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1 Introduction

Measurement error (errors in-variables) models have
been applied in many fields of science (e.g., Aigner
et al (1984), Fuller (1987), Hsiao (1992) and Car-
roll, Ruppert and Stefanski (1995)). If a model is
linear in variables, the issues of random measure-
ment errors can often be overcome through the use
of the instrumental variable method. If a model is
nonlinear in variables, the conventional instrumen-
tal variable method, in general, does not yield con-
sistent estimator of the unknown parameters when
variables are subject to random measurement errors
(e.g., Y. Amemiya (1985) and Hsiao (1989)).

To obtain consistent estimators for nonlinear
errors-in-variables models, two approaches have
been adopted. One is to assume that the vari-
ances of the measurement errors shrink towards
zero when sample size increases (e.g., Wolter and
Fuller (1982a, b), Amemiya and Fuller (1988) and
Amemiya (1990)). The other is to assume that sam-
ple observations are random draws from a common
population (the so called structural models, see, e.g.,
Kendall and Stuart (1977)). The former approach
may not be applicable to data sets often encountered
by economists. The latter approach will yield consis-
tent estimators of the unknown parameters through
the use of the maximum likelihood or minimum dis-
tance principle only if the conditional distribution of
the measurement errors given the observed covari-
ates are known a priori. Unfortunately, the prob-
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ability distribution of the measurement errors typ-
ically is unknown to investigators unless validation
data are available (e.g. Carroll and Stefanski (1990),
Sepanski and Carroll (1993)).

In this paper we propose an alternative approach
to derive the consistent estimators for nonlinear
errors-in-variables models. We combine the non-
parametric estimation method with the method of
Fourier deconvolution to separate the systematic
part of the regression model and the probability
distribution of the unobservables. We demonstrate
that, contrary to the common belief, instrumental
variables do yield useful information with regard to
identification and estimation of the unknown param-
eters. To derive the estimators, we use a simulation
based procedure. While the basic idea of simula-
tion is similar to the method of simulated moments
(MSM) of McFadden (1989) or Pakes and Pollard
(1989), it is different in the sense that the knowledge
of the true density function of the unobservables is
not required. Essentially, simulation generated from
any arbitrary distribution is capable of yielding con-
sistent and asymptotically normally distributed es-
timators. The method is also easier to implement
than the semiparametric method recently proposed
by Newey (1993). To save space, we present here
only conditions and main results. More detailed
derivations and proofs may be found in Wang and
Hsiao (1996).

2 The Model

Consider the regression model

y = g (x; θ0) + η, (2.1)

where y ∈ IR, x ∈ IRk and θ0 ∈ IRp is a vector
of unknown parameters. The function g (x; θ0) is
nonlinear in x. Suppose x is unobservable. Instead
we observe

z = x+ ζ. (2.2)
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In addition we assume that there exists a instrumen-
tal variable w ∈ IRl which is related to x through

x = Γ0w + u, (2.3)

where Γ0 is a k × l matrix of unknown parameters.
The η, ζ and u are unobserved errors which we as-
sume to satisfy E (u | w) = 0, E (η | w, u) = 0 and
E (ζ | w, u, η) = 0. There is no assumption about
the functional form of the error distributions. Thus,
the model is semiparametric. The primary interest
is to estimate the parameters θ0,Γ0 and the distri-
bution of u, Fu (u).

Hausman et al (1991) and Hausman, Newey and
Powell (1995) analyzed a special form of model (2.1)
- (2.3) where x is a scalar variable and g (x; θ0) is a
polynomial of x. Newey (1993) considered more gen-
eral model of form (2.1) - (2.3) with the assumption
that the error u in (2.3) is independent of the in-
strumental variable w. He proposed consistent esti-
mators of the model based on the following moment
equations

E (y | w) =

∫
g (Γ0w + u; θ0) dFu (u) , (2.4)

E (zy | w) =

∫
(Γ0w + u) g (Γ0w + u; θ0) dFu (u) ,

(2.5)
E (z | w) = Γ0w, (2.6)

under the assumption that the parameters θ0,Γ0 and
the distribution Fu (u) are simultaneously identified
by (2.4) - (2.6). Hausman et al (1991) showed that
the polynomial model is identifiable. Newey (1993)
conjectured that the identifiability holds for more
general models. Also, Newey (1993) derived a con-
sistent simulated moment estimator for the model
when Fu (u) belongs to a parametric family and a
consistent semiparametric estimator when Fu (u) is
nonparametric but may be approximated by a para-
metric family.

