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1 Introduction

The censored regression (Tobit) model has been
widely applied in econometrics, biometrics, psycho-
metrics and many other fields (Amemiya (1985)).
Usually the regressors in these models are assumed
to be non-random bounded constants. This assump-
tion is obviously not always appropriate in many sit-
uations and may lead to inaccurate and inconsistent
estimates.

Recently a class gf errors-in-variables (EV) mod-
els with binary dependent variables are studied by
Hsiao (1991) and the least absolute deviation esti-
mators of the models with censored dependent vari-
ables are investigated by Weiss (1993). In this paper
we consider the following censored (linear) errors-in-
variables (CEV) model

ηt = β1 + β′2ξt + ut,

yt = max{ηt, 0}, (1.1)

xt = ξt + vt,

where ηt ∈ IR, ξt ∈ IRk are the unobserved vari-
ables, yt, xt the observed variables, ut, vt the er-
rors and β1, β2 the regression parameters. Fur-
thermore we assume that ut, vt and ξt be inde-
pendently and normally distributed (ut, v

′
t, ξ
′
t)
′ ∼

N
[
(0, 0, µ′ξ)

′, diag(σu,Σv,Σξ)
]
, where µξ ∈ IRk,

σu > 0, Σv and Σξ are k × k non-negative definite
matrices.

The major difference between model (1.1) and the
Tobit model is that the independent variable ξt is not
exactly observed and, as a result, xt’s are no longer
constants and the distributions of xt’s enter the like-
lihood function of the model. This feature arises
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many difficulties and complexities in conducting the
statistical analysis of the model. Another feature of
model (1.1) is that, as the usual linear EV model,
it suffers from the problem of non-identifiability in
general, as is shown in section 2. In section 3, under
the condition of given Σ−1ξ Σv, a two-step moment
estimation procedure (TME) is proposed which is
consistent and asymptotically normal. Under the
same condition the maximum likelihood estimators
(MLE) are treated in section 4. It is shown that a
suitably reparametrized likelihood function is glob-
ally concave and therefore the unique global MLE
exist. The consistency and asymptotic normality of
the MLE are also shown.

2 Identifiability

For identifiability we adopt the definition of Hsiao
(1983) or Fuller (1987). Formally, let z be the vec-
tor of (yt, x

′
t)
′, t = 1, 2, ..., T , where T is the sample

size, and suppose the sample distribution function
F (z|θ) be known up to an n-dimensional unknown
parameter vector θ. Let Θ ⊆ IRn be the natural pa-
rameter space. Then the model is said to be identifi-
able, if for any θ1, θ2 ∈ Θ, F (z|θ1) ≡ F (z|θ2) implies
θ1 = θ2. A parameter in the model (a component
of θ ∈ Θ) is said to be identified, if it is uniquely
determined by the sample distribution.

Now the variable yt has a so-called censored nor-
mal distribution, i.e., yt takes the value 0 with prob-
ability P (ηt ≤ 0) = Φ(−µη/

√
ση) and has the den-

sity function f(yt) = (1/
√
ση)φ[(yt − µη)/

√
ση] for

yt > 0, where Φ(·) and φ(·) are the standard normal
distribution and density functions. Thus the joint
distribution of (yt, x

′
t)
′ is either normal or censored

normal or the mixture of both. In any case it is
uniquely determined by the first two moments and
the conditional moments of (yt, x

′
t)
′ given yt > 0.

However, it may be easily verified that all these mo-
ments and conditional moments are uniquely deter-
mined by the first two moments of (ηt, x

′
t)
′ and vice

versa (Wang (1993)), as is easily seen by the equa-
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tions
E(yt|yt > 0) = µη +

√
σηλ(γ), (2.1)

E(y2t |yt > 0) = ση + µηE(yt|yt > 0), (2.2)

E(xtyt|yt > 0) = σxη + µxE(yt|yt > 0), (2.3)

where γ = µη/
√
ση and λ(·) = φ(·)/Φ(·). This

means that the first two moments of (ηt, x
′
t)
′ con-

tain all observational information from data. There-
fore the problem of identifiability is reduced to, first,
writing down all first two moments of (ηt, x

′
t)
′ which

are the functions (defined by the model) of unknown
parameters, and then, inspecting whether all param-
eters are uniquely determined by the moment equa-
tions. As for the usual linear EV model, we have

µx = µξ, Σx = Σξ + Σv, (2.4)

and

µη = β1 + β′2µξ,

ση = β′2Σξβ2 + σu, (2.5)

σxη = Σξβ2.

