0.05 0.04 0.03 

n = 500, c* = 0.25 

Bias 0.13 -0.02 0.01 -0.22 -0.04 0.00 
SD 0.04 0.04 0.06 0.09 0.05 0.04 

RMSE 0.14 0.05 0.06 0.24 0.06 0.04 

n = 500, c* = 0.5 
Bias 0.23 -0.06 0.04 0.36 -0.07 0.00 
SD 0.05 0.06 0.08 0.10 0.06 0.05 
RMSE 0.23 0.08 0.09 0.38 0.10 0.05 

n = 500, c* = 0.75 
Bias 0.30 -0.10 0.09 0.69 -0.10 -0.01 
SD 0.05 0.06 0.09 0.05 0.07 0.06 
RMSE 0.30 0.12 0.12 0.69 0.13 0.06 

n = 500, c* = 1.0 
Bias 0.36 -0.15 0.13 0.87 -0.13 -0.01 

SD 0.05 0.07 0.09 0.03 0.08 0.06 
RMSE 0.36 0.17 0.16 0.87 0.15 0.06 
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T a b l e  3. T h e  P e r f o r m a n c e  o f  V a r i o u s  E s t i m a t o r s  fo r  t h e  M o d e l  

f (y  [ x) = )~(x)exp[-)~(x)y], ~(x) = exp(x) 

n = 50, c* = 0.1 

Bias 0.11 

SD 0.18 

RMSE 0.21 

0.05 0.04 0.02 0.04 0.06 

0.19 0.21 0.20 0.20 0.19 

0.20 0.21 0.20 0.20 0.20 

n = 50, c* = 0.25 
Bias 0.18 

SD 0.18 
RMSE 0.25 

0.05 0.04 -0.21 0.02 0.06 
0.20 0.24 0.48 0.21 0.20 
0.20 0.24 0.52 0.21 0.20 

n = 50, c* = 0.5 

Bias 0.27 

SD 0.18 
RMSE 0.32 

0.01 0.05 0.07 -0.01 0.06 

0.22 0.27 0.62 0.24 0.20 

0.22 0.28 0.62 0.24 0.21 

n = 50, c* = 0.75 

Bias 0.33 
SD 0.17 
RMSE 0.38 

-0.03 0.08 0.58 -0.04 0.06 
0.23 0.30 0.22 0.26 0.21 
0.24 0.31 0.62 0.26 0.22 

n = 5 0 ,  c * =  1.0 
Bias 0.39 

SD 0.17 
RMSE 0.42 

-0.08 0.12 0.81 -0.06 0.05 
0.25 0.32 0.11 0.27 0.22 
0.27 0.34 0.81 0.28 0.22 

n = 100, c* = 0.1 

Bias 0.09 

SD 0.15 
RMSE 0.17 

0.03 0.03 0.00 0.02 0.04 

0.15 0.16 0.16 0.16 0.15 
0.16 0.17 0.16 0.16 0.16 

n = 100, c* = 0.25 

Bias 0.16 
SD 0.14 
RMSE 0.22 

0.02 0.03 -0.22 0.00 0.04 

0.16 0.19 0.35 0.17 0.16 
0.16 0.19 0.42 0.17 0.16 
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n = 100, c* = 0.5 

Bias 0.25 -0.02 0.05 0.23 -0.04 0.04 
SD 0.14 0.17 0.21 0.33 0.19 0.16 

RMSE 0.29 0.17 0.21 0.40 0.19 0.17 

n = 100, c* = 0.75 

Bias 0.32 -0.06 0.09 0.63 -0.06 0.03 

SD 0.13 0.18 0.22 0.13 0.20 0.16 

RMSE 0.35 0.19 0.23 0.64 0.21 0.17 

n = 100, c* = 1.0 
Bias 0.37 -0.11 0.12 0.83 -0.09 0.03 

SD 0.13 0.20 0.22 0.08 0.21 0.17 
RMSE 0.40 0.23 0.26 0.84 0.23 0.17 

n = 500, c* = 0.1 

Bias 0.07 0.01 0.01 -0.02 0.00 0.01 

SD 0.09 0.09 0.10 0.10 0.10 0.09 

RMSE 0.12 0.09 0.10 0.10 0.10 0.09 

n = 500, c* = 0.25 
Bias 0.15 0.00 0.02 -0.22 -0.03 0.01 
SD 0.09 0.10 0.11 0.11 0.10 0.09 
RMSE 0.17 0.10 0.12 0.25 0.11 0.10 

n = 500, c* = 0.5 
Bias 0.24 -0.04 0.06 0.35 -0.06 0.01 

SD 0.08 0.10 0.13 0.11 0.11 0.10 
RMSE 0.25 0.11 0.14 0.37 0.13 0.10 

n = 500, c* = 0.75 
Bias 0.31 -0.09 0.10 0.68 -0.09 0.01 
SD 0.08 0.11 0.13 0.06 0.12 0.10 
RMSE 0.32 0.14 0.17 0.68 0.15 0.I0 

n = 500, c* = 1.0 

Bias 0.37 -0.14 0.14 -0.14 -0.11 0.00 
SD 0.08 0.12 0.14 0.03 0.12 0.09 

RMSE 0.37 0.18 0.20 0.86 0.17 0.09 

23 
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