3 Identification

Following Newey (1993) we consider the question of
identifiability of the parameters θ0,Γ0 and the dis-
tribution Fu (u) based on moment equations (2.4)
- (2.6). Obviously (2.6) is a usual linear regression
equation and, therefore, Γ0 is identified in general.
In the following we show how θ0 and Fu (u) are iden-
tified by (2.4) and (2.5), given that Γ0 is identified.
We make the following assumptions.

A 1 The distribution of w is absolutely continuous
w.r.t. Lebesgue measure and has support IRl.

A 2 Γ0 has full rank k.

A 3 The functions g (x; θ0), xg (x; θ0) ∈ L1
(
IRk
)
.

Let m1 (Γ0w) = E (y | w) and m2 (Γ0w) =
E (zy | w). Then, since the conditional expecta-
tions in (2.4) and (2.5) depend on w only through
v = Γ0w, (2.4) and (2.5) can be respectively written
as

m1(v) =

∫
g(v + u; θ0)dFu(u), (3.1)

m2(v) =

∫
(v + u)g(v + u; θ0)dFu(u). (3.2)

Unless otherwise indicated explicitly, all integrals in
this paper are taken to be over the space IRk. Condi-
tion A3 implies that m1 (v) ,m2 (v) ∈ L1

(
IRk
)

and
the Fourier transforms g̃ (λ; θ0) , m̃1 (λ) and m̃2 (λ)
of g (x; θ0) ,m1 (v) and m2 (v) respectively exist,
where, e.g.,

g̃ (λ; θ0) =

∫
e−iλ

′xg (x; θ0) dx.

Then taking Fourier transformation on both sides of
(3.1) and applying the Fubini Theorem we have

m̃1(λ) =

∫
e−iλ

′v

∫
g(v + u; θ0)dFu(u)dv

= g̃(λ; θ0)f̃u(λ), (3.3)

where

f̃u (λ) =

∫
eiλ

′udFu (u)

is the characteristic function of Fu (u). Likewise tak-
ing Fourier transformation on both sides of (3.2)
yields

m̃2(λ) = g̃λ(λ; θ0)f̃u(λ), (3.4)

where

g̃λ (λ; θ0) =

∫
e−iλ

′xxg (x; θ0) dx.

Now, if g̃ (λ; θ0) 6= 0, then (3.3) is equivalent to

f̃u (λ) = m̃1 (λ) /g̃ (λ; θ0) . (3.5)

It is apparent now that f̃u (λ), hence the distribution
Fu (u), is uniquely determined by θ0 through (3.5).
In order to derive the condition under which θ0 is
identified, we substitute (3.5) into (3.4) and obtain

g̃ (λ; θ0) m̃2 (λ) = g̃λ (λ; θ0) m̃1 (λ) . (3.6)
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It follows from the Uniqueness Theorem of Fourier
transformation, that∫

g (ξ − v; θ0)m2 (v) dv =∫
(ξ − v) g (ξ − v; θ0)m1 (v) dv (3.7)

holds almost everywhere on IRk (with respect to
Lebesgue measure). In fact, from equations (3.1)
and (3.2) it is easy to verify directly that (3.7) holds
for all ξ ∈ IRk. As a result, we have

G (ξ; θ0)

=

∫
g (ξ − v; θ0) [(ξ − v)m1 (v)−m2 (v)] dv

≡ 0. (3.8)

Let Θ ⊆ IRp denote the parameter space. Then we
have the following results.

Theorem 1 Suppose A1 - A3 hold for model (2.1)
- (2.3) and g̃ (λ; θ0) 6= 0,∀λ ∈ IRk. Then

(1) if there exists a point ξ0 ∈ IRk, such that
G (ξ0; θ0) = 0 has unique solution θ0 ∈ Θ, then
(θ0, Fu) is identified (by (2.4) and (2.5));

(2) (θ0, Fu) is identified if and only if θ0 is the
unique point in Θ satisfying (3.8).

Since (3.8) contains k equations, from Theorem
3.1 we have immediately the following identification
conditions.

Corollary 2 Under the condition of Theorem 3.1,

(1) a necessary condition for θ0 to be identified by
(3.8) is that k ≥ p;

(2) if k ≥ p and the function G (ξ; θ) in (3.8) is
differentiable at θ0, then a sufficient condition
for identification is that there exists ξ0 ∈ IRk,
such that rank

[
∂G (ξ0; θ0) /∂θ′

]
= p.