It is easily seen that in (2.4) − (2.5) the number
of free parameters exceeds the number of equations
and hence, except µξ, all other parameters on the
right-hand side are not identified.

Theorem 2.1 In model (1.1) only the parameters
µξ, µη, ση and σxη are identified whereas the pa-
rameters β1, β2, σu, Σv and Σξ are not identified.
Thus in general model (1.1) is not identifiable.

According to Theorem 2.1 in order to obtain the
unique estimates of model (1.1) a certain kind a pri-
ori information is needed. For example, in many
real problems the variance ratio σ−1u Σv may be es-
timated by repeated sampling or determined from
some sources independent of data. In some other
cases the information about the reliability ratio
κ = Σ−1x Σξ may be available (Gleser (1992)). Since
κ = (I + Σ−1π Σv)

−1, this is equivalent to the as-
sumption that the noise-to-signal ratio ∆ = Σ−1ξ Σv
is known. In the following two sections we discuss
two estimation procedures for the given ∆.

3 Two-step Moment Estima-
tors (TME)

Suppose the data (yt, xt)
′, t = 1, 2, ..., T be given,

in which T0 yt’s are zero and T1 = T − T0 yt’s
are positive. Without loss of generality we assume
0 < T0 < T . Then the conditional moments on the

left-hand side of (2.1) − (2.3) are consistently esti-
mated by the sample moments using the positive yt’s
and the corresponding xt’s. Using the analogous no-
tation we denote these estimators as µ̂y|y>0, µ̂y2|y>0

and µ̂xy|y>0. Since E(yt) = E(yt|yt > 0)Φ(γ),
we may estimate γ by γ̂ = Φ−1(ȳ/µ̂y|y>0), where

ȳ = (1/T )
∑T
t=1 yt, then by (2.1)− (2.3), ση, µη and

σxη are estimated as

σ̂η = µ̂y2|y>0/(1 + γ̂2 + γ̂λ(γ̂)),

µ̂η = γ̂
√
σ̂η, (3.1)

σ̂xη = µ̂xy|y>0 − x̄µ̂y|y>0,

where, x̄ = (1/T )
∑T
t=1 xt. Now substituting ση,

µη and σxη in the equations (2.4) − (2.5) through
the estimates (3.1) and solving these equations we
obtain

µ̂ξ = x̄,

Σ̂ξ = Sx(I + ∆)−1, (3.2)

Σ̂v = Σ̂ξ∆,

and

β̂2 = Σ̂−1ξ σ̂xη,

β̂1 = µ̂η − β̂′2µ̂ξ, (3.3)

σ̂u = σ̂η − β̂′2σ̂xη,

where Sx = (1/T )
∑T
t=1(xt − x̄)(xt − x̄)′.

The consistency and asymptotic normality of the
estimators in (3.1) − (3.2) follow immediately from
that of the sample moments. The asymptotic prop-
erties for the estimators in (3.3) are given in the fol-
lowing theorem, the proof of which is given in Wang
(1993).

Theorem 3.1 Let θ = (β1, β
′
2, σu)′ and θ̂TM the

corresponding TME. If Σξ > 0 and ∆ = Σ−1ξ Σv
is given, then

1. θ̂TM
a.s.→ θ0, as T → ∞, where θ0 are the true

parameters of model (1.1).

2.
√
T (θ̂TM−θ0)

L→ N
(
0,Σ(θ0)

)
, where the symbol

L→ denotes the convergence in law and Σ(θ0) is
the covariance matrix with the components de-
fined by
Σ11 = σu + β′2Σvβ2 + µ′xΣ22µx,
Σ12 = −µ′xΣ22,
Σ13 = −µ′xΣ23,
Σ22 = (ση − σ′xηΣ−1x σxη)(I + ∆)Σ−1ξ ,

Σ23 = −2(ση − σ′xηΣ−1x σxη)∆β2,
Σ33 = 2σ2

u+β′2[4σηΣv+σ′xηΣ−1x σxη(4Σv+Σx)+
7σxησ

′
xη]β2.
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Remark 3.1 The two-step procedure in this sec-
tion may be similarly applied to the case where in-
stead of the noise-to-signal ratio Σ−1ξ Σv the vari-

ance ratio σ−1u Σv is known. The only difference is
that the second-step estimators should be calculated
similarly as in Fuller (1987), section 1.3. The asymp-
totic properties of the estimators may be established
analogously to Theorem 3.1. Such results for the
univariate model (k = 1) are given by Theorem 1.3.1
of Fuller (1987), page 32.

4 Maximum Likelihood Esti-
mators (MLE)

In this section we consider the maximum likelihood
estimators of model (1.1). Let the data be given as
in last section. Since (ηt, x

′
t)
′ are jointly normal, the

conditional distribution of ηt given xt is again nor-
mal with conditional mean E(ηt|xt) and conditional
variance V (ηt|xt). Note that V (ηt|xt) does not de-
pend on the subscript t and hence will be written as
V (η|x). As yt = ηt when yt > 0, the log-likelihood
function of model (1.1) is, up to a constant,

L =
∑
0

log Φ
(
− E(ηt|xt)√

V (η|x)

)
− T1

2
log V (η|x)

− 1

2V (η|x)

∑
1

[yt − E(ηt|xt)]2 −
T

2
log |Σx|

−1

2

∑
(xt − µx)′Σ−1x (xt − µx), (4.1)

where µη, µx, ση, σxη and Σx are given by (2.4) −
(2.5). Throughout this paper we use

∑
0 to denote

the summation over the t’s for which yt = 0,
∑

1

over the t’s for which yt > 0 and
∑

without index
to denote the summation over all observations.

Again because of the problem of non-
identifiability the likelihood function (4.1) does
not have finite maximum without further condition.
In order to guarantee the existence of the finite
maximum we make again the assumption that
∆ = Σ−1ξ Σv be known. Thus the free parameters in
(4.1) are (β1, β

′
2, σu, µ

′
ξ, vechΣ′ξ)

′, where vech is the
vectorization operator such that vechΣ is a vector
consisting of main and lower diagonal elements of
Σ. Let the natural parameter space be denoted
as Θ̃. As in the non-EV case, directly working
with the likelihood function (4.1) turns out to be
cumbersome. In order to simplify (4.1) we define
the reparametrization T : Θ̃ 7→ Θ̃ as

µx = µξ, Σx = Σξ(I + ∆), (4.2)

and

τ = 1/
√
V (η|x),

α1 = τβ1, (4.3)

α2 = τΣ−1x Σξβ2.

Then the new parameters are
(α1, α

′
2, τ, µ

′
x, vechΣ′x)′. Obviously T is a home-

omorphism from Θ̃ onto Θ̃. The log-likelihood
function may be further simplified by noting that,
since only the variable yt is censored, the MLE of µx
and Σx should not be affected by the censoring and
therefore should be the same as in the non-censored
linear model. Indeed, setting the first derivatives
of L to zero we may obtain the MLE for µx and
Σx which are given by µ̂x = x̄ and Σ̂x = Sx.
Inserting these estimates into L results in the
concentrated log-likelihood function which has only
k + 2 unknown parameters ψ = (α1, α

′
2, τ)′ and is

defined on the parameter space Θ = IRk+1 × IR+.

Without loss of generality we assume that the
first T0 yt be zero and let Y1 be the vector con-
taining the T1 positive yt’s. Furthermore denote
x̃t = (1, (xt + ∆′x̄)′)′, X0 = (x̃1, x̃2, · · · , x̃T0

)′, X1 =
(x̃T0+1, x̃T0+2, · · · , x̃T )′ and Z = (X1,−Y1). Then
after some reordering and arrangements of terms the
concentrated log-likelihood function may be written
up to a constant as

Lc(ψ) =
∑
0

log Φ(−α′x̃t)−
1

2
ψ′Z ′Zψ + T1 log τ,

where α = (α1, α
′
2)′. In order to show that Lc(ψ) has

unique maximum we calculate its second derivatives

∂2Lc(ψ)