4 Estimation

Let the data (yt, zt, wt), t = 1, 2, ..., T be given with
sample size T . First we note that, if we have a con-
sistent estimator of θ0, say θ̂, then the distribution
of u can be estimated through (3.5) as

̂̃
fu (λ) = ˜̂m1 (λ) /g̃

(
λ; θ̂
)
, (4.1)

where ˜̂m1 (λ) is the Fourier transform of m̂1 which
is a consistent nonparametric estimator of m1. The

estimator (4.1) is point-wise consistent under certain
regularity conditions. Therefore, our focus will be on
deriving consistent estimator of θ0.

The identification condition (3.8) also suggests
a method to estimate θ0. Indeed, equation (3.8)
provides k orthogonality conditions which may be
used to estimate the parameter θ0 ∈ Θ ⊂ IRp by
a method similar to the generalized method of mo-
ments (GMM) of Hansen (1982) or the method of
simulated moments (MSM) of McFadden (1989) or
Pakes and Pollard (1989), i.e., an estimator of θ0

can be constructed by making the sample analog of
(3.8) as close to zero as possible. This estimation
procedure however may not always yield unique es-
timate even when the θ0 is identified. Furthermore,
it is not known generally, at which point of ξ ∈ IRk
is the θ0 uniquely determined by (3.8). To make use
of condition (3.8), we propose a stochastic version
of Theorem 3.1. Let fξ (ξ) be a positive function on
IRk. Then a necessary and sufficient condition for
(3.8) is ∫

‖G (ξ; θ0)‖2 fξ (ξ) dξ = 0, (4.2)

where ‖ ‖ denotes the Euclidean norm. Then an
estimator of θ0 may be obtained by minimizing the
function

Q̃ (θ) =

∫
‖G (ξ; θ)‖2 fξ (ξ) dξ, (4.3)

where

G (ξ; θ) =

∫
g (ξ − v; θ) [(ξ − v)m1 (v)−m2 (v)] dv.

(4.4)

However, Q̃ (θ) is a multiple integral which often
causes complications and difficulties in numerical
computation. To make the idea operational, we “dis-
cretize” the integral (4.3) by

Q (θ) =
1

S

S∑
s=1

‖G (ξs; θ)‖
2
, (4.5)

where ξ1, ξ2, ..., ξS are randomly generated from an
arbitrary density function fξ (ξ) having support IRk

and S is large enough such that ∂2Q (θ0) /∂θ∂θ′ is
nonsingular (see assumption A18 below). It is clear
that under some mild conditions Q (θ) converges in

probability to Q̃ (θ) uniformly in a neighborhood of
θ0 ∈ Θ.

Thus we propose the following procedure of esti-
mation:
Step 1. From (2.6) estimate Γ0 by the LS estimator

Γ̂ =

(
T∑
t=1

ztw
′
t

)(
T∑
t=1

wtw
′
t

)−1

. (4.6)
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Then let vt = Γ̂wt, t = 1, 2, ..., T and estimate the
density function fv (v) of v = Γ0w, the conditional
mean functions m1 (v) = E (y | v) and m2 (v) =
E (zy | v) by kernel method as

f̂v (v) =
1

ThkT

T∑
t=1

K

(
v − vt
hT

)
, (4.7)

m̂1 (v) =
1

ThkT

T∑
t=1

ytK

(
v − vt
hT

)
/f̂v (v) (4.8)

and

m̂2 (v) =
1

ThkT

T∑
t=1

zDytK

(
v − vOt
hT

)
/f̂v (v) ,

(4.9)
whereK (·) is the kernel function and hT is the band-
width.
Step 2. Approximate the integral (4.4) by

ĜT (ξ; θ) = 1
T

∑T
t=1 I

(∣∣∣f̂v (vt)
∣∣∣ ≥ bT) g (ξ − vt; θ)

× [(ξ − vt) m̂1 (vt)− m̂2 (vt)] /f̂v (vt) ,
(4.10)

where I (·) is the indicator function and bT are pos-
itive constants satisfying bT → 0 as T →∞.
Step 3. Construct the sample analog of (4.5) as

QT (θ) =
1

S

S∑
s=1

∥∥∥ĜT (ξs; θ)
∥∥∥2

(4.11)

where each term ĜT (ξs; θ) is computed according to
(4.10).

Step 4. The simulation estimator (SE) θ̂T is defined
as the measurable function satisfying

QT

(
θ̂T

)
= inf
θ∈Θ

QT (θ) . (4.12)

The consistency of the SE θ̂T may be derived fol-
lowing the traditional fashion by establishing the
uniform convergence of QT (θ) to Q (θ) which has
unique minimizer θ0 ∈ Θ and Θ is compact. From
(4.4) - (4.5) and (4.10) - (4.11) it is easily seen that
the convergence of QT (θ) to Q (θ) requires the con-
sistencies of the LS and nonparametric estimators
(4.6) - (4.9) in the first step of the estimation pro-
cedure. In fact, even the uniform convergence of
the first stage estimators are desired. In this paper
we use the results of Andrews (1995) on the rate of
uniform convergence of kernel estimators of density
functions and conditional mean functions.

Definition 1 Let Dq, q ≥ 1, be the class of all real
functions f (·) on IRk such that all partial derivatives
of order 0 through q are continuous and uniformly
bounded.

To use the results of Andrews (1995), we assume
that

A 4 (yt, zt, wt) , t = 1, 2, ..., T are independent and
identically distributed.

A 5 Ey2 < ∞, E ‖yz‖2 < ∞, E ‖w‖4 < ∞ and
Mw = Eww′ is nonsingular.

A 6 For some q ≥ 1, the functions
fv (v) ,m1 (v) ,m2 (v) ∈ Dq.

A 7 For the q ≥ 1 in A6, the kernel function K (v)
is bounded on IRk and satisfies:

(1)
∫
K (v) dv = 1 and

∫
vq11 v

q2
2 · · · v

qk
k K (v) dv = 0,

for qj ≥ 0 and 1 ≤
∑k
j=1 qj ≤ q − 1;

(2)
∫
‖v‖j |K (v)| dv <∞, for j = 0 or q;

(3) supv∈IRk ‖∂K (v) /∂v‖ (‖v‖+ 1) <∞;

(4)
∫
eiλ

′vK (v) dv ∈ L1
(
IRk
)
.

A 8 As T →∞, hT → 0, bT → 0, Th2k
T b

6
T →∞ and

hqT b
−3
T → 0, where q ≥ 1 is as in A6.

To derive the consistency of the SE θ̂T defined by
(4.12), we assume further that

A 9 The function g (x; θ) satisfies

(1) sup
θ∈Θ
‖g (x; θ)‖, supθ∈Θ ‖xg (x; θ)‖ ∈ L1

(
IRk
)
;

(2) sup
θ∈Θ
‖∂g (x; θ) /∂x‖ and sup

θ∈Θ
‖∂xg (x; θ) /∂x‖ are

uniformly bounded.

A 10 θ0 is the unique point in Θ for which Q (θ0) =
0 and Θ ⊂ IRp is compact.

Then the consistency of θ̂T is given in the follow-
ing theorem.

Theorem 3 Under A1 – A10, θ̂T
P→ θ0, as T →∞.

Similar to the consistency, the asymptotic normal-
ity of θ̂T also may be obtained in the traditional way
by first Taylor expanding the derivative of QT (θ) at
θ0 and then showing that the Hessian ∂2QT /∂θ∂θ

′

converges to a nonsingular matrix and the gradient
∂QT /∂θ times

√
T has an asymptotic normal distri-

bution. However, as in the case of Robinson (1188),
the derivation becomes much more complicated be-
cause of the presence of nonparametric estimators
in function QT (θ), which have the convergence rate
lower than

√
T . To achieve the

√
T -consistency of
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his semiparametric estimator, Robinson (1988) used
higher order kernels combined with certain smooth-
ness conditions for the density and conditional mean
functions. Essentially, he assumed the density and
conditional mean functions belong to Gαµ , α > 0, µ >

0, which is defined as a class of functions f : IRk →
IR satisfying: (1) f (·) is (q − 1)-times partially dif-
ferentiable, q − 1 < µ ≤ q; (2) for some ρ >
0, sup‖u−v‖<ρ |f (u)− f (v)− F (u, v)| / ‖u− v‖µ ≤
γ (v) for all v, where F = 0, when q = 1; and F is a
(q − 1)-th degree homogeneous polynomial in u − v
with coefficients the partial derivatives of f at v of
orders 1 through (q − 1), when q > 1; and (3) the
function γ (·), f (·) and all its partial derivatives of
order q − 1 and less have finite α-th moments. It is
easy to see that every function in Dq belongs to Gαq
and, thus, Dq ⊆ Gαq .