∂ψ∂ψ′
= −

(
X ′0Λ0X0 0

0 T1/τ
2

)
− Z ′Z, (4.4)

where λ0 = (λt, t = 1, 2, ..., T0)′, λt =
φ(α′x̃t)/Φ(−α′x̃t) and Λ0 = diag[λt(λt − α′x̃t), t =
1, 2, ..., T0]. Since λt(λt−α′x̃t) > 0, the Hessian ma-
trix (4.5) is negative definite with probability one for
all ψ ∈ Θ, which means Lc(ψ) is concave in the space
Θ with probability one. Furthermore, it is easy to
verify that the gradient of Lc(ψ) will change sign
when α tends to positive infinity and to negative in-
finity, which means that Lc(ψ) attains the maximum
at an interior point Θ. Since the mapping T is con-
tinuous, by the invariance principle of the MLE we
have the following results.

Theorem 4.1 Suppose σu > 0, Σξ > 0 and ∆ =
Σ−1ξ Σv be given. If the Hessian matrix (4.4) is non-
singular, then
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1. The concentrated log-likelihood function Lc(ψ)
is concave in Θ and hence has a unique, finite,
global maximum.

2. The likelihood function L in (4.1) has a unique,
finite, global maximum in the parameter space
Θ̃.

Let ψ̂ be the value obtained by maximizing
Lc(ψ), then the MLE for the original parameters
(β1, β

′
2, σu)′ are calculated according to (4.3). The

MLE for µξ, Σξ and Σv are calculated by (4.2) and
therefore are identical with the TME (3.2).

Now we consider the asymptotic properties of the
MLE so obtained. As for the TME we consider only
the MLE of θ = (β1, β

′
2, σu)′, which is denoted by

θ̂ML. First we have the following theorem (Wang
(1993)).

Theorem 4.2 Let ψ0 be the value corresponding to
the true parameters of model (1.1). Then under the
conditions of Theorem 4.1, it holds

1. ψ̂
P→ ψ0, as T →∞.

2.
√
T (ψ̂ − ψ0)

L→ N
(
0,−H(ψ0)−1

)
, where

H(ψ0) = plim
T→∞

1

T

∂2Lc(ψ0)

∂ψ∂ψ′
.

Now the consistency of θ̂ML follows immediately
from Theorem 4.2 and the continuity of the mapping
T . To show the asymptotic normality of θ̂ML, let
θ(ψ) : Θ 7→ Θ denote the mapping induced by T .
Then θ(ψ) is continuously differentiable and hence
we have the first-order Taylor expansion

θ̂ML − θ =
∂θ(ψ̃)

∂ψ′
(ψ̂ − ψ),

where ψ̃ lies between ψ̂ and ψ and

∂θ

∂ψ′
=

1√
V (η|x)

 1 0 −β1
0 I + ∆ −β2
0 −2Σvβ2 −2σu


The derivative ∂θ/∂ψ′ is obviously a continuous
function of ψ. Thus by Theorem 4.2 we have the
following results.

Theorem 4.3 Let θ0 be the true parameters of
model (1.1). Then under the conditions of Theorem

4.1, θ̂ML satisfy

1. Consistency: θ̂ML
P→ θ0.

2. Asymptotic normality:

√
T (θ̂ML − θ0)

L→ N
(
0,Σ(θ0)

)
,

where

Σ(θ0) =
∂θ(ψ0)

∂ψ′
H(ψ0)−1

(∂θ(ψ0)

∂ψ′

)′
is evaluated at θ0.

Remark 4.1 The maximization of the function
Lc(ψ) may be carried out through standard numer-
ical methods such as Newton-Raphson. Since Lc(ψ)
is globally concave, the iteration may start at any fi-
nite point. However for a rapid convergence a good
starting point is important. The TME derived in
section 3 may serve as initial values for starting the
iteration. As is shown by a Monte Carlo simula-
tion in Wang (1993), in an univariate model the
MLE procedures using Newton-Raphson algorithm
and the TME as starting values may achieve rather
satisfactory convergence after four or five iterations.
Furthermore, it is well-known that the estimators
ψ̂1 and θ̂1 obtained after one iteration in Newton-
Raphson procedure have the same asymptotic dis-
tributions as the MLE ψ̂ and θ̂ML respectively.
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