Following Robinson (1988), to obtain the
√
T -

consistency, we use the product kernel K (v) =∏k
j=1 κ (vj) in the nonparametric estimators (4.8) -

(4.10), where κ (·) is a univariate kernel and vj is the
j-th component of v ∈ IRk. However, to adapt to our
consistency assumptions A7, we use a modification
of his definition for the class of kernel functions.

Definition 2 Let Kq, q ≥ 1, be the class of all even
functions κ (·) : IR→ IR satisfying

(1)
∫
IR
rjκ (r) dr = δ0b, j = 0, 1, ..., q − 1, where δij

is Kronecker’s delta;

(2) κ (r) = O

((
1 + |r|q+1+ε

)−1
)

, for some ε > 0;

(3) supr∈IR |∂κ (r) /∂r| (|r|+ 1) < ∞ and
supr∈IR

∣∣∂2κ (r) /∂r2
∣∣ <∞;

(4)
∫
eiµrκ (r) dr ∈ L1 (IR).

Thus, we make the following assumption.

A 11 For the q ≥ 1 in A6, the kernel function
K (v) =

∏k
j=1 κ (vj) with κ (·) ∈ K2q−1.

A 12 As T → ∞, Th4k+2
T b6T → ∞ and Th4q

T b
−4
T →

0, where q ≥ 1 is as in A6.

It is easily seen that every kernel function K (v)
satisfying A11 satisfies A7 too. The following discus-
sion and result apply not only to the estimator de-
fined by (4.12) but also to those satisfying the score
equation ∂QT (θ) /∂θ = 0,though we will continue

to use the notation θ̂T . The estimators defined as
the roots of the score equation are local optima. As
far as the local optima are concerned, only the local
analogs of A9 and A10 are needed.

A 13 In addition to A9, g (x; θ0) , xg (x; θ0) ∈ D2.

A 14 For each ξ ∈ IRk, the following moments are
finite:

A (π) = E
[
m1(v)
fv(v)

∂g(ξ−v;θ0)(ξ−v)
∂(vec Γ)′

− m2(v)
fv(v)

∂g(ξ−v;θ0)
∂(vec Γ)′

]
,

B (ξ) = Eg (ξ − v; θ0)×[
(ξ − v) ∂[m1(v)/fv(v)]

∂(vec Γ)′
− ∂[m2(v)/fv(v)]

∂(vec Γ)′

]
,

where v = Γ0w and vec is the column vector opera-
tor.

A 15 For each ξ ∈ IRk,

E
∥∥∥I (∣∣∣f̂v (Γ̂w

)∣∣∣ < bT

)
F (ξ)

∥∥∥ = o
(
T−1/2

)
,

where

F (ξ) = g (ξ − v; θ0) [(ξ − v)m1 (v)−m2 (v)] /fv (v) .

A 16 For each ξ ∈ IRk, the covariance ma-
trix Σ (ξ) = EF (ξ)F (ξ)

′
exists, where F (ξ) is

defined in A15. The covariance matrix ΣΓ =
E
[
(z − Γ0w) (z − Γ0w)

′ | w
]

exists and does not de-
pend on w.

A 17 Θ contains an open neighborhood of θ0 in
which ∂g (x; θ) /∂θ and ∂2g (x; θ) /∂θ∂θ′ exist and
have the same property as A9 for the function
g (x; θ) .

A 18 The matrix H = 1
S

∑S
s=1D (ξs)D (ξs)

′
is

nonsingular, where

D (ξ) =

∫
∂g (ξ − v; θ0)

∂θ
[(ξ − v)m1 (v)−m2 (v)]

′
dv.

Then we have the following result.

Theorem 4 Under A1 - A18, for any estimator θ̂T
satisfying (4.12),

√
T
(
θ̂T − θ0

)
L→ N

(
0, H−1ΩH−1

)
,

where

Ω =
1

S

S∑
s=1

D (ξs) {Σ (ξs) + [A (ξs) +B (ξs)](
M−1
w ⊗ ΣΓ

)
[A (ξs) +B (ξs)]

′}
D (ξs)

′
.
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